g METAPHILOSOPHY

© 2010 The Authors

Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK, and
350 Main Street, Malden, MA 02148, USA

METAPHILOSOPHY

Vol. 41, No. 3, April 2010

0026-1068

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE

TIMOTHY COLBURN AND GARY SHUTE

Abstract: Laws of computer science are prescriptive in nature but can have
descriptive analogs in the physical sciences. Here, we describe a law of conserva-
tion of information in network programming, and various laws of computational
motion (invariants) for programming in general, along with their pedagogical
utility. Invariants specify constraints on objects in abstract computational worlds,
so we describe language and data abstraction employed by software developers
and compare them to Floridi’s concept of levels of abstraction. We also consider
Floridi’s structural account of reality and its fit for describing abstract computa-
tional worlds. Being abstract, such worlds are products of programmers’ creative
imaginations, so any “laws” in these worlds are easily broken. The worlds of
computational objects need laws in the form of self-prescribed invariants, but the
suspension of these laws might be creative acts. Bending the rules of abstract
reality facilitates algorithm design, as we demonstrate through the example of
search trees.

Keywords: abstraction, computer science, freedom, invariants, law.

Introduction

Despite its title, this essay has nothing to do with legal, moral, or political
issues. Had the title been “Abstraction, Law, and Freedom in Cyber-
space,” it no doubt would have had something to do with such issues,
since it would have been about the behavior of people. But our concern is
with computer science as a science, and since the subject matter of
computer science is interaction patterns among various computational
abstractions, we address the concept of “law” in the scientific, rather than
the legal, sense.

Our topic bears on Luciano Floridi’s work in philosophy of informa-
tion in two ways. First, to understand the role of law in computer science,
one must understand the world in which computer scientists work, a
world consisting primarily of abstractions. Floridi, acknowledging a
certain debt to computer science, has recently advocated for “the method
of levels of abstraction” (Floridi 2008a) as an approach to philosophical
investigation in general. Second, our investigation into the concept of law

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

346 TIMOTHY COLBURN AND GARY SHUTE

in computer science reveals a paradigmatic case of Floridi’s “informa-
tional nature of reality”” (Floridi 2008b). In characterizing reality infor-
mationally, Floridi appeals again, in part, to a computing discipline—
namely, software engineering and its current focus on object-oriented
programming. It is fruitful to consider, while we explicate our account of
abstraction and law in computer science, whether it impacts the related
but more general philosophical claims of Floridi.

As a science that deals essentially with abstractions, computer science
creates its own subject matter. The programs, algorithms, data structures,
and other objects of computer science are abstractions subject to logical—
but not physical—constraints. We therefore expect its laws to be different
in substantial ways from laws in the natural sciences. The laws of
computer science go beyond the traditional concept of laws as merely
descriptive, allowing prescriptive laws that constrain programmers while
also describing in a traditional scientific lawlike way the behavior of
physically realized computational processes.

Laws of nature describe phenomena in ways that are general and
spatially and temporally unrestricted, allowing us to explain and predict
specific events in time. Computer scientists also need to explain and
predict specific events, but these events occur in computational worlds of
their own making. What they need is not laws that describe the
phenomena they bring about; instead they need laws that prescribe
constraints for their subject matter, keeping it within limits of their
abstract understanding, so that the concrete processes that ultimately run
on physical machines can be controlled.

In the section “Computer Science as the Master of Its Domain,” we
describe the language and data abstraction employed by software devel-
opers and compare them to Floridi’s concept of levels of abstraction.
Floridi also borrows the technical concept of “objects” from the object-
oriented programming of software engineering, and we consider how
objects fit with a structural account of reality. In “The Concept of Law in
Computer Science,” we show how laws of computer science are pre-
scriptive in nature but can have descriptive analogs in the physical
sciences. We describe a law of conservation of information in network
programming, and various laws of computational motion for program-
ming in general. These latter laws often take the form of invariants in
software design. In “Computer Science Laws as Invariants,” we show
how invariants can have both pedagogical and prescriptive effects by
describing how invariants are enforced in a famous sorting algorithm
conceived by C. A. R. Hoare.

A prescriptive law, as an invariant applied to a program, algorithm, or
data structure, specifies constraints on objects in abstract computational
worlds. Being abstract, computational worlds are products of program-
mers’ creative imaginations, so any ‘“laws” in these worlds are easily
broken. For programmers, the breaking of a prescriptive law is

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 347

tantamount to the relaxing of a constraint. Sometimes, bending the rules
of their abstract reality facilitates algorithm design, as we demonstrate
finally through the example of search trees in the section “The Interplay
of Freedom and Constraint.”

Computer Science as the Master of Its Domain

Computer science is distinct from both natural and social science in that iz
creates its own subject matter. Natural science has nature and social
science has human behavior as subject matter, but in neither case is nature
or human behavior actually created by science; the two are studied, and
observations made through such study are explained. Computer science,
however, at once creates and studies abstractions in the form of
procedures, data types, active objects, and the virtual machines that
manipulate them.

