Sylwia CICHACZ and Jakub PRZYBYŁO

Vertex-distinguishing edge-colorings of sums of paths

Preprint Nr MD 027
(otrzymany dnia 4 kwietnia 2007)

Kraków
2007
Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ,
prowadzący seminarium Słowa, słowa, słowa...
w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK,
prowadzący seminarium Matematyka Dyskretna - Teoria Grafów
na Wydziale Matematyki Stosowanej AGH.
Vertex-distinguishing edge-colorings of sums of paths

Sylwia Cichacz, Jakub Przybyło

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

April 4, 2007

Abstract

In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors $c(G)$ required to edge-color a simple graph G so that each vertex has a distinct multiset of colors incident to it. We find the exact value of $c(G)$ - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, $\chi_0(G)$, where sets, instead of multisets, are required to be distinct, and determine its value for the same family of graphs.

1 Introduction

Consider a simple graph G. In [1] the following coloring problem was introduced. Let C be a color set, and let $w: E(G) \rightarrow C$ be an edge-coloring of G. Let then $S(v)$ (or $S_w(v)$ if the coloring w is not obvious) denote the multiset of colors assigned to the edges incident with $v \in V(G)$. We call this edge-coloring irregular or vertex-distinguishing if $S(u) \neq S(v)$ for any two distinct vertices $u, v \in V(G)$. It exists iff G contains no more than one isolated vertex and no isolated edges. Such a graph we call vertex-distinguishing edge-colorable (vdec-graph), while the minimal number of colors necessary to obtain its irregular edge-coloring we call an irregular coloring number and denote by $c(G)$.

Let n_d (or $n_d(G)$) denote the number of vertices of degree d in G. Note that if there is an irregular edge-coloring of G with k colors, then, by the
standard combinatorial formula for the number of multisets of a given size, we must have that
\[
\binom{k + d - 1}{d} \geq n_d
\]
for each \(d \geq 1\). The following conjecture was posed by Burris in [4].

Conjecture 1 Let \(G\) be a vdec-graph and let \(k\) be the minimum integer such that \(\binom{k + d - 1}{d} \geq n_d(G)\) for \(1 \leq k \leq \Delta(G)\). Then \(c(G) = k\) or \(k + 1\).

In the general case this conjecture appears to be difficult. Several results, mostly for connected graphs, are however included in [4]. In [6] we investigated some aspects of the irregular edge-coloring of 2-regular graphs, which are simply (vertex-disjoint) sums of cycles. In this paper, we prove that Conjecture 1 holds for the sums of paths. In our research we apply a similar method as the one described in [3], where the graph parameter \(\chi'_s(G)\), in the case when \(\Delta(G) = 2\), is investigated. It is called the *strong coloring number* and may be viewed as the modification of \(c(G)\) by the restriction that the edge-coloring has to be proper (see also [4, 5]).

It will appear in the next section that in the case when \(G\) is a disjoint union of paths, the problem of irregular edge-coloring is equivalent to a certain problem of packing of the line graph of \(G\) into a special pseudograph. We solve it in Section 3. In the last section we study the *point-distinguishing chromatic index*, \(\chi_0(G)\) (see [7]), which is another modification of \(c(G)\) where sets, instead of multisets, are required to be distinct. We determine its value also for the sums of paths.

2 Paths packing problem

Let \(M_n\) denote the complete graph \(K_n\) with a single loop at each vertex added. Though \(M_n\) is actually a pseudograph, we shall call it a graph. Moreover, write \(P_{n+1}\) for a path of length \(n\) (on \(n + 1\) vertices) and \(P(v_1, v_2, \ldots, v_{n+1})\) for the trail of length \(n\) on the vertices \(v_i\) and with edges \(v_iv_{i+1}\). We do not require the \(v_i\) to be distinct. We call the trail *open* if \(v_1 \neq v_{n+1}\) and we call it *closed* otherwise. For any two graphs \(G_1\) and \(G_2\), write \(G_1 \cup G_2\) for the vertex-disjoint union of \(G_1\) and \(G_2\).

