
Overview of the
QCDSP and
QCDOC
computers

P. A. Boyle
D. Chen

N. H. Christ
M. A. Clark
S. D. Cohen
C. Cristian

Z. Dong
A. Gara
B. Joó

C. Jung
C. Kim

L. A. Levkova
X. Liao
G. Liu

R. D. Mawhinney
S. Ohta

K. Petrov
T. Wettig

A. Yamaguchi

The QCDSP and QCDOC computers are two generations of
multithousand-node multidimensional mesh-based computers
designed to study quantum chromodynamics (QCD), the theory
of the strong nuclear force. QCDSP (QCD on digital signal
processors), a four-dimensional mesh machine, was completed
in 1998; in that year, it won the Gordon Bell Prize in the
price/performance category. Two large installations—of 8,192 and
12,288 nodes, with a combined peak speed of one teraflops—have
been in operation since. QCD-on-a-chip (QCDOC) utilizes a six-
dimensional mesh and compute nodes fabricated with IBM system-
on-a-chip technology. It offers a tenfold improvement in price/
performance. Currently, 100-node versions are operating, and there
are plans to build three 12,288-node, 10-teraflops machines. In this
paper, we describe the architecture of both the QCDSP and
QCDOC machines, the operating systems employed, the user
software environment, and the performance of our application—
lattice QCD.

Introduction
In this paper we discuss two massively parallel computers

that were designed and constructed for efficient, cost-

effective calculations of physical systems subject to the

strong nuclear force. While simulations of the strong

nuclear force may seem a very esoteric goal, the

techniques and underlying mathematics are common to a

broad class of problems and are particularly common

among exceedingly demanding problems in high-

performance computing. Two numerical methods, whose

use in our computations is detailed below, are the

Metropolis algorithm for importance–sampling a large

dimensional integral (more than approximately 107

dimensions for QCD) and Krylov space inversion of a

large sparse matrix.

The strong nuclear force affects the protons and

nucleons of atomic nuclei, the up and down quarks,

which are constituents of protons and nucleons, and

the four additional short-lived quarks (for a total of

six quarks) that are known from experiment to exist. The

theory of the strong nuclear force, known as quantum

chromodynamics (QCD), is an elegant generalization

of the theory of electromagnetism, and is accurately

described by a simple Hamiltonian that can easily be

written in closed form. Just as the photon mediates the

electromagnetic interaction between electrically charged

particles, QCD includes a similar mediating particle,

called the gluon.

A fundamental difference between QCD and

electromagnetism is that the gluon interacts with itself as

well as with the quarks. (In electromagnetism, photons in

a vacuum interact only with one another very weakly.)

For low-energy systems, such as the proton itself, the

quark–gluon interaction and the gluon self-interaction

are very strong. This makes the equations of QCD highly

nonlinear, and in this regime they are not amenable to

analytic calculations. (At very high energies, analytic

calculations can be performed reasonably accurately, and

these are an important part of our belief that QCD is the

correct theory of the strong interactions.)

Thus, to study QCD at lower energies—to understand

the proton mass, decays of particles made of short-

lived quarks, the effects of heating protons to high

temperatures, and many other phenomena—we are led to

numerical techniques that can deal with this nonlinearity.

While QCD can be cast as an infinite number of coupled

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

351

0018-8646/05/$5.00 ª 2005 IBM

nonlinear differential equations, it is more easily handled

numerically by Monte Carlo integration. To start out, the

integration is over all values of quark and gluon fields in

space–time, with each configuration of quarks and gluons

weighted by its classical action. This is the well-known

Feynman path integral formulation of a quantum-

mechanical system.

To evaluate the Feynman path integral, we discretize

space and time with a four-dimensional (4D) Cartesian

grid. This grid, or lattice, gives the study of QCD with

this technique its name, lattice QCD (LQCD). Only a

small number of input parameters are needed: the quark

masses and the strength of the coupling constant. When

the grid spacing is made sufficiently small, QCD

simulations should yield precise answers for a

wide variety of physical phenomena. Because of its

completeness and simplicity, and the precision of its

numerical formulation, QCD is an attractive target for

large-scale simulation and has received much attention

as a grand challenge problem in scientific computing.

The characteristics of the problem mean that the

minimal design parameters for an ideal QCD machine

can be somewhat restrictive compared with those of the

mythical general-purpose parallel machine:

� The problem naturally has a Cartesian structure,

allowing for a simple nearest-neighbor mesh network.
� The only common non-nearest-neighbor

communication is global summation.
� Both communication and memory access patterns are

deterministic and amenable to both software and

hardware prefetching.

Exploiting these key simplifications to obtain an

advantage in both price and performance has been the

raison d’etre for a number of specialized machines built in

the U.S., Italy, and Japan, which we briefly discuss in the

next section.

Computer architectures for QCD
All known algorithms for performing the importance–

sampling of the Feynman path integral for QCD rely

on solving the linear differential equation for a quark

propagating in a given gluon background field (the Dirac

equation). Discretizing this Dirac equation on a space–

time grid produces a matrix equation to solve in which

the matrix is very sparse and generally connects only

nearest-neighbor points on a 4D grid. A Krylov solver

is generally used to solve this equation and, since this

dominates the calculational effort, designs for QCD

machines concentrate on this part of the problem.

The nearest-neighbor structure of the Dirac equation

makes computers with a regular mesh network of

processing nodes an obvious choice. The mesh is

generally chosen to be periodic, with the last processor

node in a given direction connected to the first in that

direction. The linearity of the Dirac equation means that

all processing nodes are faced with the same amount of

computation, resulting in no need for adaptive mesh

approaches or other load-balancing techniques—

an obvious simplification for both the hardware and

software. (QCD is a very nonlinear system. Once the

Dirac equation is solved, its result feeds back into the

system to produce a new Dirac equation to solve. This

feedback gives the system its strong nonlinearity.) Since

standard techniques, such as conjugate gradient, for

solving linear equations require global operations, a mesh

machine must have the capability to do fast global sums

and broadcasts to all nodes.

Given a mesh network architecture, the ability to solve

the Dirac equation efficiently leads to requirements on the

capabilities for the processing nodes and the network

bandwidth and latency. The bandwidth required between

processor and memory is one floating-point number per

three floating-point operations; relatively little memory

per processor is required. For computers with about 10K

processors, a few megabytes of fast local memory allows

lattice QCD problems with a total size of 323 3 64 to be

done using only local memory. A larger amount of slower

memory (approximately 100 MB per processing node)

provides ample space for storing intermediate results

from calculations. Interprocessor communication

requirements can be as high as one floating-point number

transferred per ten local floating-point operations.

Additionally, the Dirac equation solution requires the

exchanges of many small messages, so low latency

(currently submicrosecond) in the mesh network is vital.

Since QCD calculations require few input parameters and

generate modest output data, the input/output (I/O)

requirements are modest.

Some of the earliest QCD machines were designed and

built at Columbia University in the 1980s. The network

on these early machines was a 2D periodic mesh with the

memory on each node also mapped into the address space

of the four neighboring nodes, a method that has also

been employed in all of the generations of Italian array

processor experiment (APE) machines [1]. Machines of

hundreds of nodes were built, and their general statistics

are given in Table 1. These machines achieved good

performance through processing nodes made up of a

microprocessor and an external floating-point unit

(FPU), but this configuration was not well supported by

software, relying instead on handwritten and optimized

microcode. Similar machines were developed by groups

in Japan, Fermilab Italy, and IBM Research. Reviews

discussing these early machines can be consulted for

further details [1–3].

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

352

As latencies become longer relative to cycle time, this

remote memory-addressing technique either becomes

inefficient or requires large off-node reference queues to

hide the latency and avoid stalling the central processing

unit (CPU). As will be seen, in the later QCDSP (QCD

on digital signal processors) and QCDOC (QCD-on-a-

chip) machines the semantic for accessing the data of a

neighboring node has been decoupled from the CPU.