Computer science shares with mathematics the distinction of studying
primarily abstractions. However, as we argue in Colburn and Shute 2007,
the primary objective of mathematics is the creation and manipulation of
inference structures, while the primary objective of computer science is the
creation and manipulation of interaction patterns. Certainly, the objective
of computer science is at times similar to that of mathematics—for
example, when proving theorems about formal languages and the auto-
mata that process them. However, the central activity of computer science
is the production of software, and this activity is primarily characterized
not by the creation and exploitation of inference structures but by the
modeling of interaction patterns. The kind of interaction involved
depends upon the level of abstraction used to describe programs. At a
basic level, software prescribes the interacting of a certain part of
computer memory, namely, the program itself, and another part of
memory, called the program data, through explicit instructions carried
out by a processor. At a different level, software embodies algorithms that
prescribe interactions among subroutines, which are cooperating pieces of
programs. At a still different level, every software system is an interaction
of computational processes. Today’s extremely complex software is
possible only through abstraction levels that obscure machine-oriented
concepts. Still, these levels are used to describe interaction patterns,
whether they be between software objects or between a user and a system.

What is a “level of abstraction” in computer science? The history of
software development tells a story of an increasing distance between
programmers and the machine-oriented entities that provide the founda-
tion of their work, such as machine instructions, machine-oriented
processes, and machine-oriented data types. Language abstraction ac-
counts for this distance by allowing programmers to describe computa-
tional processes through linguistic constructs that hide details about the
machine entities by allowing underlying software to handle those details.

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

348 TIMOTHY COLBURN AND GARY SHUTE

At the most basic physical level, a computer process is a series of changes
in the state of a machine, where each state is described by the presence or
absence of electrical charges in memory and processor elements. But
programmers need not be directly concerned with machine states so
described, because they can make use of languages that allow them to
think in other terms. An assembly language programmer can ignore
electrical charges and logic gates in favor of language involving registers,
memory locations, and subroutines. A C language programmer can in turn
ignore assembly language constructs in favor of language involving
variables, pointers, arrays, structures, and functions. A Java language
programmer can ignore some C language constructs by employing
language involving objects and methods. The concepts introduced by
each of these languages are not just old concepts with new names. They
significantly enlarge the vocabulary of the programmer with new func-
tionality while simultancously freeing the programmer from having to
attend to tedious details. For example, in the move from C to Java,
programmers have new access to active objects, that is, data structures
that are encapsulated with behavior so that they amount to a simulated
network of software computers, while at the same time being released
from the administrative work of managing the memory required to create
these objects.

As levels of programming language abstraction increase, the languages
become more expressive in the sense that programmers can manipulate
direct analogs of objects that populate the world they are modeling, like
shopping carts, chat rooms, and basketball teams. This expressiveness is
only possible by hiding the complexity of the interaction patterns
occurring at lower levels. It is no accident that these levels mirror the
history of computer programming language development, for hiding low-
level complexity can only be accomplished through a combination of
more sophisticated language translators and runtime systems, along with
faster processing hardware and more abundant storage.

We have shown that other forms of computer science abstraction
besides language abstraction, for example procedural abstraction (Col-
burn 2003) and data abstraction (Colburn and Shute 2007), are also
characterized by the hiding of details between levels of description, which
is called information hiding in the parlance of computer science.

Floridi proposes to use levels of abstraction to moderate long-standing
philosophical debates through a method that ‘“‘clarifies assumptions,
facilitates comparisons, enhances rigour and hence promotes the resolu-
tion of possible conceptual confusions” (Floridi 2008a, 326). These
features are certainly advantages in a philosophical context, and there
is no doubt that abstraction through information hiding in computer
science goes a long way toward mitigating ‘‘conceptual confusions,” but
how similar are Floridi’s and computer science’s levels of abstraction
provided by programming languages?

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 349

In Floridi’s view, a level of abstraction is, strictly speaking, a collection
(or “vector”) of observables, or interpreted typed variables. What makes
the collection an abstraction is what the variables’ interpretations choose
to ignore. For example, a level of abstraction (LoA) of interest to those
purchasing wine may consist of the observables maker, region, vintage,
supplier, quantity, and price, while a LoA for those tasting wine may
consist of nose, robe, color, acidity, fruit, and length (2008a, 309). So a
LoA by itself is, loosely, a point of view, one chosen simply to suit a
particular purpose.

One can see how the observables available to descriptions of computa-
tional processes in different programming languages provide different
views of the entities participating in computational models of the world.
Some programmers see registers and subroutines, others see variables and
functions, and still others see objects and methods. But while the choice of
wine LoA between the two examples given above would be made solely
on the basis of some underlying purpose, the choice of abstraction level
for a software application involves considering both an underlying
purpose and a need to make use of a higher LoA. While there are some
exceptions in the world of specialized hardware programming, most
software applications for general purpose machines today require en-
hanced expressiveness through LoAs that do not require the programmer
to be concerned with the architecture of the machine. The level of
abstraction used by one programming language is “higher” than another
to the extent that it hides more machine architecture details and allows
the natural representation of concepts in the world being modeled by a
program.

