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1. Introduction 
 
1.1 Background 
 
The early days of computer evolution took place in the direction of designing and building high 
performance mainframes. The brain of these mainframes was called a Central Processing Unit (CPU) and 
designed using many high performance discrete components in the form of single or multiple circuit 
boards. However, with the advances in IC technologies in the early 1970's, engineers began building 
single-chip CPUs called  microprocessors which house a significantly reduced capability of main frame 
level CPUs at that time. The classes of early microprocessors include Motorola 6800 family,  Intel 8085 
family, and Zilog Z80, which were evolved to MC680x0, Intel xxx86, and Z8000 family. The creation of 
microprocessors embarked a new era of personal computers that drastically influenced computer industry 
and the rest of the world. More and more powerful microcomputers and personal computers were rapidly 
developed. Today many microprocessors have not only 32-bit data-bus but also have on-chip floating 
point processors, cache and virtual memory, which have traditionally been the unique properties of mini 
and mainframe level computers. Some of recent Reduced Instruction Set Computers (RISCs) such as 
DEC's Alpha-chip has now a 64-bit data bus with the basic clock rate exceeding 500MHz and 
approaching towards GHz. Such computational power is actually superior to the old multi million dollar 
supercomputers such as Cray-1. 
 
While microprocessors were rapidly evolving, engineers observed that many computer applications such 
as instrumentation and control applications do not really require powerful number crunching 
microprocessors, rather they require small cost effective processors with many convenient I/O (Input 
Output) functions. For example, the controller for a microwave oven may only require a simple 
microprocessor with multiple I/O (Input Output) control functions that can turn on and off different 
switches with simple timed combination. There are perhaps thousands of such examples: TV and VCR 
controllers, telephone answering machines, automobiles, elevator controllers, gas pump controller, multi-
meter, laundry machine controllers, etc. This type of applications typically requires a simple processor, 
small amount of memory, serial and parallel I/O ports, and timers. Most importantly, the cost of 
processors must be very low (typically less than few dollars per chip in a large quantity) in order to cut 
down the final cost of the application products. Hence, another breed of computers called micro 
controllers were born to provide an easy and efficient design of many I/O control applications. With the 
existing IC technology, integrating a microprocessor with memory (RAM and ROM) and I/O ports into a 
single chip is not too difficult. Today many different types of  micro controllers are available on the 
market for different capability requirements of application. 
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1.2 Microcontroller 
 
A microcontroller is a single chip microcomputer that is specifically designed for dedicated embedded 
applications, and generally includes the following elements in a single chip: 
 
 

• Microprocessor,  
• Parallel I/O ports,  
• Serial ports, 
• RAM,  
• ROM, 
• Timers,  
• A/D converter, 
• Prioritized interrupt control.  

 
 
The advantages of putting all of the above components into a single chip are numerous. Since most of I/O 
functions are already available on the microcontroller chip, the design of an application requires a small 
number of additional chips significantly saving the chip area, power consumption, and cost. Due to 
minimal chip counts, application designs are relatively simple and the chances of design mistakes are 
greatly reduced. Moreover, the on-chip memory and I/O ports provide a very high reliability because 
there exist almost no chances of loose connections or bad contacts. Finally, one of the most prominent 
characteristics is the low power consumption in which microcontrollers can be used for battery powered 
applications. 
 
Today, most semiconductor companies produce their own line of microcontrollers, ranging variety of 
capabilities of chips from 4-bit to 32-bit processors combined with different types of I/O control 
functions.  Thus, a designer must carefully choose a proper microcontroller to optimize the cost, 
performance, and other design requirements, which adds complicated decision making process. In this 
course, we will be focusing on studying  Motorola 68HC11 family microcontrollers which are most 
widely used in the industry.  Since this microcontroller includes typical capabilities of today's 
microcontrollers and simple microprocessor systems, it serves as a tool for learning fundamentals of 
today's microcomputers. 
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2. Number Systems and Arithmetic 
 
Many different number systems perhaps from the prehistoric era have been developed and evolved. 
Among them, binary number system  is one of the simplest and effective number systems, and has been 
extensively used in digital computers. Studying number systems can help understanding the basic 
computing processes and structure of computers. 
 