Programmable direct memory access (DMA) engines and

an asynchronous message-passing library are used to give

a simple but efficient overlapping of communication and

computation with complete hiding of the internode

communication latency.

The remainder of this paper discusses the QCDSP

and QCDOC computers. The APE project in Italy has

continued to develop computers for LQCD [4], and

commodity clusters are also being used for lattice QCD,

as reviewed in [5].

The QCDSP computer
For the early QCD computers, a processing node

occupied a 100-square-inch to 200-square-inch printed

circuit board. With the increase in levels of integration

that became available in the 1990s, processing

nodes, including memory, of 10 square inches to

20 square inches became possible without relying on

expensive packaging technologies. With chips of lower

electrical power consumption available and longer mean

times between failures, machines of thousands of nodes

could be imagined. The QCDSP machines designed

and constructed between 1993 and 1998 represent an

important example of this style of computer. As shown in

Table 1, QCDSP machines of 8,192 and 12,288 nodes

were built. Further details about QCDSP can be found

in [6, 7].

While the earliest 2D mesh machines provided

important results for LQCD, much more computing

power was needed. One factor determining the computing

power needed is the total size of the lattice on which the

problem is formulated. Early calculations were done on

lattices with a total size of 163 3 32 points, but various

approximations were employed or the masses of quarks

were kept unrealistically (from a physical point of view)

large. For smaller, physically realistic quark masses, the

calculations could not be done. Thus, a difficult kind

of scaling was required for progress in LQCD; much

more processing power was needed on a problem with

a fixed number of lattice points. By increasing the

dimensionality of the processor mesh from 2 to 4, the

number of processors could be dramatically increased

without a concurrent increase in the linear size of the

smallest lattice that could be tackled. Of course, each

processor node in this 4D mesh also had increased

computing power, following the general industry trends.

The basic processing element of QCDSP is a Texas

Instruments TMS320C31 digital signal processor (DSP),

a 32-bit processor running at 50 MHz, consuming

approximately 1 W and having a peak speed of 50

megaflops. At the time it was selected, it was not the

fastest processor, but it did seem ideally suited for QCD

applications because of its low electrical power and

relatively high speed. In addition, the software tools

available for it (a C and Cþþ compiler, for example) made

QCDSP easier to program than earlier QCD machines.

Each processing node also contained 2 MB of 60-ns

dynamic random access memory (DRAM).

The additional component of the QCDSP processing

node is a custom application-specific integrated circuit

(ASIC), called the node gate array (NGA), designed by

the Columbia Lattice QCD Group. The NGA includes a

Table 1 A list of the machines built for QCD by Columbia University (2D and 4D mesh machines) and the 6D mesh QCDOC machine

built by researchers from Columbia University, IBM Research, the RBRC, and the UKQCD collaboration. The US LQCD QCDOC is

funded by the U.S. Department of Energy for use by LQCD physicists in the U.S.

Network Name Date Processor/FPU

(precision)

Nodes Speed

(Gflops)

Memory

(GB)

2D

mesh

16-node 1985 286/TRW (22) 16 0.25 0.016

64-node 1987 286/Weitek (32) 64 1.0 0.128

256-node 1989 286/Weitek (64) 256 16.0 0.5

4D

mesh

CU1 QCDSP 1998 TI DSP (32) 8,192 400 16

RBRC2 QCDSP 1998 TI DSP (32) 12,288 600 24

6D

mesh

RBRC QCDOC 2004 PPC440 (64) 12,288 10,000 1,570

UKQCD3

QCDOC

2004 PPC440 (64) 12,288 10,000 1,570

US LGT4

QCDOC

2005 PPC440 (64) 12,288 10,000 1,570

1Columbia University; 2RIKEN–BNL Research Center; 3A large group of QCD physicists from the United Kingdom; 4U.S. lattice gauge theory.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

353

prefetching buffer to supply the DSP with single-cycle

access to DRAM provided that the pattern of memory

fetches is regular, which is the case for the Dirac equation

in QCD. With this prefetching buffer, the DSP and

60-ns DRAM make a solid processing node, since the

DSP is not memory-bandwidth-limited during the

solution of the Dirac equation.

The other major part of the NGA is the serial

communications unit (SCU) that drives the eight nearest-

neighbor connections in a 4D mesh. The SCU contains

DMA engines to access local memory for data that

is being sent or received, allowing simultaneous

communication with eight neighboring nodes as well as

concurrent local floating-point calculations. The nearest-

neighbor communications are bit–serial, since any wider

bus between nodes was not possible with the commodity

cable and connector densities then available. The latency

for memory-to-memory transfers for neighboring nodes

was around 1 ls. In addition, the SCU contains special

hardware to perform global sums without involving

the local processor, yielding a fast global sum.

The development of QCDSP and the 400-gigaflops,

8,192-processor machine at Columbia was supported

by the U.S. Department of Energy (DOE), with the

600-gigaflops, 12,288-processor machine at the RIKEN–

BNL Research Center (RBRC), funded by the RIKEN

Laboratory in Japan. The machines achieve a maximum

performance of 30% of peak speed for QCD and won

the Gordon Bell prize at the SC98 High Performance

Networking and Computing Conference. The machines

do not have any fault-tolerant capabilities, so any

hardware failures must be promptly repaired. Most of the

time, partitions of 2,048 and 4,096 nodes have been used,

although we have been running one 4,608-node partition

for almost two years. These partitions are created by

physically recabling the machine, a task that requires a

few hours. The partition sizes have been determined to

best suit the physics calculations we wish to perform.

The applications software for QCDSP is written

primarily in Cþþ, with optimized kernels in assembly for

the solution of the Dirac equation. The compiler is a

single-node compiler, with data transfer between nearest-

neighbor nodes done via our own message-passing

interface, which was designed to minimize software

latency. Each node runs a real-time kernel we developed

that provides user code with standard C and Cþþ runtime

support, although there is support for only a single

application process running. A host workstation runs

manager software we call the qdaemon, which coordinates

the thousands of nodes on QCDSP by handling booting,

program loading, I/O, and hardware failure reporting.

A final important part of the QCDSP architecture is

the compact size achieved by having low electrical power

consumption. This improves the reliability, since the

compact size places more connections inside printed

circuit boards. The low power means that QCDSP costs

around $50,000 a year to run, including air-conditioning

costs.

QCDOC hardware
QCDSP represented a major step forward in QCD

machines. It demonstrated that machines of many

thousands of nodes could be operated reliably, that a

mesh network of bit–serial connections could provide low

latency and fast global sums, and that good performance

for QCD per dollar spent could be achieved by balancing

local floating-point speed, communications speed, and

electrical power consumption. However, QCD is a

sufficiently complex problem for it to be desirable to have

many more orders of magnitude computing power than

QCDSP provides. An obvious path for improvement

was to enhance the basic QCDSP architecture with

components reflecting much greater transistor density

and clock speeds. IBM system-on-a-chip (SoC) technol-

ogy appeared to be a good match for our design goals.

The success of QCDSP also made a larger group of

researchers interested in using this computer architecture

for QCD. Design work for the QCDOC computer

began with support from the U.S. DOE, the RIKEN

Laboratory in Japan, and a large group of QCD

physicists from the United Kingdom, known as the

UKQCD. This large group of collaborators provided

more human and financial resources to the design process

than had been available for QCDSP.