Computer scientists often engage in comparisons of programming
languages on the basis of their expressiveness or fitness for various
purposes. If a programming language can be said to embody a single
LoA, computer scientists would therefore be interested in the relation-
ships of multiple languages through the arrangement of multiple
LoAs, something Floridi considers in his concept of a ‘“‘gradient” of
abstractions (GoA). To develop the idea of a GoA, Floridi first intro-
duces the notion of a “moderated” LoA. In general, not all possible
combinations of values for variables in a LoA are possible—for example,
wine cannot be both white and highly tannic. A predicate that constrains
the acceptable values of a LoA’s variables is called its “behavior.” When
you combine a LoA with a behavior, you have a moderated LoA (2008a,
310).

Before considering GoAs for programming languages, let us consider
the concept of a programming language as a moderated LoA, that is, one
with a ‘“‘behavior.” While there is an obvious sense in which some
observables, such as program variables, have value constraints (a pro-
gram variable, for example, cannot be both integral and boolean), other
observables, such as functions, have no value constraints other than the

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

350 TIMOTHY COLBURN AND GARY SHUTE

syntax rules that govern their construction. Yet functions nevertheless
possess behavior.

There is a ready explanation for this disconnect. The model for
Floridi’s behavior concept is inspired by the information modeling
activity of system specifiers, whose objective is the complete functional
description of particular envisaged applications in terms of system state
changes. Programming language developers, however, are in the quite
different business of providing the tools that facilitate the implementation
of the products of the specifiers, and programmers themselves use those
tools to create computational objects of varying degrees of expressivity. It
seems possible in principle to extend Floridi’s concept of behavior to
cover function behavior as well as the behavior of typed variables.

Returning now to Floridi’s idea of a gradient of abstractions, we find
that a GoA is constructed from a set of moderated LoAs. The idea,
according to Floridi, is that “[w]hilst a LoA formalises the scope or
granularity of a single model, a GoA provides a way of varying the LoA
in order to make observations at differing levels of abstraction” (2008a,
311). Why would one want to do this? By way of explanation, Floridi
again considers the wine domain. Since tasting wine and purchasing wine
use different LoAs, someone who is interested in both tasting and
purchasing could combine these LoAs into one GoA that relates the
observables in each. So while a LoA is characterized by the predicates
defined on its observables, a GoA requires explicit relations between each
pair of LoAs. Floridi describes these relations formally using standard
Cartesian product notation and conditions that ensure that the related
LoAs have behaviors that are consistent. As Floridi points out, these
consistency conditions are rather weak and do not define any particularly
interesting relations between the LoAs. However, by adding certain
conditions he defines a ‘““disjoint” GoA, or one whose pairwise LoAs
have no observables in common, and a “nested” GoA, or one whose
LoAs can be linearly arranged such that the only relations are between
adjacent pairs (2008a, 312).

Nested GoAs are useful because they can ““describe a complex system
exactly at each level of abstraction and incrementally more accurately”
(2008a, 313), as in neuroscientific studies that begin by focusing on brain
area functions generally and then move to consideration of individual
neurons. It is interesting to note that while the gradient in a nested GoA
goes from more abstract to more concrete, the gradient at work in
computer science programming language abstraction proceeds along an
orthogonal dimension, namely, from the more machine-oriented to the
more world-oriented.

Put another way, nested GoAs (though not GoAs in general) are often
constructed for the sake of more fine-tuned analysis, while the new
abstraction levels offered by computer science programming languages
present greater opportunities for synthesis in the construction of

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 351

programming objects of ever-larger content than those available before.
The content of a programmer’s computational objects enlarge as more of
the underlying machine details of representing them are hidden from the
programmer by the chosen implementation language. This is particularly
evident when considering the data abstraction capabilities of higher-level
languages.

Lower-level languages such as assembly languages offer basic data
types like numbers, characters, and strings. These are types that are
themselves abstractions for the hard-wired circuitry of a general-purpose
computer. If a programmer wants to write, say, a Web browser using
assembly language, he must laboriously implement a high-level notion
such as a communication socket in the language of the machine—
numbers, characters, strings, and so on. As all assembly programmers
know, this is an impoverished vocabulary requiring painstaking and time-
consuming coding that is unrelated to the central problems of Web
browsing. Hundreds or perhaps thousands of lines of code might be
required just to perform what amounts to machine-level data book-
keeping. By using a higher-level language such as C, the programmer can
take advantage of richer types such as structures (that can group the basic
machine types automatically) and pointers (that can take on the burden
of memory address calculations), relieving a good deal of the drudgery of
manipulating these basic machine types. But by using higher-level
languages still, such as C++ or Java, programmers can expand their
coding language to include types whose values are communication
sockets themselves. No “‘shoehorning” of the higher-level notion of a
communication socket using lower-level programming types is necessary;
a communication socket actually is a data type in these higher-level
languages.

