Physical constants:

Speed of light: $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Stephan-Boltzmann constant: $\sigma=5.6703 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Wien's displacement law constant: $\mathrm{b}=2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}$
Planck's constant: $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

$$
\hbar=1.054572 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=6.582 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}
$$

Mass of electron: $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}=510.0 \mathrm{keV} / \mathrm{c}^{2}$
Mass of proton: $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=938.3 \mathrm{MeV} / \mathrm{c}^{2}$
Unified mass unit: $\mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
Electron charge: $\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
Coulomb force constant: $\mathrm{k}_{\mathrm{e}}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
Ground state of hydrogen atom: $\mathrm{E}_{1}=\frac{k_{e}^{2} e^{4}}{2 m \hbar^{2}} \approx 13.6 \mathrm{eV}$
Ground state of infinite square well: $\mathrm{E}_{1}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$
Probability integral: $\int_{-\infty}^{\infty} e^{-x^{2} / a^{2}} d x=\sqrt{\pi} a$

1. A $40-\mathrm{W}$ incandescent bulb has the surface area of its tungsten filament of $0.5 \mathrm{~cm}^{2}$ and radiates like a blackbody.
a. What is the wavelength at the maximum of the spectral distribution?
b. What is the temperature of the filament?
(1490nm; 1940 K)
2. Under optimum conditions, the eye will perceive a flash if about 60 photons arrive at the cornea. How much energy is this in joules if the wavelength of the light is 550 nm ? $\left(135 \mathrm{eV}=2.17 \times 10^{-17} \mathrm{~J}\right)$
3. A stationary hydrogen atom initially in the first excited state $(\mathrm{n}=2)$ emits a Lyman α photon. Find the velocity of the atom after the emission. ($3 \mathrm{~m} / \mathrm{s}$)
4. Find the velocity of photoelectrons liberated by light of wavelength $\lambda=18.0 \mathrm{~nm}$ from stationary He^{+}ions in the ground state. You may neglect the recoil of the ion and use the non-relativistic approximation.
$\left(2.310^{6} \mathrm{~m} / \mathrm{s}\right.$)
5. A dust particle of mass $m=10^{-6} \mathrm{~kg}$ is moving with velocity $\mathrm{v}=10^{-6} \mathrm{~m} / \mathrm{s}$. If the uncertainty in the position of its wave packet is equal to its de Broglie wavelength, what is the uncertainty in its velocity?
$\left(8 \times 10^{-8} \mathrm{~m} / \mathrm{s}\right)$
6. In a region of space, a particle has a wave function given by $\psi(x)=A \exp \left[-x^{2} /\left(2 L^{2}\right)\right]$ and energy $E=\hbar^{2} / 2 m L^{2}$, where L is some length.
a. Find the potential energy $V(x)$ as a function of x.
b. The normalization constant is $A=0.751 / \sqrt{L}$. Estimate the probability of the particle being in a small region of space $-0.005 L<\mathrm{x}<0.005 L$.
c. Derive the above expression for the normalization constant A.
$\left(\mathrm{V}(\mathrm{x})=\mathrm{hbar}{ }^{2} \mathrm{x}^{2} /\left(2 \mathrm{~mL}^{4}\right) ; \mathrm{P}=5.64 \times 10^{-3}\right)$
7. An atom of mass $m=3 \times 10^{-26} \mathrm{~kg}$ oscillates harmonically in one dimension at an angular frequency of $\omega=10^{13} \mathrm{rad} / \mathrm{s}$.
a. What is its ground state energy?
b. What is the effective force constant (k)?
($\mathrm{E}_{0}=0.0033 \mathrm{eV} ; \mathrm{k}=3 \mathrm{~N} / \mathrm{m}$)
8. Sketch a possible wave function for a particle of energy E trapped inside the potential well shown below.

9. An electron moving in a nanowire can be approximated as moving in a one-dimensional infinite potential well. The nanowire is $L=2 \mu \mathrm{~m}$ long. The nanowire is cooled to a temperature of $T=13 \mathrm{~K}$, and the electron's average kinetic energy is approximately equal to that of gas molecules at this temperature: $E_{k}=3 / 2 k_{B} T$, where k_{B} is the Boltzmann constant. What is the approximate quantum number for the electrons moving in the wire?
($\mathrm{n}=134$)
10. Extra credit A particle is trapped inside an infinite square-well potential between $x=0$ and $x=L$. Its wave function is a superposition of the ground state and first excited state:

$$
\psi(x)=a \psi_{1}(x)+b \psi_{2}(x)
$$

where ψ_{1} and ψ_{2} are the respective eigenstate wave functions. The wave function $\psi(x)$ is normalized. The coefficient a is $a=1 / 2$. What is the probability of finding the particle in the first excited state?
($\mathrm{P}=3 / 4$)