QCDOC processing node

In the fall of 1999, we began the design of the custom

QCDOC ASIC using IBM SoC technology. Figure 1 is a

block-level schematic of the resulting ASIC. This ASIC

contains an embedded IBM PowerPC* 440 (PPC440)

processor, an attached 64-bit IEEE FPU, 4 MB of

memory, communications controllers for 24 simultaneous

bit–serial communications links, two Ethernet

controllers, and a controller for external double-data-

rate synchronous DRAM (DDR SDRAM). Thus, the

QCDOC ASIC combines all of the features of the

QCDSP node, in addition to many more, on a single chip,

and it provides 20 times the performance at about twice

the cost. We next describe some of the features of this

QCDOC ASIC. Further details are available in [8–10].

Prefetching embedded DRAM controller

A critical custom element of the QCDOC ASIC is the

high-speed interface to the embedded DRAM, designed

by members of our collaboration at the IBM Thomas

J. Watson Research Center and their colleagues. This

interface provides three bidirectional ports to the

embedded DRAM: one for the processor local bus (PLB),

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

354

one to a DMA unit used to move blocks of data between

embedded DRAM and the external DDR SDRAM, and

the third and most important, to the PPC440 core itself.

Each port accesses memory through a 1,024-bit-wide path

(actually 1,152, including the error correction control

bits) and provides an efficient matching between this

slower memory and the other, faster units on the chip.

Each port has two pairs of 1,024-bit read buffers and

two 1,024-bit write buffers. Each pair of read buffers

arbitrates independently for embedded DRAM access

and will prefetch up to 1,024 bits in advance of the actual

read request. The presence of two such prefetching units

permits two separate data streams to be read efficiently at

the same time. (For QCD, this is often the gauge link

matrices and the conjugate gradient solution vector.)

Write data is held in the two write buffers until a

subsequent write or overlapping read request forces that

write data to be flushed into embedded DRAM. Full

coherency is provided between these buffers across all

three ports. This architecture has proven to be very

efficient, easily saturating the bandwidth of the three

devices that it supports. This is most important for

the PPC440 processor, where the embedded DRAM

controller is connected directly to the PPC440 data bus

and operates at the full processor speed, not the usual 3:1

ratio. For many of our calculations, the variables needed

to solve the Dirac equation can be completely contained

within this on-chip memory, so this high-bandwidth, low-

latency connection to memory can accelerate the entire

calculation.

Serial communications unit

The second major custom-designed part of the ASIC is

the serial communications unit (SCU). This unit controls

the sending and receiving of serial data on the 12 output

and 12 input channels that connect a given node to its 12

nearest neighbors in the 6D mesh. To a large extent, the

transfers in these 12 directions are independent and are

controlled by 12 independent subunits. Serial packets

exchanged between neighboring nodes are of three

general types: 64-bit data packets, 64-bit supervisor

packets, and 8-bit partition interrupt packets. Each of

these packet types begins with an additional 8-bit control

byte with error correction control (ECC) parity and

control information. We describe the features of each of

these three types of communication in turn.

Figure 1

The QCDOC ASIC designed with IBM SoC technology is a complete processor node on a single QCDOC chip. The blue components in
the figure were specially designed for QCDOC, while the remaining components are standard IBM macros. (GPIO � general-purpose
input/output; DCR � device control register; HSSL � high-speed serial link; I2C � Inter-Integrated Circuit Serial Bus Interface; MII �
Media Independent Interface; OPB � on-chip peripheral bus; PLL � phase-locked loop.)

DMA
controller

Embedded
DRAM

controller

Embedded
DRAM DDR

SDRAM

PLB

DCR ring

SCU

HSSL

HSSL

HSSL

PLL

PLB
arbiter

FPU440 core

DDR
SDRAM
controller

Boot/
clock

support

Interrupt
controller

OPB–PLB
bridge

GPIO
32

1

66

66

MII

MII

O
P
B

I2C DDR SDRAM
module sense

General
I/O port

Ethernet/
JTAG

interface

EMAC3

2-KB trans. FIFO

4-KB rec. FIFO

Sideband
signals

JTAG

IBM library component

Custom-designed logic

4 MB of embedded
DRAM

2.6-GB/s interface to
external memory

1-Gflops
double-precision
RISC processor

Bootable
Ethernet
interface

2.6-GB/s
embedded
DRAM/
SDRAM

DMA

24-link DMA
communication

control

24 off-node
links

12-Gb/s
bandwidth 100-Mb/s

Fast Ethernet

MDMAL
Ethernet

DMA

8-GB/s
memory/procesor

bandwidth

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

355

Data packets

The receive unit has three 64-bit buffers that are initially

empty, and it acknowledges each received data packet

when that buffer has been unloaded by sending an 8-bit

acknowledge (ack) packet back to the sender. Thus, the

send unit can safely transmit three 64-bit packets before

receiving a returned ack. This time exceeds the latency

in this send-ack cycle and permits full bandwidth

transmission to occur. Data to be transmitted in a

particular direction is pulled from memory (either

embedded DRAM or external DDR SDRAM) by a

DMA control unit, dedicated to that direction, in a block-

strided pattern. A block-strided pattern is determined by

the start address, block length, number of blocks, and

block separation. The instruction specifying this block-

strided move is stored in a 128-bit word. Sixteen such

DMA instruction words can be stored for each send and

each receive direction, and their execution can be chained,

permitting autonomous communication of rather

complex data storage patterns. For each of these 12 send

and 12 receive units, data to be transferred to or from

memory is stored in eight 128-bit buffers, permitting the

slowly transmitted serial data to be efficiently written to

memory using burst PLB transfers.

Supervisor packets

These are two 64-bit words written by the processor

directly into an SCU register and interleaved, with high

priority, among outgoing data packets. When received,

the corresponding PPC440 processor is interrupted and

the receipt acknowledged when the 128-bit word has

been read (implying that the next supervisor packet

can be sent). This permits other software processes to

communicate between nodes without interfering with

an ongoing data transfer.

Partition interrupt packets

An important motivation for the 6D architecture of

QCDOC is to provide convenient partitioning of the

machine. For the earlier 4D QCDSP machine, a change

in the size of the lattice on which the problem was

formulated often required that the actual cables providing

the communications had to be reconfigured. As discussed

below, the extra two dimensions provided in the QCDOC

6D mesh permit a variety of 4D problems to be folded

into those six dimensions simultaneously. However, to

fully realize such a partitioning of the machine, we must

provide interrupt functionality that is also partition-

specific. This is most economically done using the 6D

communications network, permitting the same software

partitioning that routes data and supervisor packets

within a given partition to similarly route interrupts.

The 8-bit interrupt packets provide this capability,

supporting eight separate interrupts that can be received

only by processors within the same partition as that of the

node sending the interrupt. The interrupt packets are

interpreted within the framework of a relatively slow (a

few hundred kHz) on-node counter roughly synchronized

among all the nodes in a given partition. The interrupts

are then generated and interpreted in a pipelined fashion.

During cycle n determined by this slow counter, each

node assembles an 8-bit interrupt word In from a

memory-mapped register. Set bits cause an interrupt,

cleared bits do not. During this same nth cycle, each SCU

transmits the OR of the interrupt word In�1 and any

incoming interrupt packets received during this cycle.

A new transmission is initiated only when a logically

different interrupt packet is received. Such transmissions

are made to all neighboring nodes within the partition.

The final 8-bit interrupt word being transmitted during

the nth cycle is presented to the interrupt controller of the

PPC440 at the start of cycle n þ 1. By making the slow

clock period appropriately long and providing guard

times near the end and beginning of the cycle, we can

ensure that this system is functionally equivalent to the

more standard hardwired interrupt systems often

implemented in a parallel machine.

Error checking and recovery

Considerable error checking is provided within the SCU.