It may very well be possible to define a gradient of abstractions for
programming languages and data types that would fit Floridi’s model, so
long as the relations between the LoAs making up the gradient accurately
capture the nature of information hiding on which software development
so crucially depends. In fact, the concept of a GoA may be useful for
characterizing the relations among the various “‘paradigms” of program-
ming languages. For example, the fundamentally imperative and ma-
chine-oriented nature of assembly language programming and the purely
functional nature of Lisp or Scheme may place them in a disjoint GoA,
while the historical evolution of the C language into C++ suggests a
nested GoA for them. Floridi points out (2008a, 314) that hierarchical
GoAs that are less restricted than nested GoAs can also be defined,
arranging their LoAs in tree structures. The many programming para-
digms that have evolved in computer science would likely fit on such a
GoA.

Whatever the programming paradigm, by hiding the complexity of
dealing with lower-level data types, the information hiding provided by

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

352 TIMOTHY COLBURN AND GARY SHUTE

high-level languages gives programmers and scientists the expressiveness
and power to create higher-level objects that populate ever more complex
worlds of their own making. Such worlds exhibit Floridi’s informational
structural realism. Structural realism (SR) gives primacy to the relations
that hold among objects being studied, for it is they, rather than the relata
themselves, that facilitate explanation, instrumentation, and prediction
within the system under investigation (Floridi 2008b, 220). What makes
Floridi’s SR informational is that questions about the ontological status
of the relata can be put aside in favor of a minimal, informational
conception of the objects bearing the relations. To explicate this idea,
Floridi borrows the technical concept of an “object” from computer
science’s discipline of object-oriented programming (OOP). Because such
objects encapsulate both state (Floridi’s observables in a LoA) and
behavior (how they relate or interact with other objects), they constitute
paradigm candidates for the structural objects embraced by SR. But
because they are abstractions, they avoid any ontological calls for
substance or material in the characterization of structural objects.

The ontologically noncommittal nature of Floridi’s informational
structural realism (ISR) comes through when he uses Van Fraassen’s
categorization of types of structuralism and puts ISR in the category of
“in-between” structuralism: it is neither radical (structure is all there is)
nor moderate (there are nonstructural features that science does not
describe). Instead, ““the structure described by science does have a bearer,
but that bearer has no other features at all” (Floridi 2008b, 221f.).
However, as any object-oriented programmer knows, information objects
are richly featured, even apart from the important relations they bear to
other objects. A file folder, for example, has a size and a location besides
the relations to the parent folder that contains it and the subfolders it
contains. True, the objects of OOP are structured, but they are not mere
relations; they are rich with attributes—OOP parlance for nonrelational
properties. A programmer could, of course, replace an object O’s
attributes with other objects, so that O consists only of relations with
other objects, but eventually those other objects must have attributes that
are nonrelational. So not all objects can be featureless, which Floridi
seems to desire.

At the same time, one of the powerful features of OOP that distin-
guishes it sharply from the programming paradigms preceding it is that
program objects can be relations themselves, not just participate in them.
So a programmer modeling a ticket agency can describe spectator and
show objects, but it is possible (and in most cases preferable) to model the
relationship that is a spectator’s attending a show as itself an object as
well.

Such is the generic nature of the “object” in OOP, whether an object is
a relation or a relatum is entirely dependent on context. The object-
oriented programmer has not only expressive but also ontological

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 353

freedom in crafting his objects, and with that freedom comes the need for
constraints on object behavior in the form of laws.

The Concept of Law in Computer Science

Modern epistemology is concerned in part with how we use our sense
experience to acquire immediate knowledge of individual objects, pro-
cesses, and events in the physical world through the interaction of our
own bodies with it. But as John Hospers remarks, “If our knowledge
ended there, we would have no means of dealing effectively with the
world. The kind of knowledge we acquire through the sciences begins
only when we notice regularities in the course of events” (1967, 229).
When a statement of such a regularity admits of no exceptions, as in
Water at the pressure found at sea level boils at 212 degrees Fahrenheit, it is
called a “law of nature” (230).

There is a rich twentieth-century analytic philosophy tradition of
trying to characterize exactly what scientific “lawlikeness” is, but there
is general agreement that, at the very least, a statement is lawlike if it is
general (i.e., universally quantified), admits of no spatial or temporal
restrictions, and is nonaccidental (i.e., is in some sense necessary) (see,
e.g., Danto and Morgenbesser 1960, 177). When knowledge has these
properties, it can be used to both explain and predict particular observed
phenomena and occurrences. Being able to predict what will happen in a
given situation allows us to control future events, with the attendant
power that accompanies such control.

Computer science, as we mentioned, does not study nature, at least the
nature studied by physics, chemistry, or biology. It studies, of course,
information objects (in a general sense, not necessarily in the sense of
OOP), and most software developers would view their reality in Floridi’s
way as “‘mind-independent and constituted by structural objects that are
neither substantial nor material ... but informational” (Floridi 2008b,
241). But if computer science is a science, albeit a science concerned with
information objects, and science attempts to discover empirical laws, with
what laws, if any, are computer scientists concerned?

