
Decoupling as a Fundamental Value of Computer
Science

Timothy Colburn • Gary Shute

Received: 2 December 2009 / Accepted: 31 December 2010 / Published online: 3 February 2011

� Springer Science+Business Media B.V. 2011

Abstract Computer science is an engineering science whose objective is to deter-

mine how to best control interactions among computational objects. We argue that it is

a fundamental computer science value to design computational objects so that the

dependencies required by their interactions do not result in couplings, since coupling

inhibits change. The nature of knowledge in any science is revealed by how concepts in

that science change through paradigm shifts, so we analyze classic paradigm shifts in

both natural and computer science in terms of decoupling. We show that decoupling

pervades computer science both at its core and in the wider context of computing at

large, and lies at the very heart of computer science’s value system.

Keywords Decoupling � Computer science � Values

Introduction

A primary role of the philosophy of any science is to inquire into the nature of

knowledge in that science and how it is obtained. Our inquiry into the nature of

computer science knowledge began (Colburn and Shute 2007) by comparing it not

to natural science, but to mathematics, with which it shares the distinction of

reasoning primarily about abstractions, at least as far as the design and creation of

algorithms, data structures, and software are concerned. We observed that while

knowledge in mathematics facilitates the modeling of inference structures, the

primary objective of computer science is the modeling of the patterns that

characterize interaction among objects in computational processes. This is a crucial

T. Colburn (&) � G. Shute

Department of Computer Science, University of Minnesota, Duluth, MN, USA

e-mail: tcolburn@d.umn.edu

G. Shute

e-mail: gshute@d.umn.edu

123

Minds & Machines (2011) 21:241–259

DOI 10.1007/s11023-011-9233-3

difference that shapes the use of formalism and the kind of abstraction used in the

two disciplines.

Mathematics employs abstraction to clarify what may and may not be inferred in

a given context. To this end, its abstraction objective is to ignore details that are not

germane to the inference in question, and to focus on its form alone. Computer

science employs abstraction to manage the complex interactions that it studies and

creates, so its abstraction objective is to hide, but not ignore, the details of the

objects taking part in the interactions. Computer science accomplishes this

information hiding through its various methods of abstraction—of language,

procedures, and data (Colburn 2003).

Notwithstanding its similarity to mathematics in creating and studying formal

abstractions, computer science shares with natural science the objective of acquiring

knowledge through the application of scientific methods and terminology. As we

have shown (Colburn and Shute 2008), the language of computer science is laced

with metaphor, including important concepts suggesting direct analogies with

natural science. For example, network terminology speaks of information flow as

though information were a continuous fluid. Programmers speak of program motion
in terms of jumps, loops, exits, catches, and throws. It is therefore natural to ask

whether computer science discovers laws governing computational flow and motion

in the same sense that natural science does.

We considered this question in Colburn and Shute (2010a). Laws of nature describe

phenomena in ways that are general and spatially and temporally unrestricted,

allowing natural scientists to explain and predict specific events in time. Computer

scientists also need to explain and predict specific events, but these events occur in

computational worlds of their own making. The programs, algorithms, data structures,

and other objects of computer science are abstractions subject to logical—but not

physical—constraints. What computer scientists need are not laws that describe the

phenomena they bring about; instead they need laws that prescribe constraints for

their subject matter, so that the concrete processes that ultimately run on physical

machines can be controlled. These laws can be described as self-imposed invariants
that govern computational processes at the algorithmic level.

The program or design invariant that governs an executing computational process

reflects a programmer’s or designer’s value choice about what must be preserved in

order for the process to be successful. How, for example, does one keep from

indexing outside an array, or how do elements in a list retain their order?

Progammers and designers impose rules (consciously or unconsciously, often

depending on their expertise) on the processes they describe formally through

invariants stating conditions that must hold throughout the execution of a process.

In this paper we continue our investigation of the role of values in computer

science by focusing on the method of decoupling. We argue, in fact, that decoupling

lies at the very heart of computer science’s value system. All engineering endeavors,

governed by best practices, are guided by values. Knowledge in computer science is

primarily knowledge of values, and in ‘‘The Role of Values in Computer Science’’,

we characterize computer science as an engineering science whose objective is to

determine how to best control interactions among computational objects. To begin

to understand the role that decoupling plays in controlling computational

242 T. Colburn, G. Shute

123

interactions, in ‘‘Paradigm Shifts in Natural Science’’ and ‘‘Paradigm Shifts in

Computer Science’’ we compare paradigm shifts in natural and computer science,

and we see that both involve the decoupling of concepts that were previously linked

by conventional wisdom. Natural and computer science differ, however, in what

drives this decoupling, and in ‘‘Interaction, Dependence, and Coupling’’ we more

precisely characterize what decoupling means for computer science in terms of how

it facilitates change. Finally, in ‘‘Decoupling in Computer Science’’ we consider a

cross-section of examples of both core computer science practice and computing at

large, and we show how decoupling figures prominently in all of them.

The Role of Values in Computer Science

The imposition of values on the subject matter of computer science distinguishes it

from natural science and aligns it more with engineering science. This makes sense,

because engineering disciplines, like computer science, also create the objects that

they study. Engineers are also concerned, as are computer scientists, with

interaction patterns among aspects of the objects they study. The bridge engineer

studies the interaction of forces at work on bridge superstructure. The automotive

engineer studies the interaction of motions inside a motor. But the interaction

patterns studied by the engineer take place in a physical environment, while those

studied by the software-oriented computer scientist take place in a world of

computational abstractions.