The individual packets are transmitted according to a

protocol that permits automatic recovery from any single-

bit error. This requires that the 6-bit control code contain

an ECC-style redundancy and that the remaining bits—

data, supervisor, or interrupt—include parity. If a

receiving unit detects a bad data or supervisor packet,

an error acknowledgment is sent, and the sender then

retransmits the corresponding packet. If an erroneous

interrupt packet is received, it is ignored. The interrupt

packets are not acknowledged. In addition to this packet-

level error correction, a 64-bit checksum is kept for all

sent and received data packets. These checksums are read,

compared, and cleared infrequently, typically at the start

and end of a job, and provide a guarantee that no

incorrect internode data has been used.

Global sums and broadcasts

The final SCU design topic is the hardware support

provided for global sums and broadcasts. Such global

operations can be seriously inefficient on a mesh machine

if too much time is required for each node to receive and

then resend data that must ultimately be distributed to

every node in the machine. To avoid the potentially large

overhead associated with such receive and resend steps,

the SCU contains limited logic that links the otherwise

independent 12 send and 12 receive units. In ‘‘global’’

mode, incoming data from a particular direction is

immediately sent out in as many as eleven other directions

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

356

as well as stored in memory according to the correctly

active DMA instruction for the receiving direction.

The logic supporting this one-to-many transmission is

doubled so that global sum data can be passed in both

directions of a specific machine dimension simultaneously.

This effectively reduces the linear size of the machine

in each direction by a factor of 2.

This global logic permits a broadcast to be performed

over the entire machine as a single operation, with the

one-to-many transmissions configured to pipe the data

from the broadcasting node to all of the nodes of the

machine. A global sum is performed as a series of partial

sums in increasingly many dimensions. For example,

as a first step for a 4D partition, local data would be

transmitted in the x-direction among each of the Nx

processors sharing common y, z, and t coordinates. This

can be done in Nx/2 hops. Next, each node would add the

available Nx numbers and start the same process in

the y-direction. After four such processes composed

respectively of Nx/2, Ny/2, Nz/2, and Nt/2 steps, each

processor has the desired global sum. Of course, the

mapping between the four dimensions in this partition

and the actual 4D subvolume of the 6D machine may be

quite contorted, with no effect on the programming or

performance of these two types of global operation.

Summary

The SCUs provide both nearest-neighbor and global

operations for QCDOC. The total nearest-neighbor

bandwidth, utilizing simultaneous sends and receives,

is 1.3 GB/s at 500 MHz. The memory-to-memory

latency for a single 64-bit word transfer between nearest

neighbors is approximately 600 ns. Since the 24 nearest-

neighbor links can run concurrently, the effective latency

can be much smaller.

Ethernet and JTAG interface

The last custom component of the QCDOC ASIC design

that we highlight here is the special Ethernet controller

that receives and sends User Datagram Protocol (UDP)

packets containing JTAG (IEEE Standard 1149.1

developed by the Joint Task Action Group) code [11].

Incoming packets are automatically transcribed as JTAG

sequences that are fed into the PPC440, while the

resulting JTAG bitstream produced coming from the

PPC440 is re-encoded in UDP packets and returned to

the sender. This device is designed to work from power-

on and is used to boot each node, removing the need for a

boot programmable read-only memory (PROM). This

unit was originally designed by Peter Hochschild and

Richard Swetz at the IBM Thomas J. Watson Research

Center and was available as Verilog** code that had been

used to create a successful field-programmable gate array

(FPGA) for another IBM project. A design team from

IBM Rochester translated this Verilog design into the

Very high-speed integrated circuit Hardware Description

Language (VHDL) form that we integrated into the

QCDOC ASIC.

QCDOC ASIC design methodology

The QCDOC ASIC was manufactured for Columbia

University by the IBM Microelectronics Division under a

standard commercial contract. As described above, much

of the logic design and initial timing for some of the

components of the QCDOC ASIC were performed by

other groups within IBM. However, our collaboration,

centered at Columbia, took final responsibility for the

design. We worked with an IBM customer support

engineering team in Raleigh, including Beth Danford,

Harry Linzer, and Doan Trinh Nguyen. They provided

the initial design setup, advised us on the style of logic

design appropriate for the IBM ASIC design process, and

performed the final physical design. We used Synopsys

design tools for almost all of our work, including final

gate-level simulations with physical timing parameters.

The static timing specification was done using

EinsTimer*, with considerable help from the IBM

Raleigh team. For most of the IBM components, the

entire timing specification was carried out at Raleigh.

In fact, for a complex component such as the DDR

SDRAM controller, since an intimate knowledge of the

component is needed, it would have been very difficult to

have had this done at Columbia. We believe that this

process worked very well, with the IBM team providing

excellent and timely support.

QCDOC networks

Three networks make up the QCDOC architecture.

The nearest-neighbor mesh network, described above,

is responsible for the high performance for the QCD

application. We adopted a 6D mesh network, since this

allows us to partition the machine, in software, into many

smaller machines of lower dimensionality. (In fact, there

has even been a recent theoretical advance in discretizing

the Dirac operator, which naturally leads to a 5D

operator, so we may use a 5D submachine for QCD as

well as 4D ones.) The dimensionality was limited to 6,

since higher dimensionalities would increase the number

of onboard wires and inter-crate cables beyond practical

limits. The characteristics of this 6D network are

described in the discussion of the serial communications

unit above.

The second QCDOC network is a standard 100-Mb

Ethernet. There are two Ethernet connections to each

ASIC. One connection is to the custom ASIC element,

which allows JTAG control of the processor via the

Ethernet, described above. The other is to a standard

100-Mb Ethernet controller, an available IBM macro.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

357

The Ethernet/JTAG connection is used to boot each node

and to run diagnostics, and for access via the IBM

RISCWatch debugger. After booting, the standard

100-Mb Ethernet is used for general I/O from each node.

Currently, nodes can mount external disks via standard

network file system (NFS) protocols, and a large number

of external disks are planned for the machine. These will

be used primarily for temporary storage of intermediate

results.

The third network is a simple three-wire global

interrupt system that permits any processor to interrupt

all others. This is used for initial synchronization at

power-on, but is supplanted by the partition interrupts

when the machine is operating as a collection of

independent partitions.

QCDOC integration

As a university-based project, we must approach the

electrical and mechanical design in a very careful fashion

to minimize the number of personal computer (PC)

boards that must be designed and maintained, and to

provide a high degree of modularity and simplicity. In

these design aspects, we closely followed the approach

taken in the construction of the QCDSP machines.

At the lowest level of the fabrication hierarchy is a

daughterboard: a 3-in.3 6.5-in., 18-layer PC board that

holds two nodes, an associated dual inline memory

module (DIMM) socket for each node, four Ethernet

PHY chips, and one five-port repeater chip to provide

Ethernet connectivity. Figure 2(a) shows such a

daughterboard. The use of standard DIMM packaging

for the memory permits a last-minute choice of memory

size, which is, given the volatility of the memory market, a

great convenience.

At the next level, we mount 32 of these daughterboards

in a motherboard, as shown in Figure 2(b). This is a

14.5-in.3 27-in., 18-layer board that joins the 64 nodes

in the 32 daughterboards into a 26 hypercube. Six of the

12 faces of this hypercube are wired to the corresponding

face of the same orientation. The other six faces are

carried to the edge of the motherboard with high-speed

traces. Thus, by connecting N03N13N2 motherboards,

these six faces can be joined to those on neighboring

boards, creating a 2N0 3 2N1 3 2N2 3 23 23 2

hypertorus. A large fraction of the motherboard wiring

simply provides the matched 100-X traces needed for

these network connections. In addition, support chips for

the 100-Mb Ethernet as well as Ethernet and processor

Figure 2

(a) A QCDOC daughterboard holds two nodes and their associated dual inline memory modules, or DIMMs (512-MB DIMMs shown). (b)
A QCDOC motherboard holds 64 nodes as a 26 hypercube. (c) A QCDOC water-cooled rack fully populated with 16 motherboards
mounted in two identical eight-motherboard crates.