This section describes positional number systems. The topics include conversion of number systems, 
negative number representations, arithmetic overflow mechanism, and basic computer arithmetic. 
 
 
2.1 Positional Number Systems 
 
A good example of  positional number system is the decimal which we use in our daily lives.  Another 
example is a binary system which is used as the basic number system for all computers. In positional 
number systems, a number is represented by a string of  digits where the position of each digit is 
associated with a weight. In general, a positional number is expressed as: 
 
    
d d d d d d dm m− − − − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 2 1 0 1 2. n

b

2

 
 
       
where  is referred to as the most significant digit (MSD) and  as the least significant digit (LSD). 

Each digit position has an associated weight  where b is called the base or radix. The point in the 
middle is referred to as a radix point and is used to separate the fractional part of a number (which is in 
the right side of the radix point) from the integer part (which is in the left side of the radix point). Fraction 
is a portion of magnitude of a number which is less than unit (e.g. fraction < 1) and thus it is called a  
fraction. Let D denote the value (or magnitude) of a positional number, then D can be calculated using: 

dm−1 d n−

bi
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Example 2.1.1: Calculate the value of 245.378 
 
 

 
D = ⋅ + ⋅ + ⋅ + ⋅ + ⋅

=

− −2 8 4 8 5 8 3 8 7 8
165484375

2 1 0 1

10.
 

 
 

1- 3



A binary (base=2) number system is a special case of the positional number system and used in almost all 
digital systems and computers. In this number system, the allowable digits are only 0 and 1 which are 
called “bits”. Therefore,  the leftmost digit of a binary number is called  the most significant bit (MSB) 
and the rightmost is called the least significant bit (LSB). Because the base of binary numbers is two, bit  
bi   is associated with weight 2 . i

 
 
Example 2.1.1: Magnitude of Binary number 
   
   
11010010 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22

7 6 5 4 3 2 1= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 0

4−

 
 
  

 
11010011 1 2 1 2 0 2 1 2 0 2 0 2 1 2 1 22

3 2 1 0 1 2 3. = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅− − −

 

 
If base of a number system is larger than ten, the digits exceeding 9 are expressed using alphabets as a 
convention. For example, hexadecimal uses 1-9 and A-F; base 32  number uses 1-9 and A-V. This 
example is shown in Table 1. One may then wonder how a large-base number system such as a base-64 is 
expressed. Fortunately, we rarely use such a high-base number system because we find no real 
advantagea of using them in applications. Moreover, we can always convert them from any high-base 
number system to any other base number systems, which is the subject of the next section. 
 
 
2.2 Conversion between  bases 2k

 
The number systems with  bases have an interesting property in that the conversion between them can 
be achieved without the computation of Eq. (1). Such number systems include binary, octal, hex, and 
base-32 number systems. Note that since these number systems possess base , all numbers within these 
systems can be uniquely represented by k binary bits. For example, octal numbers can be represented by 
three bits; hex numbers can be represented by four bits, etc. This relation allows us to easily convert these 
number systems by simply grouping their binary representation with  k bits. Two examples are given in 
Example 2.2.1. 

2k

2k

        
Since the binary representation of  base numbers can be directly associated by simple grouping of k 
digit strings, the conversion from octal to hex or vice versa can be easily achieved through binary 
conversion. Example 2.2.2  illustrates this conversion steps. 