While natural science seeks knowledge that helps to best explain observed

phenomena, engineering science, including computer science, seeks knowledge that

helps to best control interactions. Engineering best practices are statements of value.

Just as a programmer engineering a complex computational interaction imposes a

value through the maintaining of an invariant, engineering practices as a whole

impose value through best practices, which are both learned individually through

apprentice experience, and passed from one generation to another in the form of

expert knowledge.

Despite the fundamental differences between the kind of knowledge sought by the

natural scientist vs. the computer scientist, they can use the same methods to achieve

it. As we describe in Colburn and Shute (2010b), acquisition of knowledge about data

structures and the algorithms that manipulate them fits the model of Lakatos (1978),

in which the ‘‘irrefutable’’ foundation of a scientific research program is given by its

negative heuristic, while the possibilities for new knowledge, or modifications of

claims about things thought to be known, are encompassed by its positive heuristic.

The nature of knowledge within any discipline reveals itself when new knowledge

replaces what was thought to be irrefutable by the negative heuristic, for such shifts

in thinking show what sanctions the overthrow of conventional wisdom.

We are interested in characterizing the nature of computer science values. If

natural science asks what laws explain natural phenomena, we can ask what sort of

values regarding the control of computational processes have been uncovered. In

trying to determine what values drive computer science, it is therefore helpful to

compare paradigm shifts as they occur in natural science and in computer science.

Decoupling as a Fundamental Value of Computer Science 243

123

Paradigm Shifts in Natural Science

In natural science, there is universal agreement that what sanctions the adoption of

new knowledge is that it better explains observed reality. We give two examples.

Species

Prior to Darwin, biological species were thought of as constant types, or classes,

with individual variation within species explained as imperfection. As Mayr (1988)

describes it, ‘‘In classical taxonomy, species were simply defined as groups of

similar individuals that are different from individuals belonging to other species.

Thus a species is a group of animals or plants having in common one or several

characteristics.’’ (p. 336) Mayr likens this idea of a species to a Platonic universal,

or eidos, and the Aristotelian language of essence and accident. ‘‘The similarity of

the members of the species was due to the joint possession of this eidos or essence.

Variation was interpreted as due to an imperfect manifestation of the eidos which

resulted in ‘accidental’ attributes.’’ (p. 337)

This concept of a species is an example par excellence of a Lakatosian negative

heuristic as ‘‘irrefutable by methodological decision’’. However, this should not be

viewed as a rationalization for ignoring reality. Sometimes, new knowledge better

explains observed reality than established ‘‘knowledge,’’ and a paradigm shift occurs.

When this happens, a previously irrefutable negative heuristic becomes overturned.

Darwin’s characterization of species as populations rather than essential types

offered a better explanation of observations about species fertility and population

stability. As Mayr explains in Mayr (1982), Darwin inferred that ‘‘there must be a

fierce struggle for existence among the individuals of a population, resulting in the

survival of only a part, often only a very small part, of the progeny of each

generation.’’ (p. 479) Darwin then combined this conclusion with further facts about

individual variability within species and its hereditary nature to posit a process of

natural selection, and ‘‘Over the generations this process of natural selection will

lead to a continuing gradual change of populations, that is, to evolution and to the

production of new species.’’ (p. 480)

While the negative heuristic in the pre-Darwinian view of species was a

taxonomy of immutable types, Darwin offered a probabilistic model that included

natural selection. As Mayr observes in Mayr (2001), ‘‘Darwin made a radical break

with the typological tradition of essentialism by initiating an entirely new way of

thinking. What we find among living populations, he said, are not constant classes

(types) but variable populations. Within a population, in contrast to a class, every

individual is uniquely different from every other individual.’’ (p. 75)

In the language we shall employ later (‘‘Interaction, Dependence, and Coupling’’)

to describe computer science values, Darwin decoupled the concept of species from

the concept of typed classes. As part of this new way of thinking, he essentially

changed the meaning of terms. In the classical conception, the species concept did

not have an essence—there was no one characteristic that defined what it meant to

be a species—while individual species did have essences. Darwin’s species concept

did have an essence, namely, a species is a population sharing a gene pool, but

244 T. Colburn, G. Shute

123

individual species themselves no longer had essences. This altering of the concept

of species better explained observations surrounding species fertility, variation, and

population stability.

Motion Through Space

While Darwin’s quest to re-think the concept of species qualifies as a genuine,

individual, Lakatosian research program, the sweeping conceptual changes inspired

by attempts to explain motion through space occurred gradually over the centuries.

Still, the changes can be understood in the language of decoupling just introduced.

The Ptolemaic system of astronomy, pioneered by the ancient Greeks, sought to

explain apparent variations in the speed and direction of the moon, sun, and planets

through epicycles, or the orbiting of these bodies around points that themselves orbit

around the earth. Beginning with Copernicus and continuing through Kepler,

Galileo, and Newton, epicycles were seen to be unnecessary as earth’s perspective

was decoupled from general theories of planetary motion. The result was a move

from a geocentric to heliocentric and Cartesian coordinate system as well as a set of

simple laws (Newton’s laws of motion) for modeling reality.

While Newton’s laws were impressively successful at predicting planetary

motion in an elegant way, even Newton understood that they did not explain gravity.