(a)

(b) (c)

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

358

clock distribution are present on the motherboard. The

motherboard is supplied with 48 V power, which is

converted to the required 1.8 V, 2.5 V, and 3.3 V by a row

of ten quarter-brick power converters that runs down the

middle of the two rows comprising 16 daughterboards,

which are visible in Figure 2(b).

Four motherboards are inserted in a backplane, and

two of these backplanes, holding eight motherboards, are

mounted in a crate. Each four-motherboard backplane

contains clock generation and fan-out circuitry that can

be interconnected with cables to realize the specific clock

tree needed for a given machine. The 0.210-in. thickness

of the backplane is sufficient to permit the connectors into

which the motherboard is inserted on one side of the

board and those to which the cables attach on the other

side of the board to press-fit into the same holes. Thus,

there is no high-speed wiring on the backplane.

Two QCDOC crates are housed in a water-cooled rack,

as shown in Figure 2(c). These racks are the standard

form-factor for production QCDOC machines and are

manufactured for us by Elma USA (Fremont, CA). There

are water-cooled radiators below each crate, and the

cooling air circulates within the rack. The racks can be

stacked two cabinets high, permitting a high-density,

compact installation of 2,048 QCDOC computing nodes

with a footprint of about 12 square feet. The input ac

power draw is approximately 50 A at 208 V.

The needed high-speed serial connections between the

motherboards are provided by 24 20-pair differential

cables that attach through the backplane to each

motherboard. Four of these cables join each pair of

motherboards connected in a given dimension. Two

of these cables carry the signals propagating in one

dimension, and two carry the signals propagating in the

opposite direction. Only 32 of the 40 signals are required

to connect a 32-site face of the 26 hypercube of nodes on a

motherboard. Six of the remaining 16 wires are used for

the global interrupts, and the remaining ten are not used.

In summary, the entire QCDOC computer requires

the design and fabrication of three distinct PC boards.

Only three cable configurations are needed: 50-X clock

distribution cables, 20-pair, 100-X differential cables, and

standard RJ45-connected Ethernet cables. The quality of

the cables, connectors, and board traces allows our low-

voltage differential signaling (LVDS) 500-MHz serial

communications to propagate essentially undistorted from

the driver on the sending QCDOC ASIC through five PC

boards and three pairs of connectors. Our electrical design

was carefullymodeled in advance by colleagues of our IBM

collaborators, an exercise that has proven to be very

accurate.

The first QCDOC ASICs were delivered in June of

2003 and have been extensively tested for many months.

To date, no flaws have been found in the design, and the

large machines will be built with this first design. As of

October 2004, about 8,000 daughter cards have been

produced, and 12,000 are expected to be finished by the

end of fall. More than 200 motherboards have already

been manufactured, along with 14 water-cooled racks.

These components will make up two large machines, one

to be installed in the RIKEN BNL Research Center at the

Brookhaven National Laboratory, and the second at

the University of Edinburgh. Figure 3 shows a nearly

completed 12,288-node QCDOC machine being

assembled at Brookhaven National Laboratory.

QCDOC software

The QCDOC software environment consists of three

broad areas. First is the portion of the operating system

software that runs on the host front end to boot, manage,

and interface with the machine. Second is the kernel that

runs on each node; it cooperates with the host software in

the management of the machine and loading of user code,

and also provides the underlying implementation of the

user environment.

Finally, the user environment provides the

programmer-visible portion of the software. In QCDOC,

much effort has been taken to keep this user-visible

layer as standard as possible without compromising

performance. The user environment includes an open-

source libc that is compliant with the Portable Operating

System Interface Standard (POSIX). Two standard

compile chains, gcc and xlc, are used. Only the messaging

and memory model are nonstandard and reflect

constraints of the lean hardware design.

Host software

The front end for QCDOC is a standard UNIX**

symmetric multiple processor (SMP) server. The software

Figure 3

A 12,288-node QCDOC machine under construction at Brookhaven
National Laboratory in October 2004.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

359

runs on AIX*, Solaris**, and Linux**, and for large

QCDOC machines, IBM pSeries* servers are used. The

host software consists of a multithreaded qdaemon.

A modified user shell called the qcsh is used to pass

QCDOC-specific commands to the qdaemon. The first

job of the qdaemon is to boot a QCDOC back end in a

timely manner. A boot kernel containing initialization,

self test, and Ethernet software is downloaded into the

instruction cache of the PPC440 processor on each

node using the JTAG interface. The run kernel is then

bootstrapped into working memory, after which the

high-speed communications network is initialized and

applications are run.

Both kernels require approximately 100 reliable UDP

packets per node, or approximately one million packets

for a large machine. With multithreaded software and

multiple gigabit links on an SMP, the download time can

be kept very modest on even a large machine without

resorting to less strongly checked broadcast or more

complex logarithmic boot schemes.

Communication between the qdaemon and the run

kernels is carried out using the Remote Procedure Call

Protocol (RPC) and greatly aids the maintainability and

portability of our operating system. The use of RPC as a

uniform transport mechanism is particularly attractive,

since it is required by our NFS client to access both the

front end and distributed disks. The conventional standard

out and standard error from application programs are

routed through the qdaemon to the user shell, and post-

exit diagnostics of error counters and checksums on the

machine are carried out after every job by the qdaemon.

The qdaemon manages multiple user connections

simultaneously and supports dividing a large machine

into multiple partitions, on each of which a single

application may be run. The partitions are, in general, 6D

subslices of the machine and may be remapped internally

to present a 1D to 6D application-visible torus. The

remapping is carried out by iteratively folding together

two (not necessarily periodic) machine dimensions to

produce a new single-application dimension that is

periodic. When all six dimensions are remapped down

to a 1-torus, the single-application dimension meanders

around following a 6D space-filling curve. The case in

which a 43 4, 2D machine is remapped into a 16-node,

1D partition is illustrated in Figure 4. In contrast to

the Message Passing Interface (MPI) protocol, this

remapping is done prior to running a job, thereby

ensuring that a nearest neighbor in the Cartesian

application torus is always physically a nearest neighbor

on the real communications mesh.

Node kernels

We have chosen to write a very lean runtime executive,

or run kernel, rather than use a standard UNIX-like

operating system or even a commercial real-time

operating system for QCDOC. This enables us to enhance

the robustness of the machine and to eliminate a number

of software-related overheads that occur on massively

parallel processors (MPPs) based on UNIX-like nodes,

such as scheduler impact and translation lookaside buffer

(TLB) miss overhead, and to facilitate zero-copy direct

memory access (DMA) on simple hardware.

Both QCDOC and QCDSP are much larger machines

than typical MPPs. Reliability and uptime are more easily

ensured when the boot process and device drivers are

completely controlled. During boot, no component in the

system is used without at least some form of modest test

and corresponding reporting on error. This test set can

be refined and augmented as new failure modes are

discovered. Additional self testing and reporting are

easily added to our homegrown run kernel.

QCD applications involve the need to invert sparse

matrices exceedingly quickly. On QCDOC, the sparse

matrix multiply can take as little as 20 ls, which means

that the problem is very tightly coupled on the scale of a

typical scheduling quantum, or indeed interrupt handling.

When an application is running on tens of thousands

of nodes, the impact of many different single nodes

switching execution stream for a scheduling quantum

can be very large.

The principal jobs of the run kernel are to support

program loading, drive hardware devices, and service

system calls and interrupts. Devices managed include the

Ethernet subsystem via a custom implementation of the

sockets UDP interface, the internode communication

network via the SCU message-passing application

programming interface that directly represents the rich

features of the DMA engines, and the various ancillary

on-chip components.