2k
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 Table 1.  Decimal, binary, hexadecimal, and base-32 Number Systems  
 

Decimal Binary Octal Hexadecimal Base-32 

0 00000 0 0 0 
1 00001 1 1 1 
2 00010 2 2 2 
3 00011 3 3 3 
4 00100 4 4 4 
5 00101 5 5 5 
6 00110 6 6 6 
7 00111 7 7 7 
8 01000 10 8 8 
9 01001 11 9 9 

10 01010 12 A A 
11 01011 13 B B 
12 01100 14 C C 
13 01101 15 D D 
14 01110 16 E E 
15 01111 17 F F 
16 10000 20 10 G 
17 10001 21 11 H 
18 10010 22 12 I 
19 10011 23 13 J 
20 10100 24 14 K 
21 10101 25 15 L 
22 10110 26 16 M 
23 10111 27 17 N 
24 11000 30 18 O 
25 11001 31 19 P 
26 11010 32 1A Q 
27 11011 33 1B R 
28 11100 34 1C S 
29 11101 35 1D T 
30 11110 36 1E U 
31 11111 37 1F V 
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Example 2.2.1: Binary to hexadecimal or octal conversion 
  

  

 

110101102 0110101102 3268

110101102 616

= =

= = D

 

 

11010010101102 11010010 1011002 322 58

11010010 10112 2 16

. .

. .

= =

= = D B

.

 

 
Example 2.2.2: octal to hexadecimal or vice versa      

 

2738 0101110112

101110112

16

=

=

= BB
 

⇒

 

 
We have seen that the conversion between numbers with power of  radix 2 can be readily achieved 
through binary expression and regrouping of bits.  This convenience led to utilization of hexadecimal (or 
octal) numbers in representing binary numbers for many computer architecture related issues. For 
example, the instruction LDAA (Load Accumulator A) of 68HC11 is encoded as the binary number 

, but for convenience of writing and reading it is usually expressed in hexadecimal , 

from which we save  time and spaces. Very often,  hexadecimal, octal and binary numbers are 
interchangeably used in the computer architecture or microprocessor related fields. 

100001102 8616
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2.3 General Position Number System Conversion 
 
This section discusses conversion of numbers from any base to any other base. Due to our familiarity and 
representation of decimal, a convenient way of base-conversion is performed through the use of decimal.  
That is, for the conversion from base-k to base-p, we first convert a base-k number to a decimal, then 
convert the decimal to a base-p number. 
 
Using Eq. (1) we can easily convert from any base to decimal by simply expressing the digits and weights 
using decimal as shown in Example 2.3.1. Therefore, this issue will not be discussed any further.  
 
 
Example 2.3.1: Base-k to decimal conversion 
 

1 816 1 163 11 162 14 161 8 160 714410

437 58 4 82 3 81 7 80 5 8 1 287 62510

bE

. .

= ⋅ + ⋅ + ⋅ + ⋅ =

= ⋅ + ⋅ + ⋅ + ⋅ − =
 

 
 
Next, we consider conversion from a decimal to a base-p number system. This process usually requires 
more computation. Let a general position number be denoted as an addition of integer and fractional part: 
 
 
    
D I F= + .         (2) 
    
Then we may express the integer part as  
  

 
I d b d b b d bp p= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + d⋅ +− −(( (( ) ) ) )1 2 1 0   (3) 

 
 
Although this formula looks complicated in a first glance, its structure is exactly the same as the integer 
part of Eq. (2) except that the weights b  is now expressed as b bk bk1 2 ⋅ ⋅ ⋅ . Example 2.3.2 illustrates 
conversion of a decimal number  5432  into the form given by Eq. (3). 

10

 
 
 Example 2.3.2: Integer expressions of positional numbers 

 
5410 5 10 4

54310 5 10 4 10 3

543210 5 10 4 10 3 10 2

= ⋅ +

= ⋅ + ⋅ +

= ⋅ + + ⋅ +

( )

(( ) )
 

1- 7



 
In this example, notice that if the last expression is divided by 10, the remainder is the least significant 
digit 2 and the quotient is (( ) )5 10 4 10 3⋅ + ⋅ + .  The next significant digit can be obtained by dividing 

 again. Due to this relation, the conversion to an arbitrary base number can be obtained by repeated 
division of quotient and collection of remainders. A simple hand-calculation method can be devised using 
the above relation. Let's express the integer division by  

53510

 
    Divisor )Dividend 
                  Quotient............Remainder 
 
Using this expression, Example 2.3.3  shows conversion from a decimal to a binary.   
 
