1. The solar panel on top of Malosky Stadium is rated for 6000 watts. On a summer day, with 10 hours of daylight, the power produced by the panel follows a sinusoidal curve that can be approximated as: \(p(t) = 6000 \sin(\pi t/10) \) watts, where \(t \) is in units of hours. The panel output is fed into a DC/AC converter rated at 5000 watts. The converter cannot produce an output unless the panel is producing at least 250 watts. Knowing that \(P = \frac{dW}{dt} \) and given the graph below, find the following:
 a. Find \(t_1, t_2, t_3 \) and \(t_4 \) on the curve
 b. Write the set of equations that describe the instantaneous energy output of the converter, \(w(t) \), from \(t=0 \) until \(t=10 \) hours.
 c. Find the total energy produced by the converter, \(W \), during the 10 hour day, in watt-hours. Convert to joules.
2. For the resistive network shown, find R_{eq}, the total resistance between terminals a and b. Solve in terms of R.
3. In the following circuit, solve for i_x by any method. Check your answer by using a different method.
4. For the circuit shown, find V_x, I_x and the power dissipated by the 5 Ohm resistor.