Figure 4

Example of partitioning a physical 4 � 4 machine into a single 1D
partition of 16 nodes.

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

360

The kernel maintains a process table for two threads

(kernel and application). However, it does not actively

schedule, but only switches at job initiation and

termination, ensuring that the compute nodes are

dedicated solely to computation.

The memory management unit of the PPC440 is used

to protect memory and enhance the robustness and user-

friendliness of the machine, but not to translate. Since

virtual and physical addresses are identical, the use of

zero-copy DMA in the communications is trivial. Large

pages enable the complete elimination of TLB miss

overhead, since the entire memory can be mapped in the

64-entry TLB. As discussed below, memory management

unit qualifiers are used to mark memory regions as

transient, supporting the streaming nature of high-

performance computing code.

Programming environment

Much effort has been made to keep the environment as

standard as possible when this is consistent with our

performance requirements. The standard C and Cþþ
compilers (gþþ and x1C) are supported as cross-compilers

for the QCDOC nodes.

To provide a standard programming environment,

we have reused the open-source, POSIX-compliant, C

runtime library from Cygnus. This library requires a

custom implementation of the libgloss (also known as

GNU low-level operating system support). Libgloss is

provided by our homegrown user space support, typically

by a system call into the run kernel.

Internode communication is provided by messaging

libraries extending the standard C support. At the lowest

layer, SCU calls provide application access to DMA

commands that send to the receive FIFOs (queues in

which access becomes available according to the first-

in first-out rule) on each of the 12 neighbors of a node

and to DMA commands that receive from the receive

FIFOs of a node. The calls are asynchronous, allowing

communication and computation to be easily overlapped.

Fast global reduction over arbitrary hyperplanes of the

machine is provided.

On top of the SCU layer, there is a standard interface—

the QCD message passing (QMP) interface—developed

by the LQCD research community. This library provides

fast nearest-neighbor messaging calls and more general

communications patterns via software routing. MPI is

not supported, since the additional generality is not

needed for QCD, and leaner libraries can run with higher

performance.

Memory model

The presence of level 1 (L1) instruction and data caches in

the PPC440 is a marked improvement over QCDSP,

where only an instruction cache was available. This

allows QCDOC to achieve better performance for

general programs that are not carefully written for the

architecture. However, for the highest performance on

QCDOC, the programmer must be aware of and use the

fast on-chip memory judiciously.

The multiported directly addressable on-chip

memory system on QCDOC somewhat complicates the

programming model. Since the L1 cache of the PPC440

does maintain coherence, direct memory accesses by the

SCU must be actively made coherent with the caches

by software intervention. To avoid excessive overhead

from cache flushes, a strategy has been developed to

maintain coherency at low latency while retaining the

spatial locality benefits of the cache.

A qalloc allocator has been implemented to manage

multiple heaps, with a flags argument specifying the

memory qualifiers. One flag to qalloc returns

‘‘communicable’’ memory that is marked transient in

the PPC440 L1 cache. (Two ways of the PPC440 cache

are set as transient; the remaining 62 ways are set as

normal.) This communicable memory can be efficiently

flushed by using as little as 32 cache-touch instructions.

This flush is done by the communications calls.

The allocator always returns cache-aligned pointers,

which means that well-formed messages cannot partially

overlap the basic coherency unit in a dangerous way. The

choice of two cache ways for the transient region well

matches the two read prefetch streams supported by

the prefetching embedded DRAM controller described

earlier. The typical third write stream (e.g., AXPY, or

y þ= a � x for vectors x and y and a scalar quantity

a) performs well using the store-gathering feature of

the PPC440 core.

Even for local floating-point operations, the use of

transient memory prevents cache pollution and stack

eviction. We also produce more deterministic cache-

miss patterns, reducing the overhead from prefetching

embedded DRAM controller misses and giving a

significant speedup when the working set exceeds the

PPC440 32-KB cache.

Application software

A broad set of QCD application code has been ported

to QCDOC, facilitated by the standard runtime

environment. This includes all of the major LQCD

simulation code suites of the U.S. and U.K. research

communities. Since virtually all QCD simulation codes

have been written in a message-passing style for many

years, a basic port to QCDOC is straightforward. In

addition, the QMP library being developed by the

U.S. lattice community is supported on QCDOC.

For maximum performance, libraries of optimized

QCD kernels have been written in assembly language

and are available to the research community. Since

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

361

the dominant computational load is in the Krylov space

solvers used to solve the Dirac equation, much effort has

gone into optimizing the Dirac operator. There are a

number of different discretizations of the Dirac operator

in current use, and these are known as different fermion

types in LQCD. Table 2 shows the performance on

QCDOC for some of the common fermion types in use

today: Wilson fermions, a-squared tadpole (ASQTAD)

staggered fermions, clover fermions, and domain wall

fermions (DWF). The performance is given for the gate-

level simulations done during the ASIC design and on

128-node QCDOC machines. All calculations are done in

double precision, and the results represent our status to

date. There are additional improvements that can be

made in some cases that could increase the performance

by an additional 5% of peak. The column labeled D

shows the performance achieved for the application

of the Dirac operator to a vector. The column labeled

CG shows the performance achieved for a full conjugate

gradient solution to the problem Dx = y, given y. This

is slightly below the Dirac operator performance due to

the smaller number for operations per memory access

in vector inner products than in matrix3 vector

calculations.

The different Dirac operators and volumes in Table 2

represent noticeably different challenges for achieving

high performance. The ASQTAD case for small volumes

provides a challenge because of the small amount of local

computation relative to internode communications

bandwidth. For Wilson fermions, in addition to utilizing

internode bandwidth efficiently, the need to project from

a four-component spinor to a two-component one, and

reconstruct, presents a challenge to utilize the memory

bandwidth between the PPC440 and the embedded

DRAM to avoid processor stalls. For some of the 84

volumes, the calculation no longer fits in embedded

DRAM, and the performance drops as the off-chip

memory is used.

For machines with larger numbers of processors, only

the global sum required in vector inner products increases

with the processor number. The global operations

capabilities of the SCU discussed above show that the

time required for a global sum on a 4D lattice with the

same size in each direction grows as V1/4 as the volume

increases. Machines with a larger number of processors

should have very similar performance results, except

for the smallest volume, 24, where a slight drop in

performance is expected.

Without resorting to writing assembly code, we have

also optimized other parts of our C and CþþQCD codes

on QCDOC. As an example, the fermion force term used

in the importance–sampling code achieved a speed of

20% of peak with standard function inlining and a reuse

of communications channels allocated in software.

Compared with QCDSP, generic C and Cþþ code on

QCDOC performs markedly better, minimizing the parts

of our application code that must be handled in assembly.

Conclusions
QCDSP has provided a working example of a computer

on the scale of 10K nodes that has reliably performed

calculations in QCD for a number of years. QCDOC is

an effort to extend this architecture to a higher level of

integration, performance, and ease of use. Only one

version of the QCDOC ASIC has been manufactured,

and it has performed very well, running for weeks in 128-,

512-, and 1,024-node QCDOC machines with very small

hardware error rates. About 15 1,024-node QCDOC

machines have been assembled. Some are in final

debugging, and a few are running physics successfully.

Given our experience with moving to large QCDSP

machines and the regular repetitive character of the

QCDOC nodes and network, we expect larger QCDOC

machines to function reliably.

At this stage of the QCDOC project, there are still

some significant unknowns that will affect the final price/

performance of the machine. We are currently running

our 1,024-node machines at 420 MHz and have run

Table 2 Performance on QCDOC of linear algebra operations

for some common fermion types, shown as a percentage of peak

speed. The Wilson and ASQTAD optimized results were run at

450 MHz (900 Mflops/node peak speed). All other results from

128-node machines were run at 420 MHz on newly built

QCDOC nodes, which are not yet stable at 450 MHz. These

benchmarks represent our current status; further improvements,

of approximately 5% of peak speed, may be achieved.

