
Quick Learning of Visual Basic .Net for Students Who
Already Know C or Java

By Prof . Taek Kwon
Department of Electrical and Computer Engineering
University of Minnesota Duluth

The purpose of this short manual is to provide a quick learning path to programming in
Microsoft VB.Net for the students who already programming experiences in c, c++ or
other programming languages. VB.Net is a powerful programming tool on the contrary to
the name suggests, and I found that students can quickly learn the language if they had c
or Java experiences. According to my observation, the student’s learning was much faster
if the basic utility routines and classes along with an example are given. This manual was
written to provide example utilities that students can quickly lookup and modify or copy
to their programs. Unlike c, VB.net can be written much more quickly if you know many
tricks and utilities, but remembering is often the problem. Therefore, I attempted to
collect most frequently used utility routines, based on my own programming experience.

For learning more extensive list of techniques involved in VB.net programming, I
recommend students to read “Programming Microsoft Visual Basic .Net” written by
Fransesco Balena.

I will regularly update this manual, and any suggestion to improve this manual would be
appreciated. Please don’t hesitate to email me at tkwon@d.umn.edu.

Last Updated: Feb 1, 2007

 1

Table of Contents
1. BASICS .. 4

1.0 WINDOWS CONTROL PREFIX CONVENTION.. 4
1.1 FIRST FEW LINES ... 4
1.2 DECLARATIONS.. 5

1.2.1 Array Declaration.. 5
1.2.2 Constant Declaration... 6
1.2.3. String Constants.. 6
1.2.4 String manipulations.. 6
1.2.5. Date Time.. 7
1.2.6 Line Continuation .. 8
1.2.7 Structures (user defined types)... 8

1.3 OPERATORS.. 9
1.4 MATH FUNCTIONS.. 10

1.4.1 Arithmetic functions ... 10
1.4.2 Trig and inverse trig functions... 10
1.4.3 Hyperbolic trig functions ... 10
1.4.4 Constants.. 10
1.4.4 Constants.. 10

1.5 ARRAYS, COLLECTIONS AND STRUCTURE.. 10
1.5.1 Array operations .. 10
1.5.2 Jagged arrays (array of arrays) .. 11
1.5.3 ArrayList .. 11
1.5.4 Searching a value from array .. 12
1.5.5 Queue Class ... 12
1.5.6 Array of Controls ... 12
1.5.7 Structures ... 13

1.6 CONDITIONAL AND LOOP STATEMENTS ... 13
1.6.1 If-then-else Conditional statements: .. 13
1.6.2 Select Case Statement .. 14
1.6.3. For/Do loops:... 15

1.7 COMMANDS.. 15
1.8 ERROR HANDLING.. 16
1.9 STRING FUNCTIONS.. 16

2. FILES, DIRECTORIES, STREAM.. 16
2.1 FILES AND STREAM .. 16

2.1.1 Old way but convenient way of saving/retrieving binary data 16
2.1.2 Using File Stream .. 17
2.1.3 Reading and Writing from Strings ... 18

2.2 GETTING ALL OF THE FILENAMES IN A DIRECTORY ... 18
2.3 GETTING ALL OF THE DIRECTORIES IN A DIRECTORY .. 18
2.4 EXTRACTION OF PATH AND FILENAME ... 18
2.5 HOW TO CHECK EXISTENCE OF DIRECTORY... 19

 2

3. FREQUENTLY USED UTILITIES.. 19
3.1 VARIABLE TYPE CONVERSIONS(CASTING) .. 19
3.2 SPLITTING A STRING INTO AN ARRAY OF STRINGS... 20
3.3 OPENFILEDIALOG/FOLDERBROWSERDIALOG/SET ATTRIBUTES/SET ACCESS TIME 20
3.4 SCROLLING THE TEXTBOX AFTER FILLING IN TEXT ... 21
3.5 FORM-TO-FORM COMMUNICATION USING EVENTS ... 21
3.6 RUN NOTEPAD FROM A PROGRAM AT RUN TIME. .. 21
3.7 UBOUND() OF AN ARRAY.. 22

4. GENERATING AND TRAPPING EVENTS... 22
4.1 HANDLING OF WINDOWS GENERATED EVENTS.. 22
4.2 CREATING AND TRAPPING CUSTOM EVENTS.. 23

5. GDI+... 23
5.1 GRAPHICS OBJECT REFERENCE .. 24

5.1.1 Getting from the argument of event ... 24
5.1.2 Using CreateGraphics ... 24

5.2 IMAGING .. 24
5.2.1 Loading and Saving Images... 24

6. REGULAR EXPRESSION.. 25

7. THREADING.. 26

 3

1. Basics

1.0 Windows Control Prefix Convention

For easy identification of Windows form controls, (a prefix + function) is recommended
to be used for all control names. Whenever a control is placed on the form, the (name)
property should be changed to follow this convention. For example, after an Exit button
is created, its (name) property should be changed to btnExit, which clearly indicates that
it is an Exit button. This makes the code much more meaningful and readable than the
Windows default name Button1. Below summarizes the prefix conventions for windows
controls.