If \(G_1\) and \(G_2\) are graphs, a *packing* of \(G_1\) into \(G_2\) is a map \(f : V(G_1) \to V(G_2)\) such that \(xy \in E(G_1)\) implies \(f(x)f(y) \in E(G_2)\) and the induced map on edges \(xy \mapsto f(x)f(y)\) is an injection from \(E(G_1)\) to \(E(G_2)\). We do not require \(f\) to be injective on vertices, so if \(G_1\) contains a path, its image in \(G_2\) will be a trail.
In this paper we investigate the case when a graph G is a (vertex-disjoint) union of p paths, hence $G = P_{l_1 + 2} \cup \ldots \cup P_{l_p + 2}$ with $l_i \geq 1$ (G is a vdec-graph and we ignore the presence or absence of an isolated vertex, since this does not influence the coloring). The line graph $L(G) = P_{l_1 + 1} \cup \ldots \cup P_{l_p + 1}$ of such a graph is also a union of p paths. If G is given a vertex-distinguishing edge-coloring by n colors, then we get a packing of $L(G)$ as p edge-disjoint trails in M_n. Each edge of G corresponds to a vertex of $L(G)$ which is mapped to a (color) vertex of M_n. Since the coloring is vertex-distinguishing, the trails being images of the paths are indeed edge disjoint in M_n. Moreover they are open, since the $2p$ endpoints of the paths have to be mapped to distinct vertices. Conversely, if we have a packing of $L(G)$ into M_n such that each endpoint of the paths in $L(G)$ is mapped to a different vertex, then we can color each edge of G with the image of the corresponding vertex of $L(G)$ in M_n. The obtained edge-coloring is vertex-distinguishing, hence the value of $c(G)$ is equal to the smallest n such that a packing of $L(G)$ into M_n with all endpoints mapped to distinct vertices exists.

3 Irregular edge-coloring

We make use of the following result by Balister from [2] to solve the packing problem to which our problem was reduced and thus determine the exact value of $c(G)$ in the described case.

Theorem 2 Let $L = \sum_{i=1}^{p} t_i$, $t_i \geq 3$, with $L = \binom{n}{2}$ when n is odd and $(\frac{n}{2}) - \frac{n}{2} - 2 \leq L \leq (\frac{n}{2}) - \frac{n}{2}$ when n is even. Then we can write some subgraph of K_n as an edge-disjoint union of closed trails of lengths t_1, \ldots, t_p.

Theorem 3 The following conditions are both necessary and sufficient for packing $\bigcup_{i=1}^{p} P_{l_i + 1}$, $l_i \geq 1$, into M_n with endpoints mapped to distinct vertices:

(1) $L \leq \binom{n+1}{2} - \frac{r}{2}$ if r (or n) is even,

(2) $L \leq \binom{n+1}{2} - p$ if r (or n) is odd,

where $n = 2p + r$, $r \geq 0$, and $L = \sum_{i=1}^{p} l_i$. In particular $L \leq \binom{n}{2}$ is always sufficient.

Proof. We verified the cases for $n \leq 9$ by a computer program we created\(^1\) (we might have done it without using a computer, but then the proof gets

\(^1\)The source code along with other necessary files are available at http://home.agh.edu.pl/~cichacz/ang/preprints.php.
longer and more unclear), thus let \(n \geq 10 \).

First we prove that the conditions are necessary.

Clearly, we cannot pack paths of total length \(L \) greater than the size of \(M_n \), \(\binom{n+1}{2} \). Moreover, if \(G' \) is the image of the described packing in \(M_n \), it consists of \(p \) open trails, whose ends form a set of \(2p \) vertices of odd degrees in \(G' \). The remaining \(r \) vertices have even degrees in \(G' \). Therefore, if \(r \) is odd (hence \(n \) is odd and the degrees of all vertices of \(M_n \) are even), we must delete at least \(p \) edges from \(M_n \) to obtain \(G' \). Analogously, if \(r \) is even (hence \(n \) is also even and the degrees of all vertices of \(M_n \) are odd), we need to remove at least \(\frac{n}{2} \) edges from \(M_n \) to obtain \(G' \).