Einstein sought to explain gravity by comparing it to acceleration, and in doing so

discovered an analogy with the geometry of surfaces. Comparing inertial to rotating

reference frames, Einstein noticed a corresponding difference between Cartesian

coordinate systems and curved coordinate systems. However, he believed that the

laws of physics should be valid not only from any observer’s perspective, but also in

any coordinate system, and so his geometric notion of gravity is formulated to not

depend on any specific coordinate system. His resulting general theory of relativity

has gone beyond Newton’s laws in explaining or predicting small anomalies in

planetary orbits, the deflection of light by gravity, gravitational redshift, and other

phenomena. So while modern astronomy culminating in Newton decoupled earth’s

perspective from the theory of planetary motion, Einstein carried this further and

decoupled specific coordinate systems from the theory of gravitation.

We will show that paradigm shifts in computer science also involve the concept

of decoupling.

Paradigm Shifts in Computer Science

While computer science shares with natural science the objective of acquiring

knowledge through research programs, it shares with the engineering disciplines the

distinction of creating its own subject matter. Rather than studying nature, as in

natural science, computer science studies the objects it creates, in the form of

machines, algorithms, data structures, and software, to better understand how to

control computational processes. So as we describe in Colburn and Shute (2010a),

discovery in computer science is not aimed at uncovering new laws of nature and

thereby better explaining observed phenomena. Rather, discovery in computer

Decoupling as a Fundamental Value of Computer Science 245

123

science tries to identify new values that better allow the control of complex

interactions among the abstract objects that participate in computational processes.

What sanctions the adoption of new values in computer science, and do these values

share an essential characteristic? We consider some examples from the history of

computer science: stored program computing, language translation, and structured

programming.

Stored Program Computing

A computer can be regarded as a machine that operates on data by following some

instructions. Before 1945, a computer was given instructions by wiring its

processing elements in specific ways, for example, to decipher encoded messages or

calculate trajectory angles for ballistics purposes. If a computer was needed for

another purpose, it had to be laboriously rewired.

With the development of the stored program architecture (von Neumann 1945),

program instructions became abstractions that resided in computer memory along with

the data, and they were executed by loading them into a central processor. Now, using

a computer for a different purpose only required writing and loading a new program,

not rewiring the computer’s hardware. This paradigm shift, which gave us the basic

computer architecture that survives to this day, arose because of a desire to make it

easier to change a computer’s function. Before the shift, changing a computer’s

function required changing its wiring; after the shift, this dependence was eliminated.

Language Translation

Stored program architecture made computers general-purpose, and so demand for

new uses rose commensurately. But new uses required new programs, and the

language of computer processors is binary—zeroes and ones. For a human

programmer, writing a new program involved the painstaking, tedious, and error-

prone process of arranging thousands or millions of zeroes and ones in a format that

a processor could accept and execute. The number and complexity of applications

demanded by new users of stored program computers threatened to overwhelm the

few human programmers who could program them.

With the development of assembly language programs and the ability to

automatically translate them into the language of the central processor, program-

mers could write programs that used English-like symbols rather than only zeroes

and ones. For example, to tell the processor to add the integer in register 7 to the

integer in location SUM a programmer could write something like:

addb r7, SUM

as opposed to the equivalent binary instruction:

010000000101110001000001010010

While the binary instruction was still required by the machine, a programmer could

write the assembly language instruction and have it be translated by a program

(called an assembler) into binary. This paradigm shift arose because of the difficulty

246 T. Colburn, G. Shute

123

of coding zeroes and ones. Before the paradigm shift, writing a new program for a

computer required knowing and following binary-level instruction formats; after the

shift, this dependence was eliminated.

Although assemblers eliminated the need to speak the language of binary, they

were dependent on particular machine brand architectures. Thus, an assembly

language instruction written for, say, an IBM computer, could look very different

from one that performed a similar function for a Control Data computer. To solve

this problem, the concept of an assembly language was extended to the first general-

purpose and high-level languages such as Fortran and Cobol. These languages

eliminated the dependence on machine brand-specific assembly language concepts

such as registers and mnemonic instructions like addb, in favor of language

involving scientific notation (in the case of Fortran) or business concepts (in the case

of Cobol). Since these languages were machine brand-neutral, programs written in

them could be automatically translated (by programs called compilers) to run on any

specific machine type. The development of compilers continued the paradigm shift

begun by assemblers. Before the shift, writing a program required knowing the

assembly language format of a particular machine type; after the shift, this

dependence was eliminated.

Structured Programming

The initial introduction of high-level languages freed the programmer from a

dependence on machine-specific language details. However, they still required that

programmers think about general machine architecture while trying to solve a

problem in a given application domain. Consider the problem of adding the integers

from 1 to 10. The earliest high-level languages required code like this:

Language elements such as the goto statement and its associated target label (top
and bottom in this example) impose the requirement that the programmer provide

control constructs that need to mirror the layout of the program in memory. The

programmer must overlay his or her understanding of the application problem on

top of the general concept of a program arrayed in labeled memory elements, with

the added requirement of telling the processor where to transfer control at critical

junctures. There is thus an inherent mixing of the application problem (adding the

integers from 1 to 10) and knowledge of machine architecture in the program.

Beyond this limitation, making changes to nontrivial programs with many goto’s

and labels proved very difficult, as programmers found that modifying a program’s

control in one place would cause an error to occur somewhere else.

With the advent of structured program blocks in high-level languages,

programmers were required to take a less active role in explicitly directing the

Decoupling as a Fundamental Value of Computer Science 247

123

processor’s control. Here is a program that solves the same problem as before using

block-structured programming:

Here, the code within the braces f. . .g makes up a block, in which either all or

none of the code is executed, and the while construct leaves to the compiler the

details of arranging the correct goto’s and labels. The development of structured

programming (see Dijkstra 1971) was a paradigm shift that allowed programmers to

concentrate more on the problem they were solving and less on the details of

processor control. Before the shift, programming depended on low-level control

constructs that were unrelated to the application problem; after the shift, this

dependence was eliminated.