Fermion Sites/node Application

Simulator

D (%)

128-node QCDOC

D (%) CG (%)

Wilson

24 47 44 32

44 43 38

64 44 39

84 29

ASQTAD

24 22 19

44 43 42 40

64 37 36

84 29 28

Clover
24 31

44 47

DWF
24 3 4 32

44 3 4 42

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

362

smaller machines reliably at 450 MHz. We will continue

to work for the highest possible clock speed. With respect

to our cost/performance goal, some unknowns remain,

including the final clock speed that can be used for a

machine with thousands of processors and the cost

of some of the components that are only now being

procured in quantity. However, barring unusual

difficulties, we expect to achieve our original design goal

of a cost/performance of $1 per sustained megaflops for a

QCD computer of the 10-teraflops scale.

Acknowledgments
We would like to thank the U.S. Department of Energy,

the RIKEN–BNL Research Center, and the Particle

Physics and Astronomy Research Council (PPARC) of

the U.K. for funding the design and construction of the

machines described in this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cadence Design Systems,
Inc., The Open Group, Sun Microsystems, Inc., or Linus Torvalds
in the United States, other countries, or both.

References
1. R. Tripiccione, ‘‘Dedicated Computers for LGT,’’ Nucl. Phys.

B (Proc. Suppl.) 17, 137–145 (September 1990).
2. N. H. Christ, ‘‘QCD Machines,’’ Nucl. Phys. B (Proc. Suppl.)

9, 549–556 (June 1989).
3. D. H. Weingarten, ‘‘Parallel QCD Machines,’’ Nucl. Phys. B

(Proc. Suppl.) 26, 126–136 (1992).
4. R. Ammendola, F. Bodin, P. Boucaud, N. Cabibbo, F.

Di Carlo, R. De Pietri, F. Di Renzo, W. Errico, A. Fucci, M.
Guagnelli, H. Kaldass, A. Lonardo, S. de Lucad, J. Micheli,
V. Morenas, O. Pene, R. Petronzio, F. Palombi, D. Pleiter, N.
Paschedag, F. Rapuano, P. De Riso, A. Salamon, G. Salina,
L. Sartori, F. Schifano, H. Simma, R. Tripiccione, and P.
Vicini, ‘‘Status of the apeNEXT Project,’’ Nucl. Phys. B (Proc.
Suppl.) 119, 1038–1040 (May 2003).

5. T. Lippert, ‘‘Recent Developments and Perspectives of
Machines for Lattice QCD,’’ Nucl. Phys. B (Proc. Suppl.)
129/130, 88–101 (March 2004).

6. I. Arsenin, D. Chen, N. H. Christ, R. Edwards, A. Gara,
S. Hansen, A. Kennedy, R. D. Mawhinney, J. Parsons, and
J. Sexton, ‘‘A 0.5 Teraflops Machine Optimized for Lattice
QCD,’’ Nucl. Phys. B (Proc. Suppl.) 34, 820–822 (April 1994).

7. R. D. Mawhinney, ‘‘The 1 Teraflops QCDSP Computer,’’
Parallel Comput. 25, No. 10/11, 1281–1296 (September 1999).

8. D. Chen, N. H. Christ, C. Cristian, Z. Dong, A. Gara,
K. Garg, B. Joo, C. Kim, L. Levkova, X. Liao,
R. D. Mawhinney, S. Ohta, and T. Wettig, ‘‘QCDOC:
A 10-Teraflops Scale Computer for Lattice QCD,’’ Nucl. Phys.
B (Proc. Suppl.) 94, No. 1/3, 825–832 (March 2001).

9. P. A. Boyle, C. Jung, and T. Wettig, ‘‘The QCDOC
Supercomputer: Hardware, Software, and Performance,’’
Proceedings of the Conference on Computers in High
Energy Physics (CHEP03), June 2003, pp. 1–11.

10. P. A. Boyle, D. Chen, N. H. Christ, M. Clark, S. D. Cohen,
C. Cristian, Z. Dong, A. Gara, B. Joo, C. Jung, C. Kim, L.
Levkova, X. Liao, G. Liu, R. D. Mawhinney, S. Ohta, K.
Petrov, T. Wettig, and A. Yamaguchi, ‘‘Hardware and
Software Status of QCDOC,’’ Proceedings of the 21st
International Symposium on Lattice Field Theory, 2003,
pp. 838–843.

11. K. A. Perrine, D. R. Jones, P. Hochschild, and R. A. Swetz,
‘‘Interactive Parallel Visualization Framework for Distributed
Data,’’ Proceedings of the SPIE Conference on Visualization
and Data Analysis, 2002, pp. 196–206.

Received April 21, 2004; accepted for publication
June 18,

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

363

2004; Internet publication April 7, 2005

Peter A. Boyle School of Physics, University of
Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK
(pab@physics.columbia.edu). Dr. Boyle received his Ph.D. degree
in lattice field theory from the University of Edinburgh. He has
been researching lattice quantum chromodynamics (QCD) since
1994, and has used a variety of massively parallel processor (MPP),
cluster, and vector high-performance computing platforms. Dr.
Boyle is the author of the cross-platform domain-specific compiler
for high-performance QCD assembler kernels; he has spent the last
four years working on testing, operating systems, and hardware
debug on the QCDOC project at Columbia University.

Dong Chen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (chendong@us.ibm.com). Dr. Chen is a Research Staff
Member in the Exploratory Server Systems Department. He
received his B.S. degree in physics from Peking University in 1990,
and M.A., M.Phil., and Ph.D. degrees in theoretical physics from
Columbia University in 1991, 1992, and 1996, respectively. He
continued as a postdoctoral researcher at the Massachusetts
Institute of Technology from 1996 to 1998. In 1999 he joined the
IBM Server Group, where he worked on optimizing applications
for IBM RS/6000* SP* systems. In 2000 he moved to the IBM
Thomas J. Watson Research Center, where he has been working on
many areas of the Blue Gene/L supercomputer and collaborating
on the QCDOC project. Dr. Chen is an author or coauthor of more
than 30 technical journal papers.

Norman H. Christ Department of Physics, Columbia
University, 538 West 120th Street, New York, New York 10027
(nhc@phys.columbia.edu). Professor Christ received a B.A. degree
and a Ph.D. degree in physics from Columbia University in 1965
and 1966, respectively. He is currently a Professor of Physics at
Columbia University. His major focus of research is the study of
nonperturbative phenomena in quantum chromodynamics (QCD),
addressing frontier questions in particle and nuclear physics. His
research is performed using powerful, custom-built massively
parallel computers and the techniques of lattice gauge theory.
Professor Christ has played a leading role in the design and
construction of some of the most powerful QCD-targeted
computers since the early 1980s.

Michael A. Clark School of Physics, University of
Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK
(mike@ph.ed.ac.uk). Mr. Clark is a graduate student in the School
of Physics at the University of Edinburgh. He received his M.S.
degree in physics from the University of Edinburgh in 2001. He
was involved in the development of the QCDOC supercomputer at
Columbia University in 2003 and 2004.

Saul D. Cohen Department of Physics, Columbia
University, 538 West 120th Street, New York, New York 10027
(sdcohen@phys.columbia.edu). Mr. Cohen graduated from the
University of Maryland at College Park in 2001 with degrees in
physics, astronomy, mathematics, and computer science. He is
currently pursuing a Ph.D. degree in physics at Columbia
University with the Lattice Gauge Theory Group.