Some pronouncements, for example, the celebrated Moore’s Law, are
empirically based predictions about the future of technology. Moore’s
Law makes the observation that the number of integrated circuit
components (such as transistors) that can fit on a silicon wafer will
double every two years. While this observation, a version of which was
first made in 1965, has proved uncannily correct, it does not fit the criteria
for a scientific law, since even those who uphold it do not believe that it is
temporally unrestricted; the technology of integrated circuit creation has
physical limits, and when these limits are reached Moore’s “Law’ will
become false.

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

354 TIMOTHY COLBURN AND GARY SHUTE

Other purported “laws” having to do with the future of technology
have already proven false. Grosch’s Law, also coined in 1965, stated
that the cost of computing varies only with the square root of the increase
in speed, and so it supported the development of large supercomputers.
But the opposite has emerged: economies of scale in most cases are
achieved by clustering large numbers of ordinary processors and disk
drives.

If Moore’s Law and Grosch’s Law are technology reports, other
statements seem to embody, if not laws of nature, then laws of computa-
tion. For example, Alan Turing demonstrated that no procedure can be
written that can determine whether any given procedure will halt or
execute indefinitely. Such a statement satisfies the lawlikeness criteria
given above, namely, generality, spatiotemporal independence, and being
nonaccidental, but it is a statement of a mathematical theorem, not an
empirical law supported by observation.

Other pronouncements that come to be known as “laws” are also
really mathematical relationships applied to problems in computer
science. Amdahl’s Law, for example, gives an upper bound on the speedup
one can expect when attempting to parallelize a serial algorithm by
running it concurrently on a fixed number of processors. Similarly,
Gustafson’s Law modifies Amdahl’s Law by removing the constraint
that the number of processors be fixed. Each of these laws is deduced a
priori from abstract concepts, not a posteriori from observations.

There is another important set of mathematical laws with which
computer scientists are fundamentally concerned, dealing with the
bounds on space and time that are imposed on computational processes
by their inherent complexity. Just as Amdahl’s and Gustafson’s laws use
formal mathematical arguments to give limits on the speedup obtained
through the use of multiple processors, computer scientists use mathe-
matical methods to classify individual algorithms, for example algorithms
to search various kinds of data structures, in terms of the memory
required to store the data structures and the number of operations
required to search them. It is important to note that these analyses are
based not on actual physical runnings of the algorithms through
programs running on physical machines but on the analysis of algorithms
as abstract mathematical objects. No empirical study or investigation is
involved; in fact, a typical objective of such analysis is to determine
whether a given computation can be accomplished within reasonable
space and time bounds regardless of technology prognostications regard-
ing the speed of future machines. Such statements about abstract
computational objects may seem to satisfy the above criteria of law-
likeness, but these statements are supported by formal proofs and not
empirical investigation.

So is there a sense in which computer science can be said to “discover”
scientific laws in the empirical sense? We think computer scientists don’t

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 355

discover laws; they must make them. When a programmer specifies an
abstract procedure for sorting an abstract list of objects using the
operations of an abstract machine, it is because that procedure will be
implemented, through a complex and remarkable chain of electronic
events, on a given machine in the physical world. Those events must be
able to be accurately predicted in order for a program to serve the
purpose for which it was intended. For this to happen, these electronic
events must obey laws, but to describe these laws at the physical level of
electrons and microcircuits would serve no purpose, because the physical
laws of electromagnetism at the molecular level are irrelevant to a
programmer’s objective, which is to describe, in the formal language of
a machine, the interaction patterns of abstract objects like variables,
procedures, and data structures. Instead, the electronic events unfold as
they do, and (one hopes) as they should, because the programmer
prescribes laws in the realm of the abstract. Programmers must make
their abstract worlds behave as though there were laws, so that the
physical processes they produce benefit from the explanatory and
predictive power that accompanies laws. To this end, computer science
relies heavily, if not essentially, on metaphor.

In Colburn and Shute 2008 we describe how metaphors can help
computer scientists treat the objects in their abstract worlds scientifically.
For example, although there is no natural “law of conservation of
information,” network programmers make things work as though there
were one, designing error detection and correction algorithms to ensure
that bits are not lost during transmission. Their conservation “law” relies
upon a flow metaphor; although bits of information do not “flow” in the
way that continuous fluids do, it helps immeasurably to “‘pretend” as
though they do, because it allows network scientists to formulate precise
mathematical conditions on information throughput and to design
programs and devices that exploit them.

The flow metaphor is pervasive and finds its way into systems
programming, as programmers find and plug “memory leaks” and
fastidiously “flush” data buffers. But the flow metaphor is itself a special
case of a more general metaphor of motion that is even more pervasive in
computer science. Talk of motion in computer science is largely meta-
phorical, since when you look inside a running computer the only things
moving are the cooling fan and disk drives (which are probably on the
verge of becoming quaint anachronisms). Yet descriptions of the abstract
worlds of computer scientists are replete with references to motion, from
program jumps and exits, to exception throws and catches, to memory
stores and retrievals, to control loops and branches. This is to be
expected, of course, since the subject matter of computer science is
interaction patterns.