 Example 2.3.3: Convert 179  to a binary. 10

 
    2 )179 
    2  )89  .....1   LSB 
    2  )44  .....1 
    2  )22  .....0 
    2  )11  .....0 
    2  )5    .....1     
    2  )2    .....1 
        1    .....0 
     MSB 
 
The final conversion result reads 

17910 101100112= .  

It should be noted that the above method can be extended to conversion from any base  to any base. For 
example, consider that we wish to convert a hexadecimal number to a base-5 number. Then, the base-5 
number can be directly converted by repeated division by 5. However, this direct division means, you 
must divide the base-16 number by 5, which is not a simple calculation. Thus, it is essentially wise to first 
convert the hexadecimal to a decimal, and then convert it to  base-5. 
 
Similarly to the expression of integer part in Eq. (3), fractional part can be written in the following form: 
 
   
F d d b d b b bn= + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− −

−
−

− − −( ( ( ) ) )1 2
1 1 1 1    (4) 

 
Note that multiplying b to F in Eq. (4) produces  as an part of  the product. This representation of 

number system is illustrated using Example 2.3.3. 

d−1
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Example 2.3.3: Fraction expression of positional numbers  
012 1 2 10 10

0123 1 2 3 10 10 10
01234 1 2 3 4 10 10 10 10

0 1 15 1 16 16
0 1 15 1 10 16 16 16

0 1 15 1 10 12 16 16 16 16

10
1 1

10
1 1 1

10
1 1 1 1

16
1 1

16
1 1 1

16
1 1 1 1

. ( )
. ( ( ) )

. ( ( ( ) ) )

. ( )
. ( ) )

. ( ( ) ) )

= + ⋅

= + + ⋅

= + + + ⋅

= + ⋅

= + + ⋅

= + + + ⋅

− −

− − −

− − − −

− −

− − −

− − − −

F
F A

F AC

 

 
Due to the structure described above, a fractional number expressed by decimal can be converted into a 
base “b” number by positioning the integer part from left to right after each multiplication by b, i.e., see 
Example 2.3.4. 
 
Example 2.3.4: Convert a decimal number 0.625 to binary. 
 
  0.625   0.250   0.5 
  × 2   × 2   × 2 
  ____    ____    ______ 
  1.250   0.5   1.0 
   

d− =1 1            
d− =2 0             

d− =3 1    

 
Thus, 

0 62510 01012. .=  

 
One should be careful to note that a closed form fraction in one number system does not always lead to a 
closed form in other number system. This case is illustrated in Example 2.3.4. 
 
 Example 2.3.4: Decimal to base-x conversion: Convert  to a binary. 0 710.
 0.7  0.4  0.8  0.6  0.2  0.4 
 x 2  x 2  x 2  x 2  x 2  x 2 
 ___  ___  ___  ___  ___  ___ 
 1.4  0.8  1.6  1.2  0.4  0.8 
  
d− =1 1   d− =2 0 d− =3 1 d− =4 1   d− =5 0   d− =6 0
Thus, 

0 7 0101100110011010 2. .= ⋅ ⋅ ⋅  
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This example implies that the base conversion of fractions can introduce some errors by the conversion 
process itself.  A fraction which has a repeating sequence is referred to as a repeating fraction. 
 
2.4 Negative Numbers 
 
2.4.1 Signed Magnitude Number System 
 
Negative numbers can be represented in many ways. In our daily transactions, a  signed magnitude 
system is used, where a number consists of a magnitude and a symbol indicating whether the magnitude 
is positive or negative.  For example, 
 

− + + −57 98 10001267 34534510 10 10 10, , . , . .  