In each of these examples, a paradigm shift occurred in response to a demand for

change. The availability of electronic digital computing spurred a demand for new

kinds of programs, and the stored program architecture responded to that demand.

The new, general-purpose nature of computers resulting from the stored program

architecture brought a demand for languages more expressive than the binary

language of zeroes and ones, and formal language translation became the norm. The

need to maintain and modify complex programs without having to specify low-level

control constructs gave us structured programming.

Natural science, too, sees demands for change in its paradigm shifts, but that

change is driven by new observations demanding new explanations. Much of what

is new in natural science does not challenge prevailing laws or paradigms; new

observations are accommodated and accepted into a growing body of knowledge. In

computer science, however, many shifts are driven by change per sé. This is not to

say that computer science lacks stability or foundation; it is to say that computer

science is called upon to provide the tools for modeling a changing world, which,

ironically, is often changing precisely because of what computer science enabled

through its previous efforts. The challenge for the computer scientist is to adopt

values that best accommodate change.

Interaction, Dependence, and Coupling

The primary subject matter of computer science is computational processes, or

processes that can be specified and studied independently of any physical

realization. Processes, whether computational or not, are composed of interactions

among objects, so we can also characterize the subject matter of computer science

as interaction patterns. The objects participating in these interactions, being

computational abstractions just like the processes they carry out, represent not only

the entities at the level of machine architecture, like registers, memory locations,

248 T. Colburn, G. Shute

123

program instructions, numbers, and procedures; they can also represent any object a

programmer chooses to model—telephone books, calendars, shopping carts, even

humans (consider avatars). Whatever the level, when computational objects interact

they collaborate with a common purpose to get something done: look up a name in a

phone book, add an appointment to a calendar, complete an online purchase, etc. A

primary computer science value is therefore to facilitate interactions among objects

to solve problems.

When objects collaborate in an interaction to solve a problem, at least one

depends on the services of another. A cell phone interface asks a table data structure

for a person’s phone number. A meeting scheduling algorithm checks a calendar for

event conflicts. A shopping agent requests a debit card balance from a bank. These

dependencies are all necessary for the required interaction to occur. Computational

object dependencies as such are neither good nor bad from a value point of view.

Values come into play when programs and systems must accommodate reality

changes.

Modern software systems model reality. While this may seem trivially true today,

it wasn’t always the case. The early days of computer science saw reality

accommodating inflexible software systems. Data input had to conform to rigid

columnar standards, for example. Programmers could not divorce the information

they modeled in their programs from the data used to represent it—with expensive

repercussions for those who did not anticipate the consequences of their date

representations leading up to the change to the year 2000. And more generally,

programs could not be adapted to any purpose other than those for which they were

created.

Change, however, is a fundamental feature of reality, and software systems must

accommodate reality changes. Computational objects can accommodate reality

changes only by changing themselves, that is, allowing programmers to easily adapt

them. But if the computational objects taking part in an interaction are involved in a

dependency such that changing one also requires changing another, then accom-

modating reality changes becomes more difficult. Dependencies among objects

which are such that changing one requires changing another are called couplings.

Since coupling inhibits change, it is a fundamental computer science value to design

computational objects so that their dependencies do not result in couplings.

The paradigm shifts in computer science we’ve mentioned all involve

decoupling. Stored program architecture decouples programming from physical

hardware (wires). Formal language translation decouples programming from

abstract hardware (zeroes and ones). Structured programming decouples program-

ming from low-level control (goto’s and labels). While these examples are,

somewhat narrowly, only about programming, and rather early programming at that,

in what follows we will show that the decoupling notion pervades computer science

in many of its facets and lies at the very heart of computer science’s value system.

As we have seen, decoupling as a response to demand for change is not unique to

computer science. In ‘‘Paradigm Shifts in Natural Science’’ we described how

natural science responds to the demands of new observations by offering new

theories or laws that decouple existing concepts. Computer science, however,

models the world rather than studies it. It therefore receives its demand for change

Decoupling as a Fundamental Value of Computer Science 249

123

from reality itself when reality changes. It can do this in an agile way only if it

designs its objects with minimal coupling. Decoupling the objects that take part in

computational processes is therefore a fundamental value of computer science, as

we describe next.

Decoupling in Computer Science

We will first show examples of decoupling from some core areas of computer

science involving operating systems, data management, software design and

development, and software reuse. We will end with some observations concerning

decoupling in the wider context of computing at large.

Resource Virtualization

Anything required for the execution of a program is called a resource. The

processor, memory, displays, mice, keyboards, disk storage, printers, and networks

are all examples of resources, and the primary function of an operating system is

their management. The terms ‘‘logical’’ and ‘‘physical’’ appear often in descriptions

of operating systems, and refer to different points of view regarding a system

resource. The physical view refers to the actual physical state of affairs—it

describes the computer hardware. The logical view is the view given to the

application programmer, and it is required in order for the physical resource to be

shared.

Although a typical computer system has one (possibly multi-core) processor, one

addressable space of memory, one keyboard, one printer, etc., many executing

processes share these single resources as though each has the resources to itself. For

example, several programs (web browser, email client, word processor, etc.) can run

concurrently without conflict in the processor or memory, and without contention

for the use of the mouse or keyboard. Furthermore, when a programmer writes a

program that will run concurrently along with others, he can write it without regard

for those others at all, because he has been given logical views of the system

resources, and these views have been decoupled from the physical view.