But the “motion” occurring in the computer scientist’s abstract world
would be chaotic if not somehow constrained, and so we place limits that

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

356 TIMOTHY COLBURN AND GARY SHUTE

are familiar to us from the physical world. In the case of network
programming, we borrow from physics to come up with a law of
conservation of information. For programming in general we borrow
from physical laws of motion to come up with laws of computation in the
form of invariants.

Computer Science Laws as Invariants

Just as natural laws admit of no exceptions, when programmers
prescribe laws for their abstract worlds they must make sure they
admit of no variation. The mandate of a descriptive law of nature is to
discover and describe what is. The mandate of a prescriptive law of
computation is to legislate what must hold, invariably, while a computa-
tion takes place. Here are some examples of loosely stated prescriptive
laws:

o The parity bit must equal the exclusive-or of the remaining bits (used
in error checking code)

o The array index must not be outside the range [0..n—1] where n is the
size of the array (to avoid out-of-bounds references)

o The segments of an array must at all times stand in some given
relationships to one another (to sum or sort the array, as in the
examples below)

These prescriptions state constraints that must hold in their respective
computational worlds. When a constraint is maintained throughout a
computational interaction, for example, during the calling of a procedure
or an iteration of a loop, it becomes an invariant. Invariants do double
duty. First, they function as pedagogical devices for explaining algorithms
(see, e.g., Gries 1981), even for people with little prior programming
experience. Second, they have the generality of laws in that they are
specified for algorithms, which are abstractions, and as such embody
computational laws governing any concrete processes that implement
them.

It is important to distinguish between the role of an invariant in an
abstract computational process and that of an axiom in a formal model.
Invariants are things we want to make true, while axioms are assumed to
be true unless the model shows they are inconsistent. But while we
endeavor to make invariants true, in keeping with computer science as the
master of its domain they are often broken. There are two basic reasons
for this. First, invariants often operate at levels of abstraction that cannot
be enforced at the programming level; that is, programming requires steps
that temporarily violate invariants, with later steps restoring them.
Second, an invariant might be violated to adapt a computational

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 357

structure or algorithm for a different purpose. In what follows we
describe both of these scenarios.

Complex computational processes can be brought about by enforcing
complex invariants, which themselves can be created by accommodating
simpler ones. For example, an invariant for summing the entries of an
array (a contiguous list of data) can be formulated as a picture showing
the sum of the entries considered so far and the part of the array whose
entries have not yet been added to the sum:

15152126 3 |9 |73 78 | 11|37

L]
0 T

Total so far Yet to be added

Here the partial sum has been initialized to zero and none of the entries has
been added to it. The partial sum plus the entries not yet considered add up to
the total of all entries in the array, which is 253. This is an invariant, because it
remains true as the algorithm proceeds. After one entry is considered the
picture looks like this:

[15]52|26] 5| o]73]|17] 8|11]|a7]

| |
15
K |

Total so far Yet to be added

After two entries:

|15l52|26|5|9|?3|1?|B-l11|3?|

‘ | '

Total so far Yet to be added

At each step the invariant holds. Eventually the partial sum is 253, and
there are no more entries to consider. The invariant embodies a law that a
computational process must follow in order to correctly total the entries
of the array: it must manage the partial sum while reducing the
unexamined array segment until it is empty.

When programming students are directed to implement this algorithm
in a programming language, they learn that in order to keep track of the

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

358 TIMOTHY COLBURN AND GARY SHUTE

“Yet to be added” part of the array, they need to manage an index, call it
i, that points to the beginning of that part. After having updated the
partial sum with the first element of that part, the invariant is violated
because the unexamined part has not been shrunk. It is up to the
programmer to restore the invariant by incrementing i, which has the
effect of shrinking the unexamined array segment. Describing invariants
and how to maintain them through individual program steps is an
essential part of the computer science education process. We shall see
later that violating invariants (however temporarily) occurs not only
during the programming process but also in the development of algo-
rithms themselves.

The power of invariants can also be seen in a famous sorting algorithm
developed by Hoare. To understand Quicksort, a sorting procedure
celebrated for its efficiency, consider the same array as before:

A |1s|sef2s|s|o]7af17] e]]ar]

Hoare realized that if A could be partitioned into three segments, with
all numbers in the left-most segment less than the single number (called
the pivot) in the middle segment, and all numbers in the right-most
segment greater than or equal to the pivot, as in this arrangement (15 is
the pivot):

AP |5|9|3|11.|?|52|23|3?|?3|

then the pivot element would be in its correct place in the final sorted
array. Hoare further realized that if the left-most and right-most segments
of AP were themselves partitioned in the same way, then their pivot
elements would also be in their correct places in the final sorted array. If
this process of partitioning segments is carried out recursively until each
remaining segment has only zero or one element, the array will be
completely sorted, and it will have been done efficiently provided that
the partitioning was done efficiently.