Calin Cristian Citigroup Quantitative Equity Trading, US
Equity Derivatives, 390 Greenwich Street, 3rd Floor, New York,
New York 10013 (calin.cristian@citigroup.com). Dr. Cristian is a
Quantitative Analyst in the Quantitative Equity Trading Group at

Citigroup. He received his B.S. degree in physics from the
University of Bucharest in 1996, his M.S. degree from Boston
University in 1998, and his Ph.D. degree from Columbia
University in 2002. Dr. Cristian joined Citigroup in 2003.

Zhihua Dong Department of Physics, Columbia University,
538 West 120th Street, New York, New York 10027
(dong@phys.columbia.edu). Dr. Dong is currently a Research Staff
Member at Columbia University. He received his Ph.D. from
Columbia in 1993, and since 1999 has been involved in system
administration for the front-end host computers for QCD on
digital signal processors (QCDSP). Dr. Dong has participated in
the development of the QCDOC supercomputer since 2000.

Alan Gara IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(alangara@us.ibm.com). Dr. Gara is a Research Staff Member
at the IBM Thomas J. Watson Research Center. He received his
Ph.D. degree in physics from the University of Wisconsin at
Madison in 1986. In 1998Dr. Gara received the Gordon Bell Award
for the QCDSP supercomputer in the most cost-effective category.
He is the chief architect of theBlueGene/L supercomputer.Dr.Gara
also led the design and verification of the Blue Gene/L compute
ASIC as well as the bring-up of the Blue Gene/L prototype system.

Bálint Joó School of Physics, University of Edinburgh, Mayfield
Road, Edinburgh EH9 3JZ, Scotland, UK (bj@ph.ed.ac.uk). Dr.
Joó received a first-class honors degree in computer science and
physics and a Ph.D. degree in theoretical particle physics, both
from the University of Edinburgh, in 1996 and 2000, respectively.
He completed postdoctoral research at the University of Kentucky
and Columbia University, and is currently at the University of
Edinburgh. He has been a member of the Columbia QCDOC
design team since mid-2000. Dr. Joó has been actively involved
with the U.S. Department of Energy Scientific Discovery through
Advanced Computing (SciDAC) software effort, playing a major
part in the QDPþþ and Chroma software projects since 2002.

Chulwoo Jung Brookhaven National Laboratory, P.O. Box
5000, Upton, New York 11973 (chulwoo@phys.columbia.edu). Dr.
Jung, a native of South Korea, received a Ph.D. degree in physics
from Columbia University in 1998. He spent two years as a
postdoctoral Research Scientist at the University of Maryland
at College Park. Dr. Jung has been a part of the QCDOC
collaboration since 2001, when he joined Columbia University and
Brookhaven National Laboratory as a Research Staff Member.

Changhoan Kim Department of Physics, Columbia
University, 538 West 120th Street, New York, New York 10027
(chateau@phys.columbia.edu). Dr. Kim received his B.S. degree in
physics from Seoul National University and his Ph.D. degree in
theoretical physics from Columbia University in 2004. He has
participated in the QCDOC project since 2000.

Ludmila A. Levkova Indiana University, 117 West Swain
Hall, Bloomington, Indiana 47401 (llevkova@indiana.edu). Dr.
Levkova is a Postdoctoral Fellow at Indiana University. She
received an M.S. degree in theoretical physics from Sofia

P. A. BOYLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

364

University, Bulgaria, in 1997, and a Ph.D. degree in theoretical
physics from Columbia University in 2004. Dr. Levkova was
involved with the QCDOC project in 2000 and 2001 during her
graduate studies at Columbia University.

Xiaodong Liao UBS Investment Bank, 677 Washington
Boulevard, Stamford, Connecticut 06902 (sheldon.liao@ubs.com).
Dr. Liao is currently a Research Analyst and Associate Director in
the Program Trading Group at UBS Investment Bank. He received
his B.S. degree in physics from Fudan University, Shanghai, China,
and his Ph.D. degree in physics from Columbia University.

Guofeng Liu Gluon Capital LLC, 377 Broadway, 10th Floor,
New York, New York 10013 (gfliu@physics.columbia.edu). Dr. Liu
received a B.S. degree in physics from Beijing University in 1997
and a Ph.D. degree in physics from Columbia University in 2003.
He was the primary author of the QCDSP parallel file system and
was actively involved in the design of the QCDOC ASIC. Dr. Liu is
currently the chief architect of Gluon Capital LLC, specializing in
computerized automated equity trading.

Robert D. Mawhinney Department of Physics, Columbia
University, 538 West 120th Street, New York, New York 10027
(rdm@physics.columbia.edu). Professor Mawhinney is an
Associate Professor of Physics at Columbia University. He
received his B.S degree in physics from the University of South
Florida in 1980 and his Ph.D. degree in physics from Harvard
University in 1987. He held postdoctoral positions at the
University of Pittsburgh and Columbia University, joining the
Columbia faculty in 1992. Professor Mawhinney’s physics research
is focused on the study of QCD using these large parallel
computers. He has been involved in the hardware and software
design of both QCDSP and QCDOC.

Shigemi Ohta Institute of Particle and Nuclear Studies, The
High Energy Accelerator Research Organization, Tsukuba, Ibaraki
305-0801, Japan (shigemi.ohta@kek.jp). Dr. Ohta is a member of
the Theory Division of the Institute of Particle and Nuclear Studies
in the High Energy Accelerator Research Organization (KEK) of
Japan. He has been working in numerical lattice QCD since 1985.
From 1987 to 1990 he did postdoctoral research under Professor
Norman H. Christ at Columbia University. In the early 1990s
he was involved with RIKEN and KEK procurements of
supercomputers. Dr. Ohta has recently been involved with
the 600-Gflops QCDSP computer at the RIKEN–Brookhaven
National Laboratory (BNL) Research Center, Japan, and with
the development of the QCDOC computer.

Konstantin Petrov Brookhaven National Laboratory,
P.O. Box 5000, Upton, New York 11973 (petrov@bnl.gov). Dr.
Petrov received his Ph.D. degree in the field of theoretical and
computational particle physics from Bielefeld University,
Germany, in 2002. He subsequently joined the QCDOC
development team as a Research Associate in the Nuclear Theory
Group at the Brookhaven National Laboratory. His research
interests include large-scale lattice simulations of finite-temperature
quantum chromodynamics. Dr. Petrov is also involved in the U.S
Department of Energy SciDAC project for lattice QCD.

Tilo Wettig Institute for Theoretical Physics,
University of Regensburg, 93040 Regensburg, Germany
(tilo.wettig@physik.uni-regensburg.de). Dr. Wettig is a Professor of
Physics at the University of Regensburg, Germany. His previous
appointments have included the following: Associate Professor at
Yale University, Fellow of the RIKEN–BNL Research Center,
Japan, and postdoctoral positions in Germany at the Technical
University of Munich and the Max-Planck-Institute in Heidelberg.
Dr. Wettig received a Ph.D. degree in theoretical physics from
Stony Brook University in 1994.

Azusa Yamaguchi Department of Physics and Astronomy,
University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
(azusa@physics.columbia.edu). Dr. Yamaguchi received her Ph.D.
degree from Ochanomizu University, Japan. She subsequently
worked as a postdoctoral researcher in the Computer Science
Laboratory at the RIKEN Laboratory in Tokyo, and she was
a Research Staff Member at the Particle Physics Laboratory at
Ochanomizu University. Dr. Yamaguchi joined the QCDOC
project at Columbia University as a postdoctoral researcher. She
designed the digital logic for the internode communication in the
QCDOC ASIC and the low-level link protocol, flow control, and
retransmission logic for the QCDOC serial communications unit
(SCU). She is currently a Research Fellow with the Particle Physics
Theory Group of the University of Glasgow. Dr. Yamaguchi
has been awarded a European Union Marie Curie Fellowship
to study the nucleon dipole moment using QCDOC.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 P. A. BOYLE ET AL.

365