 
In the above example, the symbols “+” and “-“ were used to represent the sign of a number. An 
alternative is instead of introducing new symbols adding an extra digit to represent positive and negative. 
This technique is frequently used in binary number system, e.g., bit “1" is appended at MSB to represent 
negative and bit ``0'' for positive. Example 2.4.1 illustrates this relation by 8-bit numbers with 7-bit 
magnitude and one sign-bit. 
 
 Example 2.4.1: Signed magnitude binary numbers 
 

00101101 2
10101100 2
01111111 7
11111111 7

16

16

16

16

= +
= −
= +
= −

D
D
F
F

 

 
2.4.2 Complement Number System 
 
In this number system, a negative number is determined by taking its complement as defined by the 
system. Radix complement and diminished-radix complement are the two basic methods in this system. 
 
i) Radix complement: The complement of an n-digit number is obtained by subtracting it from  
bn .  See Example 2.4.2 
 
 
 Example 2.4.2: Radix complements 
 

10's complement:1849 10000 1849 815110 10 10 10⇒ − =  

8's complement:1547 10000 1547 62318 8 8⇒ 8− =  

4's complement: 1320 10000 1320 20204 4 4⇒ 4− =  

2's complement:1010 10000 1010 01102 2 2⇒ 2− =  
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As in the above example, direct subtraction from b  is inconvenient or cumbersome to calculate. A 
simpler and easy way can be derived by modifying the subtraction as: 

n

 
b D b Dn n− = − − +( )1 1 

 
Notice that b  has the form that all digits are consist of  the highest digits in the number system. For 
example, in decimal 10 , in octal 10000

n − 1
1 999910

4
10− = 1 77778 8− = ,in binary 10000 , etc. 1 11112 2− =

 
 ii) Diminished-Radix complement:  
 
The complement of an n-digit number D is obtained by substituting it from bn − 1. This can be 
accomplished by complementing the individual digits of D without adding 1. 
 
 Example 2.4.3: 9's complement  
In decimal, the diminished-radix complement is called the 9's complement because the complement is 
obtained by independently subtracting each digit from 9. 
 

Complement of 1849 9999 1849 8150 184910 10 10 10 10⇒ − = = −   

Complement of 7932 9999 7932 2067 793210 10 10 10 10⇒ − = = −   

Complement of 0007 9999 0007 9992 000710 10 10 10 10⇒ − = = −   

 
 Example 2.4.4: 1's complement  
Similarly to the decimal case, the diminished-radix complement of a binary number is called 1's 
complement because the complement is obtained by subtracting each digit from 1. 
 

Complement of 1011 1111 1011 0100 10112 2 2 2⇒ 2− = = −   

Complement of 0101 1111 0101 1010 01012 2 2 2⇒ 2− = = −   

Complement of 0000 1111 0000 1111 00002 2 2 2⇒ 2− = = −  

 
Note from Example 2.4.4 that 1's complement is simply obtained by inverting each digit, i.e.  
1→ 0 1 and 0 .  Thus, the main advantages of 1's-complement system are its simplicity of conversion 
and symmetry of complements. However, this symmetry causes the existence of two zeros, i.e., a positive 
zero  and a negative zero 11

→

00 00⋅ ⋅ ⋅ 11⋅ ⋅ ⋅ .  Hence implementing addition of 1's complement numbers to 
digital computer system leads to significant inefficiency because the system must check for both 
representations of zeros or it must convert one to another zero.  This is the main reason why 2's 
complement number system is used for all today's digital computers, which has a unique zero ( 00 00⋅ ⋅ ⋅ ). 
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Table 2.2  4-bit Numbers in Different Signed Systems 
 

Decimal 2's Complement 1's complement Signed Magnitude 

-8 1000 - - 

-7 1001 1000 1111 

-6 1010 1001 1110 

-5 1011 1010 1101 

-4 1100 1011 1100 

-3 1101 1100 1011 

-2 1110 1101 1010 

-1 1111 1110 1001 

0 0000 1111 or 0000 1000 or 0000 

1 0001 0001 0001 

2 0010 0010 0010 

3 0011 0011 0011 

4 0100 0100 0100 

5 0101 0101 0101 

6 0110 0110 0110 

7 0111 0111 0111 

 
 