The key to efficient partitioning of an array segment is to maintain
three subsegments, which we will call <, >, and ?, that maintain the
following invariant:

L < [= | ~
pivot
Have been Have been Have not been
considered considered considered
and are < pivot and are = pivot and are unknown

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 359

When the partitioning algorithm begins on A, the first element (15)
is chosen as the pivot, all the non-pivot elements are unknown and
part of the ? segment, and the < and > segments are empty. As
the algorithm proceeds, the size of the unknown segment steadily
decreases while < and > grow, until finally the picture looks like:

[5]a]8]]73[17]52]28]s7]

Here the < segment is shaded, the > segment is unshaded, and the
unknown segment ? is empty. To finish the partitioning, the first element
of the > segment, 73, is replaced by the pivot and moved to the end of
the array to produce the partitioned array AP shown above. The
partitioning algorithm can now be recursively applied to the left and
right subsegments to eventually sort the array.

It would have been difficult for anyone, even Hoare, to conceive of
this algorithm without the help of a guiding invariant. Programmers
start with invariants as prescriptive laws and then try to create
abstract worlds that obey them. When an abstract process maintains a
carefully prescribed invariant, its concrete realization will behave
as though governed by a descriptive computational law. That is, its
behavior will be predictable, controllable, and correct for its purpose.
Thus invariants are to program objects what laws of nature are to
natural objects. Just as a planet circling a sun cannot help but follow
Kepler’s laws of planetary motion and be predictable in its course, a
program written to obey an invariant cannot help but behave in a
predictable way.

The Interplay of Freedom and Constraint

Francis Bacon wrote, “Nature, to be commanded, must be obeyed”
(Bacon 1889). This applies in computer science, but with a twist—
program developers prescribe laws for programs, and then must ensure
the programs obey these laws. The laws then become constraints on the
programmer. But these are not constraints in a political sense. The danger
of political lawlessness is external-—your unconstrained freedom is a
threat to my freedom and vice versa, but the danger of lawlessness in
computer science is internal—our minds need constraints in order to
reason through the consequences of programming decisions. For exam-
ple, it is the programmer’s imperative to reestablish the invariant for each
iteration of a loop.

While constraints in general limit freedom, in the case of programming
they make it much easier to achieve an objective, through the breaking
down of a problem solution into a sequence of small steps, each governed
by an invariant.

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

360 TIMOTHY COLBURN AND GARY SHUTE

What seems to limit freedom actually opens up new pathways. Imagine
a person exploring a jungle without a compass. She has freedom to move
anywhere she wishes, but she has no guidance. As she makes her way, she
has to frequently avoid entanglements, causing her to lose her direction.
After a while, her path through the jungle is essentially a free but random
walk. She has freedom of movement but lacks knowledge, so she cannot
make meaningful progress.

Now give her a compass that constrains her movement but provides
knowledge in the form of directional feedback. Even with entanglements she
can proceed in a relatively straight line by correcting her direction after each
deviation. By limiting her freedom in the short term (adding a compass
correction after each entanglement), she increases her long-term freedom—
her ability either to explore deeper into the jungle or to emerge from it.

The compass constrains the action of the jungle explorer just as
program invariants constrain the action of computational processes.
But in actual practice, programmers may or may not “think up”
invariants before writing their programs. Beginning programmers often
have a loose and vague idea of what their programs should do and start
programming without constructing invariants. Just as a jungle explorer
may get lucky and emerge without a compass, a programmer who
disregards invariants may get lucky and produce a program whose
behavior seems correct, but he cannot be sure that it is correct in all
instances. Through invariants, however, programmers can be confident in
their problem solutions, because the interactions they produce are
governed by law, albeit prescriptive law.

While we have shown that programmers learn to manage arrays by
temporarily violating and then restoring invariants, this approach can
also be fruitful in algorithm development, a nonprogramming endeavor.
For example, consider a data structure known as a binary search tree
(BST). BSTs facilitate looking up data using a key. Their functionality is
similar to telephone directories, where the keys are people’s names and
the data are addresses and telephone numbers. Here is a BST whose keys
are simple strings (for simplicity, the data are not shown):

In order to preserve order among a BST’s data items, a programmer
must maintain the following invariant: for any node in the BST, all keys
in its left subtree must be smaller than its key, and all keys in its right

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 361

subtree must be greater than its key. When a new node is added to a BST,
its key is compared with the key of the tree’s root (the topmost node). If it
is smaller, the new node will be placed in the left subtree, otherwise in the
right. The appropriate subtree is recursively searched until an available
space is found on one of the tree’s leaves (bottommost nodes). Here is the
example tree after the node with key 09a is added:

This arrangement facilitates data retrieval by key, since a key can be
located in time proportional to the height of the tree. If a tree is balanced,
as in the one above, a key can be located efficiently even if the number of
nodes is large. For example, a balanced tree of one million nodes has a
height of about 20.