Now we prove the sufficiency of the conditions by induction on \(n \).

Let \(l_1 \geq l_2 \geq \ldots \geq l_p \). If all the paths are of length one, we are done, since in \(M_n \) there is a set of \(\lceil \frac{n}{2} \rceil \geq p \) independent edges. Therefore, we may assume \(l_1 \geq 2 \).

Let us first consider the case \(p = 1 \). If \(n \) is odd (even) and \(l_1 = \binom{n+1}{2} - 1 \) (\(l_1 = \binom{n+1}{2} - \frac{n}{2} + 1 \)), remove one edge from the Eulerian graph \(M_n \) (remove \(\frac{n}{2} - 1 \) independent edges from \(M_n \)) to form the desired open trail. If \(l_1 = \binom{n+1}{2} - q \) \(l_1 = \binom{n+1}{2} - \frac{n}{2} + q \), where \(1 \leq q \leq n \), it is enough to remove \(q \) loops from the trail described above. Finally, if \(l_1 \leq \binom{n}{2} - 2 \) \(l_1 \leq \binom{n}{2} - \frac{n}{2} \) and \(l_1 \geq 4 \), we first find a closed trail \(T \) of length \(l_1 - 1 \) in \(K_n \) by Theorem 2. Clearly, there must be some edge \(uv \in E(K_n) \) that does not belong to this trail with \(u \) being one of its vertices. Adding this edge to \(T \) yields an open trail of length \(l_1 \). If \(l_1 \leq 3 \), the result is obvious.

Let then \(p \geq 2 \) and \(l_0 = l_1 + l_2 - 2 \). Since \(l_1 \geq 2 \), we have \(l_0 \geq 1 \). Assume first that the sum of the lengths of the paths is relatively small, so that the \(p - 1 \) paths of lengths \(l_0, l_3, l_4, \ldots, l_p \) satisfy the assumptions of the theorem for \(M_{n-2} \). Then we pack \(P_{l_0+1} \cup \bigcup_{i=3}^{l_p} P_{l_i+1} \) into \(M_{n-2} \) (\(M_n \) with two vertices, say \(a \) and \(b \), removed) by induction. Let \(u \) and \(v \) be the ends of the trail of length \(l_0 \) in \(M_{n-2} \) and let \(u' \) be a vertex of this trail such that the distance along the trail between \(u \) and \(u' \) equals \(l_1 - 1 \) (hence the distance along the trail between \(v \) and \(u' \) equals \(l_2 - 1 \)). Then, by adding the edge \(u'a \) to the part of this trail between \(u \) and \(u' \), we obtain a trail of length \(l_1 \) with endpoints \(u, a \), and by adding the edge \(bu' \) to the rest of the trail of length \(l_0 \), we obtain a trail of length \(l_2 \) with endpoints \(v, b \). Thus we obtain the desired packing.