 
2.5 Signed Addition/Subtraction  
 
In signed computation, subtraction is achieved by adding the negated (i.e. complemented ) subtrahend to 
the minuend.  In hardware implementation this means that computers need only adders  but not 
subtractors. Of course the flexibility of using negative numbers provides convenience in a variety of 
computational applications, in addition to the savings in hardware.  Another important aspect of 
addition/subtraction in computer systems is the overflow errors, which are caused by the limited bit-width 
of the data path in a computer.  A detailed treatment of overflow conditions is discussed in this section. 
 
 
2.5.1 Signed Overflow  
 
If an addition or a subtraction produces a result that exceeds the range of the number system (the data 
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width allocated to the result), overflow is said to occur.  Overflow is essentially an error condition that 
requires a special treatment in order to make the current result valid.  A simple rule exists for detection of 
overflow.  Addition of two numbers with different signs can never produce overflow, but addition of two 
numbers of like sign can.  This simple rule can be used for screening the candidates of overflow 
condition. As the next step one of the following two rules can be applied, if the two addends have the 
same sign. 
 
1. An addition (same if subtraction is done by adding the complemented number)  overflows if the signs 
of the addends are the same and the sign of the sum  is different from the addends' sign. 
2. An addition overflows if the carry bits into and out of the sign position are different. 
 
The overflow detection rule is often built into a piece of hardware called an arithmetic logic unit (ALU) 
inside the computer.  The status register of ALU almost always includes a bit called the overflow-bit 
which indicates detection of an overflow condition whenever it is set. The following example illustrates 
overflowed computation for 4-bit arithmetic.  Keep in mind that the range of 4-bit number can represent is 
from -8 to +7.  Exceeding this range causes the overflow. 
 
 Example 2.5.1: Overflow examples in 4-bit computation  
 
     

               1101   (−310) 2 ( )+510      0101  2

+ −( )610    + 10102
+ ( )610    + 01102  

________ ________  ________ ________ 
    −     10111   910 2 + 1110               1010  2
 
 
    

         1101      (( )−810 2 )+710             0111  2

+ −( )810    + 10102
+ +( )710  + 01112  

________ ________   ________ ________ 

    −    10000   1610 2
+ 1410           11102

 
 
 
2.5.2  Signed subtraction  
 
Signed subtraction in most computers is done by taking 2's complement of the subtrahend and then 
adding it to the minuend following the normal rules of addition.   Overflow condition must be checked 
after the addition in order to obtain the correct computational result.  If  no overflow condition is detected, 
the correct answer of  the subtraction is obtained from the result by simply discarding the carry-out bit of 
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the MSB if a carry-out bit exists.  If an overflow condition is detected, there are two ways of dealing with 
this error.  The first approach is  simply reporting an error message that indicates the overflow condition.  
Most computers use this approach and leave the responsibility of handling the error to the user.  The 
second approach is modifying the result to a correct one by allocating more bits to the addends.  
Whenever an overflow occurs, only one more bit extension to operands is needed to express the 
overflowed number.  However, due to the fixed data width of computers, the data width is usually 
extended twice of the data width, i.e., if a single precision computation is overflowed, a double precision 
(twice the data width) is used to correct the error. 
 
Example 2.5.2:  Signed subtraction with no overflow  
Compute 0100-0011=?   
 
   i) Compute the 2's complement of 0011 : 1100 + 1 = 1101 
  ii) Add the complemented number to the minuend:  
      0100 
             +1101 
               10001  
⇒  No overflow. Discard the MSB carry-out bit 
        Correct Answer: 0001      
        
Example 2.5.3:  Signed subtraction with overflow 
 Compute 0110 - 1101 = ? 
 
  i) Compute the 2's complement of 1101 : 0010 + 1 = 0011 
  ii) Add the complemented number 0011 to the minuend:  
 
   0110  
            +0011  
   1001     |  Overflow. Report an overflow error message.  
 