Unfortunately, the structure of a BST is determined by the order in
which nodes are added to it, so nothing guarantees that a BST will be
balanced. Here is a BST in which nodes with keys 00, 01, 02, 03, 04, 05,
and 06 have been added in that order:

Although this structure satisfies the order invariant for BSTs, it cannot
be efficiently searched, since it is not balanced. If one million nodes are
added to a BST in key order, finding nodes with higher numbered keys
will take time proportional to its height, which is one million (compared
to 20 in a balanced BST of a million nodes).

To solve this problem, computer scientists have devised a kind of self-
balancing BST known as a red-black tree (RBT). In addition to the
ordering invariant imposed on BSTs, RBTs introduce the concept of a

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

362 TIMOTHY COLBURN AND GARY SHUTE

node’s color, requiring every node to be either red or black, with the
following additional constraints:

1. All downward paths from the top (root) of the tree to the bottom
(leaves) must contain the same number of black nodes.
2. The parent of a red node, if it exists, is black.

Here is a BST that is also a RBT (red nodes are shown here as dotted
circles):

The RBT constraints do not make a search tree perfectly balanced, but
they do ensure that no search path is longer than twice the length of
search paths in a perfectly balanced tree. Thus in a tree with one million
nodes, search paths will be no longer than 40.

This arrangement works without a hitch for some cases. Consider
adding a node with key 09a. Using the standard BST adding algorithm, it
can be added as the left subtree of node 10. Then it can satisfy the RBT
constraints by being colored red. Now consider adding a node with key
17. The BST adding algorithm would put it as the right subtree of node
16. However, coloring it black would violate RBT constraint 1, while
coloring it red would violate RBT constraint 2.

But because computer science is the master of its domain, we can
choose to violate our own laws through the temporary relaxing of
constraints. While the suspension of a natural law would be called a
miracle, the temporary violation of our RBT constraints, with a little
ingenuity, can result in an efficient data structure. So we go ahead and
violate constraint 2 by adding 17 and coloring it red (shown here as a
dotted circle):

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

ABSTRACTION, LAW, AND FREEDOM IN COMPUTER SCIENCE 363

17

Without going into detail, suffice it to say that by tweaking this law-
breaking RBT in various ways (through structural changes known as
rotations and certain recolorings) it can be nudged back into being a law-
abiding citizen of the computational world with both RBT constraints
satisfied:

Conclusion

The ultimate nature of computational reality is, of course, informational.
That is what allows computer science to create its own empirical laws, and
to be free to break them when it sees fit. We have shown that the worlds of
computational objects need laws in the form of self-prescribed invariants,
but also that the suspension of these laws might be creative acts, resulting
in neither anarchy nor miracles.

Whether the ultimate nature of «ll reality is informational is not as
obvious. But if computer science has sage advice for philosophy, Floridi
has seized upon the right concepts in levels of abstraction and the
methodology of object-oriented programming, for they are the catalysts
of progress in computer science and software engineering. While OOP
may one day be replaced by another latest and greatest programming
paradigm, the march toward ever-higher levels of programming abstrac-

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

364 TIMOTHY COLBURN AND GARY SHUTE

tions will continue. Whether this march coincides with a move toward
informational ontology is yet to be seen.

Department of Computer Science
University of Minnesota

320 Heller Hall, UMD

Duluth, MN 55812

US4

tcolburn@d.umn.edu
gshute@d.umn.edu

References

Bacon, Francis. 1889. Novum Organum. Edited by Thomas Fowler.
Oxford: Clarendon Press.

Colburn, Timothy. 2003. “Methodology of Computer Science.” In The
Blackwell Guide to the Philosophy of Computing and Information, edited
by Luciano Floridi, 318-26. Oxford: Blackwell.

Colburn, Timothy, and Gary Shute. 2007. “Abstraction in Computer
Science.” Minds and Machines 17:169-84.

. 2008. “Metaphor in Computer Science.” Journal of Applied Logic
6:526-33.

Danto, Arthur, and Sidney Morgenbesser. 1960. “Introduction to Part 2,
Law and Theories.” In Philosophy of Science, edited by Arthur Danto
and Sidney Morgenbesser, 177-81. Cleveland, Ohio: Meridian Books.

Floridi, Luciano. 2008a. “The Method of Levels of Abstraction.” Minds
and Machines 18:303-29.

. 2008b. “A Defence of Informational Structural Realism.” Syn-
these 161:219-53.

Gries, David. 1981. The Science of Programming. New York: Springer.

Hoare, C. A. R. 1962. “Quicksort.”” Computer Journal 5:10—15.

Hospers, John. 1967. An Introduction to Philosophical Analysis. 2nd ed.
Englewood Cliffs, N.J.: Prentice Hall.

© 2010 The Authors
Journal compilation © 2010 Metaphilosophy LLC and Blackwell Publishing Ltd

mailto:tcolburn@d.umn.edu
mailto:gshute@d.umn.edu

