PHYS 2022 -- Homework 11 -- Practice problems for Midterm 3
Posted April 14, 2010

Problems:

1. A plane wave $\xi=A \cos (\omega t-k x)$ falls normally on a wall and reflects back. 25% of the energy of the incident wave is lost to the wall. Write down the solution of the wave equation for the reflected wave.
2. The phase velocity of waves in a medium varies with their wavelength as $v_{p}=\frac{C}{\sqrt{k}}=C \sqrt{\frac{\lambda}{2 \pi}}$, where C is a constant.
How does the group velocity vary with λ ?
3. The equation of a traveling sound wave is $\xi=10 \sin (180 t-0.628 x)$, where ξ is in micrometers, t is in seconds, and x is in meters.
a. Find the speed of sound and the wavelength of the wave.
b. As the wave passes through air, what is the maximum speed of the air particles?
4. A plane monochromatic light wave falls normally on two vertical slits, and a fringe pattern is observed on a screen behind the slits. How would the pattern change if, instead of air, the entire system (the slits and the screen) were placed in water ($\mathrm{n}=1.3$)? Explain.
5. When a light with $\lambda_{1}=650 \mathrm{~nm}$ falls normally on a diffraction grating, the angle of diffraction for the first order maximum is $\theta_{1}=10$ degrees. Find the angle of diffraction for the second order maximum for a $\lambda_{2}=500 \mathrm{~nm}$ light. You can use a small-angle approximation.
6. You observe a thin oil film on the surface of a puddle. What is the minimum thickness of the film at a location where you see a green ($\lambda=500 \mathrm{~nm}$) interference stripe? The index of refraction in oil is smaller than in water.