As a result of many years of clever design, operating systems have decoupled

processes from each other by creating logical views in which other processes do not

appear, a phenomenon called virtualization. Virtualization has the advantage of not

only creating a simpler and more abstract view of the computer for application

programmers, but also minimizing resource management problems by allowing

resources to be shared by several processes without conflict.

For example, processes share the same processor through a time-sharing
mechanism that creates the illusion of concurrency by exploiting the very high

speed of the processor along with the fact that many processes spend much of their

time in an idle state. Although processes share the same physical memory, they each

get a logical address space in which the same logical address in different processes

gets mapped to different physical addresses, thereby avoiding memory conflicts

among processes. As a final example, although several processes share the physical

250 T. Colburn, G. Shute

123

display device of a computer, each process is given its own logical display window

through the computer’s window manager, whose focus mechanism time-shares the

mouse and keyboard input, sending the input to the process whose window currently

has the focus. Each of these mechanisms involves a decoupling of a logical view

from the physical view of a system.

Data Abstraction and Data Structures

Software developers have long recognized the value of separating data’s use from

its representation. For example, suppose you are writing an online shopping

application, and the data for the application includes the items that a user intends to

purchase. The items can be gathered together in a computational version of a

shopping cart. In your application, you would like to be able to create new, empty

shopping carts, add items to them, remove items from them, and display their

contents. From the point of view of the application, how a shopping cart represents

data to implement these operations is irrelevant; all the application cares is that the

shopping cart does what it is advertised to do. In other words, the application uses

shopping carts, but has no need to know how shopping carts are represented.

As the application developer, you might also happen to be the one implementing

the shopping carts, so you must choose a representation. Suppose you decide to

implement shopping carts using random-access files, and for a while (maybe even a

number of years) this approach works fine. But the time comes when your

application needs to be integrated with a database system, requiring shopping carts

to be stored in database tables rather than random-access files. Shopping cart data

objects must therefore be reengineered, but from the point of view of the application

program that uses them they will behave just as they did before—they can be

created, added to, removed from, and displayed—but the application program has

no knowledge of how they interact with database tables. The application program’s

ignorance of how shopping carts are represented is a good thing, because when the

shopping cart representation changes, the application program can stay the same.

Separating data’s use from its representation, called data abstraction, is a classic

example of decoupling, and it pervades good program design.

The problem of managing data reveals other, even more fundamental, examples

of decoupling in computer science. Programs, being sequences of instructions that

execute one at a time on a computer, need data at precise moments in time, namely

the moments when instructions that require data are executed. Programs thus expect

their data to be available when they need it. At the times they need data, they don’t

want the added responsibility of creating, organizing, and dispensing the data. The

task of using data must therefore be temporally decoupled from the task of creating

data. This temporal decoupling is the job of a data structure, which stores and

organizes data so that it can be used efficiently.

Random access data structures (tables, and their big brothers, databases) allow

one program component to deal with data production, and another program

component to deal with data consumption. A data producing component can store

the data in a random access structure, giving the data a key that data consuming

components can use to access the data, which they can do according to their own

Decoupling as a Fundamental Value of Computer Science 251

123

schedule. The only coordination required between data producers and data

consumers is agreement on the association between keys and data. This is non-

temporal information so the temporal coupling problem is eliminated.

Other data structures act as data dispensers that impose ordering requirements on

the processing of data items. A data producing component puts data items into a

dispenser in some order and the dispenser hands out the data to a data consuming

component in a possibly different order determined by its ordering policy. The need

for dispensers often arises when the data consuming component discovers new data

items as part of its processing of earlier data items. Then the data producing

component and the data consuming component are the same component.

Sometimes a program component requires that the order in which items are

placed in a data dispenser be decoupled from the order in which they are removed—

a temporal decoupling. A dispenser called a stack (‘‘last-in-first-out’’ dispenser)

meets this requirement. A stack gives a component the capability to interrupt what it

is currently doing, do something else, then resume where it left off. This kind of

processing occurs frequently when nested arithmetic formulas must be processed, so

stacks are commonly used in the evaluation of algebraic expressions. Stacks are also

indispensable for the very execution of programs written in all modern program-

ming languages. Such programs are composed of calls to numerous subprograms

(procedures, functions, or methods), some of which begin their processing but must

be suspended while other subprograms are started and completed. Stacks offer a

way to keep track of the state of suspended subprograms.

Sometimes data items must be removed from a dispenser and processed in the

same order that they are placed in the dispenser, but new data items might need to

be placed on the dispenser (though not removed) before processing of removed

items is complete. This allows data items to be received but processed at a later

time—another temporal decoupling. A dispenser called a queue meets this

requirement. Queues are used when fairness considerations call for ‘‘first-in-first-

out’’ behavior. For example, computer operating systems use queues to schedule the

usage of the processor and printer, as well as provide virtualization mechanisms for

these resources as described above.

Frameworks

Data structures deal with the temporal coupling that possibly exists between two

points in time, namely when the data is produced and when it it processed. Data

structures such as stacks and queues are and will continue to be classic objects in

computer science. However, modern software design is also faced with a different

sort of temporal coupling, not between two points in time, but between an event in

time and what processing should occur in response to that event. It is often

necessary to decouple these two things, a process that can be called ‘‘what/when’’

decoupling. The need for what/when decoupling arises frequently in the design of

frameworks and asynchronous programs, both products of the more recent age of

computing.