Windows Name Prefix
Form frm
Label lbl
Button btn
Textbox txt
Menu mnu
CheckBox chk
PictureBox pic
Panel pnl
DataGrid dg
ListBox lst
CheckedListBox clst
ComboBox cbo
ListView lv
TreeView tv
Timer tmr
OpenFileDialog ofd
SaveFileDialog sfd
FolderBrowserDialog fbd
ColorDialog cld
FontDialog fnd

1.1 First Few Lines

At the top of the program, always declare the option as “Explicit On” so that the compiler
checks for undefined variables.

Option Explicit On

 4

Name spaces are declared next. The followings are the frequently included in the name
spaces.
Imports System.Net ‘ for all network programming
Imports System.Text ‘ for binary array to ASCII or vice versa conversion routines
Imports System.IO ‘ for file operations such as stream
Imports System.Math ‘ for math functions such as sin, cos, log

1.2 Declarations

You can declare multiple variables of the same type in one line or different types by
separating each by comma.

Dim x, y, z As Single
Dim i As Integer, x As Single, s As String

Variables can be initialized where declared using an equal sign.

Dim x As Single = 100.5, Name as String = “Tony”

In VB Hexadecimal numbers are expressed using &H####.

Dim flag As Integer = &HA3CB

1.2.1 Array Declaration

If you know the number of elements, a fixed array is declared.

Dim xarray(3) As Single ‘ declares 4 elements xarray(0), xarray(1), xarray(2), xarray(3)
Dim buff(1020) As Byte ‘ declare a byte array with 1021 elements, it is important to remember
 ‘ that every array index starts from 0 and ends with the declared index.
 ‘ In this example, the buff array has elements from buff(0) to buff(1020).

If you do not know the number of elements or it is undetermined, a variable array can be
declared without defining the size. The array must be re-dimensioned using ReDim
before it is used.

Dim buff() As Byte ‘ define variable array
ReDim buff(1020) ‘ ReDim can be used many times.
ReDim Preserve buff(2040) ‘ Extend the array size while keeping the old content.

A multi-dimensional array is defined by separating each dimension by a comma.

Dim a(1,1) As Integer ‘ it allocates four elements: a(0,0), a(0,1), a(1,0), a(1,1)

For array initialization, curly braces are used.

 5

Dim A() As Integer = {1, 2, 3 ,4} ‘one dimensional array initialization
Dim B(,) As Integer = { {1, 2, 3}, {4,5,6} } ‘two dimensional array initialization

1.2.2 Constant Declaration

Constants can be declared using the “Const” statement.

Public Const myPi As Single = 3.14 ‘Declare myPi as a constant 3.14.
Area = myPi * r^2

1.2.3. String Constants

Commonly used string constants are:

VbCrLf
VbCr
VbLf
VbTab
VbRed, VbGreen, VbBlue, …

These are inherited old VB6, but they still works in .net. In the native .Net, some of these
characters are defined in the ControlChars class and can be used as:

Dim crlf As String = ControlChars.CrLf

The ControlChars class contains: Back, Cr, CrLf, FormFeed, NewLine, NullChar, Quote, Tab,
and VerticalTab.

The color constants are now in the System. Drawing class and more varieties are
available. For example, above VbRed can be replaced with:
System.Drawing.Color.Red

1.2.4 String manipulations

Insert a string into a string
s = “ABCDEF”
s = s.Insert(2, “999”) ‘ returns s = “AB999CDEF”

Pad characters
s = “56.3”
s = s.PadRight(6, “0”c) ‘ returns s = “56.300”, i.e. pads two zeros

Extract substring from the given string

 6

s.Substring(start[, length]), start is the starting index (0 is the first) to be extracted and
length is the number of characters from start. If length is omitted, the substring is
extracted to the end of the string
Dim s As String = "D34567"
s = s.Substring(1) ‘ returns s=”34567”
s = s.Substring(1, 2) ‘ returns =”34”

Another useful string function is the format of numerical numbers within a text string.
s = String.Format(“The values are {0}, {1}, {2}”, x, y, z)
s = String.Format(“The values are {0:F2}, {1:F3}”, 123.4567)
‘results: s = “The values are 123.45, 123.456”