  
If a correct answer is wished to be obtained instead of just giving an overflow error message, one can redo 
the operation by allocating extended bits to operands. In this example, we shall extend the computation to 
a double-precision (8-bit in this case) arithmetic.  That is, compute 00000110 - 11111101 = ?.  Notice that 
the positive number is extended by appending 0's, while the negative number is extended by appending 
1's to the MSB of the number. This is because we want to preserve the sign and magnitude of the original 
number when bits are extended.  
 
 i) Compute the 2's complement of 11111101 : 00000010 + 1 = 00000011 
  ii) Add the complemented number to the minuend:  
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    00000110   
              +00000011   
          00001001   |  No overflow.  
     
  Correct answer: 00001001    
 
 
In Example 2.5.3, the correct result was obtained by extending operands and recalculating them after 
detecting an overflow condition.  In reality, this recalculation is not necessary. The result of operation can 
be corrected by recognizing the signs of two addends  (i.e., step ii)).  In Example 2.5.3, since the two 
addends are both positive, the correct answer is obtained by appending zeros to the MSB side until all the 
extended bits are filled.  If both addends are negative, the correct answer is obtained by appending ones to 
the MSB side until all the extended bits are filled. An example for this case is illustrated in Example 
2.5.4. 
  
 
Example 2.5.4:  Signed subtraction with overflow correction 
 
Compute 1101 - 0111 = ? 
 
  i) Compute the 2's complement of 0111 : 1000 + 1 = 1001 
   ii) Add the complemented number to the minuend:  
    1101 
  +1001        
  10110 |   Overflow Error. 
 
 
    Since the final two addends are negative, the correct result is obtained by appending four ones to the 
MSB side of the 4-bit result 0110.  
Correct answer: 11110110.                                                                                                            �   
           
2.6 Unsigned Addition/Subtraction  
 
In an unsigned number system, all numbers are considered positive.  For instance, four bits in binary 
represent positive numbers from  to 15 .  This approach uses the single bit assigned for sign 

representation as a part of the magnitude, and thus twice the magnitude of the signed representation is 
achieved. 

010 10

  
 
 
 2.6.1 Unsigned Addition 
 
Since all numbers are positive in unsigned numbers, the two addends are always positive.  Hence, an 
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unsigned overflow condition occurs only if the computation produces a carry-out at the MSB of the 
allocated bit. The computation must be carried out using normal addition rules, but if an 
unsigned-overflow condition is detected, the correct answer is obtained by simply appending zeros to the 
MSB side of extended bits. 
 
 
 
 Example 6.1:  Unsigned addition 
 Compute 1100 + 1001 
         1101 
  +1001 

 10110 |   Carry-out exists. An unsigned-overflow has occurred.  
       
      Correct answer: 00010110           
 
 Example 6.2:  Unsigned addition 
 Compute 0110 + 0101 
 
    0110 
  +0101 

  1011 |     No carry-out exists. The result is correct.  
                   Note: It causes an overflow error if it was signed addition. 

  Correct answer: 1011  = 11    2 10
 
 6.2 Unsigned Subtraction 
 
In unsigned subtraction, the minuend must be larger than the subtrahend.  Otherwise, the result would 
become negative, which violates the definition of unsigned computation.  If the subtracted result is 
actually negative, an occurrence of error should be indicated.  In a computer implementation, this error 
condition is shown through a borrow bit.  If the borrow bit is set, it means that the minuend is smaller 
than the subtrahend and needs a borrow to correct the error. 
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 Example 6.3:  Unsigned subtraction   Compute 1001 - 1100 
 
 
    1001 
  -1101 
   ????  
        Answer |  Minuend is bigger than subtrahend. A borrow error (or unsigned-underflow error) has 
occurred. 
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