The labor-intensive nature of software production, and its concomitant expense,

combined with the insatiable demand for more innovative and complex software,

252 T. Colburn, G. Shute

123

has made it imperative that new software projects both make use of existing

software and create new software with an eye for its eventual reuse itself. Software

developers have long made use of existing software through software libraries of

low-level but essential utilities in the form of procedures and functions that do

everything from finding the square root of a number, to sorting a list of character

strings, to compressing a sound file. A developer who makes use of such libraries

writes higher-level code that knows exactly when a library function is needed and

what the function will return. This is a classic model of software development, in

which the developer writes the high-level application code from scratch and plugs in

calls to library functions to make it complete.

The exploding demand for new software has made it evident that many high-

level applications share much in common, and that to write all of them from scratch,

even while making liberal use of software libraries, is to ‘‘re-invent the wheel’’ over

and over. There are countless examples. While there are many manufacturers of

microwave ovens with different user interfaces, their software controllers all have

similar functionality. Similarly, while different e-commerce shopping websites

retail different items with different page presentation, the web application code on

which they are based are all doing very nearly the same things. There would

obviously be a saving of time, effort, and expense if applications that did similar

things in their structure (but looked different on the outside) could share code. Such

sharing is the role of a software framework.

Frameworks differ from software libraries in that the code that comprises them is

‘‘in control.’’ When a software developer builds off of a framework, she only needs

to write code that is invoked at the behest of the framework. The code she writes

gives the application its distinctive appearance and behavior, but the framework

code drives the whole application. There is thus an ‘‘inversion of control’’ when

compared to application code that merely makes use of code libraries. But this

inversion of control has a consequence: when the framework code is written, the

nature of the particular application code is unknown, so the framework must be

designed with ‘‘slots’’ and ‘‘hooks’’ that will eventually be filled with code about

which nothing can be known. When the overall application runs, the framework

decides when the specific application code will be invoked, but it must overcome its

ignorance of what that code does through what/when decoupling. This is a necessary

consequence of the framework code being able to work in multiple settings. It takes

creativity to design frameworks that perform this what/when decoupling, and much

of the work in design patterns (see below) is toward this end.

Asynchronous Programming

Another situation requiring what/when decoupling arises with asynchronous

programs. In an asynchronous program, events occur whose timing is independent

of the execution of the program. That is, as the program runs, events may occur that

interrupt it, but when they occur cannot be known in advance The application

programmer knows what to do but has no control over when it is done. This is the

opposite of the problem seen by the framework programmer, who knows when

something needs to be done but cannot predict what it is. The most familiar example

Decoupling as a Fundamental Value of Computer Science 253

123

is programs with a graphical user interface (GUI), which today constitute the

majority of desktop programs. The program displaying a GUI has no control over

when the program user will click or move the mouse or press or release a keyboard

key.

The traditional solution is conceptually simple: after setting up components

(buttons, menus, and other controls) in the GUI, the program is driven by an event

handling loop. User actions involving the mouse or keyboard are entered into an

event queue. The event handling loop just removes events from the queue and

handles them by executing the ‘‘callback’’ code provided by the application

programmer, who remains blissfully unaware of the existence of the program’s

event queue and the attending synchronization issues.

Frameworks and GUI programs account for much of the power and richness of

modern software, and they are possible only through decoupling.

Object-Oriented Programming

While good software developers have always strived to reduce the coupling among

computational objects, the programming languages available to them to achieve this

have not always been accommodating. One reason for this has been the failure of

languages to include in their syntax the ability to explicitly force the hiding of

details about one computational object from other collaborating objects with whom

it interacts.

Before the 1980s, the programming languages in widespread use allowed the

creation of computational objects narrowly defined in terms of the architecture of

the machines on which their programs ran. An assembly language programmer

could choose from an object ‘‘ontology’’ that included bits, bytes, registers,

addresses, and subroutines. A Fortran programmer would add functions, variables,

integers, floating-point numbers, and arrays to the ontology. A C or Pascal

programmer could talk about all these plus structures (C) or records (Pascal).

Although the programming objects available became more abstract and removed

from machine architecture details, programmers who used these languages before

the 1980s were forced to implement a real-world concept (for example, a bank

account) in a language of lower-level concepts (for example, a C structure).

It is always possible for a disciplined programmer to successfully (and

painstakingly) model a high-level concept in an ontologically impoverished

programming language. But it is likely that the resulting program will be difficult

to modify when the real world demands that it be changed, because it will not have

been developed in a language that, through encapsulation, allows both (1) the

convenient representation of high-level concepts and (2) the hiding of their

representation details. Such encapsulation is the objective of modern object-
oriented programming, which enjoyed its first wide-spread use with the language

C??, introduced in 1983.

Object-oriented programming (OOP) represented a paradigm shift for program-

mers. Instead of modeling computational processes primarily through multiple

cooperating procedures that operate on passive, shared data objects—an idea that

overlaid nicely on the idea of machine architecture—OOP models processes

254 T. Colburn, G. Shute

123

through multiple cooperating active objects, each of which has its own state (data)

and operations that change that state. In this conception, objects are like virtual

computers (rendered in software), with all of the logical malleability afforded to real

computers. Just like a real computer can be programmed to act like a word processor

in one instance and a 3-D action game in another, an object in OOP can be as simple

and passive as an integer or as complex and active as a chat room. A running OOP

program can be envisioned as a number of virtual computers sending messages to

one another, changing their internal state when required and cooperating to

accomplish some overall task.