Assume therefore that the sum of the lengths of the paths is relatively large, so that the lengths \(l_0, l_3, l_4, \ldots, l_p \) do not satisfy the assumptions of the theorem for \(M_{n-2} \) \((n \geq 10) \). Then however, it is easy to check that the length of at least one path, \(l_1, l_2, \ldots, l_{p-1} \) or \(l_p \), must exceed 7, hence \(l_1 \geq 8 \).
and $l_0 - 6 \geq 1$. Let us reduce l_0 by 6 if n is odd or reduce it by 5 if n is even. Then keep reducing l_i, $i \geq 3$, and what is left of l_0 by multiples of four until we have reduced all the lengths to at most four or until we have removed a total (taking into account the initial reduction by 6 or 5) length of $2n - 4$ if n is odd, or $2n - 3$ if n is even. (Actually, since the sum $l_0 + \sum_{i=3}^{p} l_i$ is relatively large and $n \geq 10$, this process of reducing stopes always in the second case.) Hence, if we denote the reduced lengths by l'_0, l'_3, \ldots, l'_p, we have $l'_i \geq 1$ for all i and $l'_0 + \sum_{i=3}^{p} l'_i \leq \max\{4(p - 1), L - (2n - 2)\}$ if n is odd, or $l'_0 + \sum_{i=3}^{p} l'_i \leq \max\{4(p - 1), L - (2n - 1)\}$ if n is even. Therefore, the paths $P_{l_0 + 1}, P_{l_3 + 1}, \ldots, P_{l_p + 1}$ satisfy the assumptions of the theorem for M_{n-2} (since we have now $p - 1$ paths, r remains the same) and we may pack them into this graph by induction. Assume M_{n-2} was formed of M_n by removing vertices a and b from it and let the trail of length l'_0 has endvertices u and v in M_{n-2}. Fix a vertex u' on this trail which is at distance at most $l_1 - 6$ along the trail from u and distance at most $l_2 - 1$ from v and so that this distance from v is equivalent to $(l_2 - 1) \mod 2$. It is possible since $l'_0 \leq (l_1 - 6) + (l_2 - 1)$ and $l'_0 \geq 1$. Now, we will use all (except ab if n is odd) the edges (and loops) incident with a or b to complete the trails, so that they make up the desired packing.

First, for each $P_{l_i + 1}$ with $i \geq 3$ that have been shortened fix an endpoint vertex v_i of the trail of length l'_i in M_{n-2} not equal to u'. Now pick $\frac{l_i - l'_i - 2}{2}$ paths of length two of the form $P(a, x, b)$ where x is neither u' nor any of v_i. Joining these paths with the edges $v_i a, v_i b$ and the trail of length l'_i gives a trail of length l_i in M_n with the same endvertices as the trail of length l'_i in M_{n-2}. Now we need only to form two trails corresponding to $P_{l_1 + 1}$ and $P_{l_3 + 1}$ in M_n. A trail of length l_2 we construct by joining the part of the trail of length l'_0 between v and u' with the edge $u'a$ and with some number of the paths of length two between a and b. This trail has endvertices v and a or b. Similarly, a trail of length l_1 we construct by joining subsequently the part of the trail of length l'_0 between u and u' with the edge $u'b$, then with the loop at b, one of the remaining paths of length two between a and b, the loop at a, and with some (all, actually) of the rest of the paths of length two between a and b. If n is even, we additionally add the edge ab to the trail at the end. By our construction, it has endvertices u and a or b distinct (since $l_2 + l_1 = l'_0 + 1 + 7 + 4t$ if n is odd or $l_2 + l_1 = l'_0 + 1 + 6 + 4t$ otherwise, $t \geq 0$) from the endvertices of the trail of length l_2. \[\square\]

Note that if $G = \bigcup_{i=1}^{p} P_{l_i + 2}$ with $L = \sum_{i=1}^{p} l_i$, the inequality (1) for $d = 1$ is of the form $k \geq 2p$, hence provides us with the restriction that we need to use at least as many colors as there are the endpoints of the paths. Analogously,
since in G there are exactly L vertices of degree 2, we obtain $\binom{k+1}{2} \geq L$ for $d = 2$. Consequently, Conjecture 1 is valid for sums of paths.

Corollary 4 Let G be a vertex-disjoint union of paths of lengths at least two. Let $n_1(G) \leq k$ and $n_2(G) \leq \binom{k+1}{2}$ with k chosen as small as possible. Then $c(G) = k$ or $k + 1$. □