Good OOP programmers go to considerable lengths to limit what objects will

reveal about their internal state to other objects, because the less two objects

‘‘know’’ about each other’s internal state, the less they are coupled. OOP makes it

straightforward to enforce data privacy through accessibility declarations (public,

private, protected) built into the language. While these language elements in

themselves afford better decoupling, they are restricted to the internal definition of

objects and do not address the broader problem of minimizing the necessary

coupling effects of objects when they interact with each other. Some dependency is

always going to be necessary when objects interact. Reducing the coupling that

accompanies dependency is often the focus of object-oriented software design in the

development of design patterns (see below). The usefulness of design patterns for

reducing object coupling relies heavily on a feature of programming languages

called polymorphism.

Polymorphism and Interface Types

A programming language supports polymorphism if its operations have different

behaviors depending on the types of the objects on which they operate. For example,

some languages, when they encounter the expression a 1 b, will perform a

mathematical addition if a equals 4 and b equals 4 (returning 8), but will perform a

string concatenation if a equals black and b = jack (returning blackjack). The 1
operation is therefore polymorphic.

Object-oriented programming, through its encapsulation of information about

objects of similar types, facilitates polymorphism, because the encapsulated

information includes not just the state of an object in terms of its data, but also

the definition of the operations that are to be allowed on it. Suppose a class of

objects called Country is defined, where the operation compareTo is intended to

compare countries by population, returning 21, 0, or 1, depending on whether a

country’s population is less than, equal to, or greater than another country’s

population, respectively. Then the expression a.compareTo(b) returns 21 if a
equals the country china and b equals switzerland. On the other hand,

a.compareTo(b) returns 21 if a equals the string black and b equals jack (and

an alphabetical comparison is done), and a.compareTo(b) returns 0 if a equals 4
and b equals 4 (and a numerical comparison is done).

Any class of objects for which the compareTo operation is appropriately defined

can participate in its polymorphic behavior. When the expression a.compareTo(b)

Decoupling as a Fundamental Value of Computer Science 255

123

is encountered, the type of the object a is checked to find out which version of the

compareTo operation should be used. In object-oriented programming, an object’s

type is its class. In our example, three classes of objects—Country, String, and

Integer—each define their own behavior for the compareTo operation.

A class should not be confused with an object; a class definition is an abstraction
of all that is common to its members, which, as objects, are real computational

entities. But object-oriented programming takes abstraction even further than that

inherent in the concept of a class. While the classes Country, String, and Integer
seem quite disparate, they do have one thing in common—they all define a

compareTo operation. Object-oriented programming abstracts this one piece of

commonality from these classes and gives it a type name: Comparable. Anything

that suitably defines a compareTo operation is a Comparable. Comparable,

however, is not a class; it is simply what all classes that define compareTo have in

common. It is what object-oriented programmers call an interface (not to be

confused with the term’s use in ‘‘graphical user interface’’). Country, String, and

Integer are all classes that implement the Comparable interface.

In the expression a.compareTo(b), a and b are variables. When object-oriented

programmers declare their variables with interface types, rather than class types,

they do not just maximize their code’s polymorphism—they also decouple their

code from particular class definitions. If a and b are declared as type Comparable,

then a.compareTo(b) will make sense no matter what objects a and b actually refer

to. Suppose a.compareTo(b) is being used in code to sort a list of objects. Then the

same code will work to sort a list of integers as it will to sort a list of country

objects. Good object-oriented programmers code with interfaces as much as

possible, because the resulting code is both general and flexible. The decoupling

effects of interfaces have been exploited and canonized in the development of

object-oriented design patterns.

Design Patterns

Design patterns (Gamma et al. 1995) first gained an audience in connection with

building architecture, but the idea can be applied to software as well. Minimally, a

design pattern is composed of a design problem, a context in which the problem is

situated, and a design solution. Using a design pattern requires knowing when a

problem and context match a given pattern and being able to carry out the given

solution.

For example, suppose a software developer needs to implement an inventory

system for a retailer, so that when a change to the inventory occurs it is reflected

immediately in all the displays throughout the store. This general problem, in which

an observed subject (the inventory in this instance) needs to notify observing objects

(store displays) about changes that occur to it, has been solved often enough that

there is a well-known pattern, over time given the name Observer, that solves it.

Observer accomplishes its solution elegantly by setting up the observed subject and

the observing object so that required actions can be triggered in the latter when

events are detected in the former without the former needing to know the nature of

256 T. Colburn, G. Shute

123

the actions that it causes. In this way the observer and the observed are effectively

decoupled.

Consider another example. Users of word processors have multiple ways of

accomplishing tasks through the user interface. For example, to cut out some

highlighted text, one can use the keyboard to issue a control-X key sequence, or one

can use the mouse to click on the Edit menu and select Cut. A good programmer

will make sure that the same code for doing the cutting is executed no matter

whether the action came from the keyboard or the mouse, effectively decoupling the

action’s effect from the time of its invocation. This is essentially what is going on in

the asynchronous programming example given above in the discussion of what/

when decoupling.

But the word processing example has an added twist: if no text has been

highlighted, then both the control-X key sequence and the Edit ! Cut menu

options must be disabled. Similarly, if no text has been cut, then all ways of

executing a Paste must be disabled. This problem, in which program commands

must store state information as well as carry out user actions, also is common

enough that an object-oriented design pattern, called Command, has been developed

to solve it. The solution involves elevating an action to the status of an active object

(a command) complete with both operation and state. Doing so completes the

decoupling of a command’s effect from its source. This allows the command to be

easily added to other parts of a user interface, and also allows the command to

encompass more state if necessary.

Higher Level Decoupling

The decoupling examples given so far are taken from fundamental areas at

computer science’s core, involving software design, data management, operating

systems, and programming languages. It can also be argued, perhaps somewhat

esoterically, that decoupling occurs at computer science’s higher levels of focus,

particularly involving distributed computing and the continually evolving techno-

logical and social environments it offers computer users.