4 Point-distinguishing coloring

The concept of the point-distinguishing coloring, an edge-coloring distinguishing all vertices by sets of adjacent colors, was introduced in [7] by Harary and Plantholt. Note that since a vertex of degree d in a graph G may obtain a set of colors consisting of at most d elements, we must have that

$$\binom{k}{1} + \binom{k}{2} + \ldots + \binom{k}{d} \geq n_1(G) + n_2(G) + \ldots + n_d(G)$$

for $1 \leq d \leq \Delta(G)$ if there is a point-distinguishing coloring of G by k colors. Several results concerning some classes of connected graphs can be found in [7]. We focus on the case when a vdec-graph G does not have to be connected. Observe that

$$c(G) \leq \chi_0(G) \leq \chi'_s(G),$$

where $c(G)$ and $\chi_0(G)$ coincide when 2-regular graphs are considered, see [6]. Assume then $G = P_{l_1+2} \cup \ldots \cup P_{l_p+2}$, with $L = \sum_{i=1}^{p} l_i$, is a sum of p paths of lengths at least two. Taking $d = 1$ and $d = 2$ in the inequality (2), we obtain $2p \leq k$ and $|G| = 2p + L \leq \binom{k+1}{2}$. Note that the problem of the point-distinguishing coloring of G is equivalent to almost the same packing problem as in the case of irregular edge-coloring, with one new restriction. Namely, we additionally require for each endpoint of a path from $L(G)$, that if it is mapped to a vertex $v \in V(M_n)$, then the loop at v does not appear in the image of the packing.

Theorem 5 The following conditions are both necessary and sufficient for packing $\bigcup_{i=1}^{p} P_{l_i+1}$, $l_i \geq 1$, into M_n with endpoints mapped to distinct vertices and with loops at these vertices not appearing in the image of the packing:

1. $L = \binom{n}{2}$ or $L \leq \binom{n}{2} - 3$ if $r = 0$,
2. $L \leq \binom{n+1}{2} - \frac{r}{2} - 2p$ if r (or n) is even ($r > 0$),
3. $L \leq \binom{n+1}{2} - p - 2p$ if r (or n) is odd,

where $n = 2p + r$, $r \geq 0$, and $L = \sum_{i=1}^{p} l_i$. In particular $L \leq \binom{n}{2} - 2p$ is always sufficient.
Proof. It is enough to make some modifications in the proof of Theorem 3. Here we only outline these changes. The cases for $n \leq 9$ were verified by a computer program we created\(^2\), thus let $n \geq 10$.

The necessity of the conditions follows by almost the same argument as in the mentioned proof. The subtraction of additional $2p$ in the above inequalities (2) and (3) corresponds to $2p$ loops that cannot appear in the image of the packing, while for $r = 0$ (hence $n = 2p$ and $\binom{n}{2} = \binom{n+1}{2} - 2p$), we need to remove at least three or neither of the edges from M_n to obtain an even number of vertices of odd degree in the resulting image of the packing.

Now we comment on the proof of the sufficiency of the conditions. For $p = 1$ we only remove the two loops at the ends of the trail of length $l_1 = \binom{n+1}{2} - 1$ ($l_1 = \binom{n+1}{2} - \frac{n}{2} + 1$ if n is even) described at the beginning of the paragraph. The rest remains (almost) the same. Let then $p \geq 2$. If the paths of lengths $l_0, l_3, l_4, \ldots, l_p$ satisfy the assumptions of this theorem for M_{n-2}, the proof does not change. Assume then this is not the case. The main difference in the rest of the proof rely on the change that we initially reduce l_0 by 4 (instead of 6) if n is odd, or by 3 (instead of 5) if n is even (it is enough that $l_1 \geq 6$). Analogously, we reduce the lengths of the paths by at most $2n - 6$ (not $2n - 4$) if n is odd, or $2n - 5$ (not $2n - 3$) if n is even.

Then, while fixing u' on the trail of length l'_0, we require it to be at distance at most $l_1 - 4$ (instead of $l_1 - 6$) along the trail from u, and finally, at the end of the proof, we omit the loops at a and b while constructing a trail of length l_1.

Corollary 6 Let G be a vertex-disjoint union of paths of lengths at least two. Let $n_1(G) \leq k$ and $n_1(G) + n_2(G) \leq k + \binom{k}{2}$ with k chosen as small as possible. Then $\chi_0(G) = k$ or $k + 1$.

References

\(^2\)The source code along with other necessary files are available at http://home.agh.edu.pl/~cichacz/ang/preprints.php.