Some of us are old enough to remember when computers were standalone

devices that were connected to nothing but an electrical outlet and perhaps a

screeching analog modem that communicated with a mainframe computer over

telephone wire at a rate of 110 characters per second. The connection of such

computers to the ‘‘outside world’’ was woefully weak by today’s standards, and so

their usefulness was tied (coupled) to what they could do in their physical locations.

Today, of course, computers are not only more powerful, but they are portable by

virtue of not just their smaller size but their ability to connect to other computers for

services no matter where they are. Even for communicating computers that are

tethered by various wires to particular locations, the fact that they distribute

processing among them makes the question of where the processing occurs both

complicated and largely irrelevant. From the point of view of a computer user

connected to a network of cooperating machines, information processing has been

decoupled from physical location, in much the same way that early cell phone

Decoupling as a Fundamental Value of Computer Science 257

123

networks decoupled phone numbers from physical location. (Of course, contem-

porary cell phone networks are computer networks.)

Social interactions began to be decoupled from physical location with the first

telephone connection over a century ago. However, such connections only

transmitted information. With the introduction of computer networks, information

could be stored as well as transmitted, and traditional institutions changed due to

decoupling effects. For example, desktop (self-) publishing decoupled authors and

their readers from traditional publishers; online gaming decoupled competitors from

traditional sports teams; blogging decoupled news reporters from traditional wire

services; and social networking sites decoupled social interactions not only from

physical location (Facebook, Twitter, etc.) but from physical reality (Second Life).

These are all examples of using computers’ information storage abilities to

decouple traditional personal activities from their traditional contexts. Today, there

is anticipatory hype over the coming age of ‘‘cloud’’ computing, in which personal

information itself is decoupled from personal location. Cloud computing gets its

name from some computer system diagrams that depict system components as tidy

box-like icons connected to one another, with one connection, the connection to the

Internet, shown as a connection to an amorphous, billowy icon that resembles a

cloud. In these depictions the computer system components, including processors,

memory, and peripherals, are primary, while the connection to the Internet is

secondary. In the vision of cloud computing, the Internet is primary and everything

else is secondary. Not only do the various distributed servers making up the cloud

take on the information processing tasks of computer users, they also take on their

storage tasks, so from the point of view of its users, the cloud decouples information

itself from one’s physical location. One’s information, including documents, email

messages, images, movies, etc., do not reside permanently on one given computer.

Rather, one’s information is ubiquitous, part of a cloud-like ether, while devices

able to access it come and go.

With so little left for the typical user’s computer to do in the age of cloud

computing, it can jettison its older baggage, that is, its typical operating system, and

replace it with a powerful web browser, something that Google and its partners are

already working on Google (2009). If this vision comes to pass, personal computing,

at least, will become decoupled from the principles of computer architecture that

have dominated thinking in computer science since the dawn of the modern

computing age.

References

Colburn, T. (2003). Methodology of computer science. In L. Floridi (Ed.).

Colburn, T., Shute, G. (2007). Abstraction in computer science. Minds and Machines: Journal for
Artificial Intelligence, Philosophy, and Cognitive Science, 17(2): 169–184.

Colburn, T., Shute, G. (2008), Metaphor in computer science. Journal of Applied Logic, 6(4): 526–533.

Colburn, T., Shute, G. (2010a), Abstraction, law, and freedom in computer science. Metaphilosophy,
41(3): 345—364

258 T. Colburn, G. Shute

123

Colburn, T. & Shute, G. (2010b). Knowledge, truth, and values in computer science. In J. Vallverdu (Ed.),

(pp. 119—131).

Dahl, O., et al. (1971). Structured programming. New York: Academic Press.

Dijkstra, E. (1971). Notes on structured programming. In O. Dahl (Ed.).

Floridi, L. (Ed.) (2003). The Blackwell guide to the philosophy of computing and information. Malden,

MA: Blackwell.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design patterns: Elements of reusable object-
oriented software. Boston: Addison-Wesley.

Google Inc. (2009). http://googleblog.blogspot.com/2009/11/releasing-chromium-os-open-source.html.

Lakatos, I. (1978). The methodology of scientific programs. Cambridge: Cambridge University Press.

Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Harvard University Press.

Mayr, E. (1988). Toward a new philosophy of biology. Cambridge, MA: Harvard University Press.

Mayr, E. (2001). What evolution is. New York: Basic Books.

Vallverdú, J. (Ed.) (2010). Thinking machines and the philosophy of computer science: concepts and
principles. Hershey, PA: IGI Global.

von Neumann, J. (1945). First draft of a report on the EDVAC, University of Pennsylvania Moore School

of Electrical Engineering.

Decoupling as a Fundamental Value of Computer Science 259

123

http://googleblog.blogspot.com/2009/11/releasing-chromium-os-open-source.html

	Decoupling as a Fundamental Value of Computer Science
	Abstract
	Introduction
	The Role of Values in Computer Science
	Paradigm Shifts in Natural Science
	Species
	Motion Through Space

	Paradigm Shifts in Computer Science
	Stored Program Computing
	Language Translation
	Structured Programming

	Interaction, Dependence, and Coupling
	Decoupling in Computer Science
	Resource Virtualization
	Data Abstraction and Data Structures
	Frameworks
	Asynchronous Programming
	Object-Oriented Programming
	Polymorphism and Interface Types
	Design Patterns
	Higher Level Decoupling

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