The format is specified using {#: $} where # is the index of variables after the comma
starting 0, and $ is the formatting string. In the above case, F3 tells to print only three
digits after the decimal point. The available formatting characters are:

 G: General, formats numbers to a fixed point or exponential depending on the number

 N: Number, it converts to a comma format, e.g., 12000 becomes 12,000

 D: Decimal

 E: Scientific

 F: Fixed point

 P: Percent, 0.234 becomes 23.4%

 R: Round-trip, converts to a string containing all significant digits
 it is used when you need to recover the number with no loss
 X: Hexadecimal, converts to hex, e.g., X4: 65534 becomes FFFF

For custom formats, use the place-hold character # for digit or space and ‘0’ for digit or
0.

 {0: ##.00} ‘ it formats, for example, number 23.3456 into a string “23.34”

1.2.5. Date Time

The type “Date” includes date and time, year, month, day, hour, minute, second.
Dim d As New Date(2006, 3, 5) ‘March 5, 2006
Dim d As New Date(2006, 3, 5, 14, 20, 40) ‘March 5, 2006, 2:20:40 PM

Dim d As New Date.Now ‘Returns system date and time
Dim d As New Date.Today ‘Returns date only, and time is set 12:00:00 AM

Years, months, days, hours, minutes, seconds can be added or subtracted by a negative
number.
Dim d As New Date.Today.AddDays(1) ‘Tomorrow
Dim d As New Date.Today.AddDays(-1) ‘Yesterday

 7

It also exposes Add and Subtract methods. The object TimeSpan is convenient to use
with these methods.
Add 2 days, 5 hours, 20 minutes, and 30 seconds to Now.
Dim t2 As Date = Date.Now.Add(New TimeSpan(2, 5, 20, 30)
Conversely, time span can be computed using the subtract method.
Dim startTime As New Date(2005, 4, 6)
Dim timeTook As TimeSpan = Date.Now.Subtract(startTime)

Suppose that you wish to create a directory using today and the file name with the current
time. This can be done using a predefined variable “Now”. First, the directory is created
using:

Dim DataDir As String
DataDir = Application.StartupPath
DataDir += "\" + CStr(Now.Year) + Format(Now.Month, "00") + Format(Now.Day, "00")
 If Not Directory.Exists(DataDir) Then
 Directory.CreateDirectory(DataDir)
 End If

Next, the file is created using a binary stream as an example.
Dim st As Stream
Dim binStream As BinaryWriter
Dim filename As String
filename = Format(Now.Hour, "00") + Format(Now.Minute, "00") + Format(Now.Second, "00")
st = File.Open(DataDir + "\" + filename, FileMode.Create, FileAccess.Write)
binStream = New BinaryWriter(st)

Date and time can be printed using GMT or local time.
Dim GMT As String = Date.Now.ToUniversalTime
Dim CST As String = Data.Now.ToLocalTime

1.2.6 Line Continuation

A long line code can be broken into multiple lines by simply appending underscore “_”
where you want to break the line, e.g.,
timeMiDelta = (CDbl(txtSensorDistance.Text) * 3600) / _
 ((CDbl(txtSpeed.Text) + CDbl(txtSpeedError.Text)) * 5280)

1.2.7 Structures (user defined types)

The user defined types in old VB was created using the Type…End block. This is now
supported in .Net using the Structure…End block, but it goes more than replacement.
Structure now supports methods, and it is nearly identical to classes. A simple example is
given below.
Structure Person
 Dim FirstName As String ‘Dim means Public here
 Dim LastName As String
 Function FullName() as String
 FullName = FirstName & “ “ & LastName
 End Function
End Structure

 8

The defined structure is used as the same way as you use other types of variable, i.e.,

Dim p1 As Person

1.3 Operators

The basic arithmetic operators are same as c or c++, i.e.,

+ addition
- subtraction
* multiplication
/ division

One of the differences is in the Not Equal operation. In VB, it uses the following symbol:
<> same as “!=” in c++.

Also, “=” is used for both an assignment and for “= =” in c++.

Bit shifting of binary is done using “>>” and “<<”. However, a caution must be given,
“>>” is an arithmetic shift to right, i.e., it retains the sign bit.

Dim h as Short = &H80 ‘ h = 1000 0000 0000 0000
h >> 2 ‘ h = 1110 0000 0000 0000
h = 3 ‘ h = 0000 0000 0000 0011
h << 2 ‘ h = 0000 0000 0000 1100

Shorthand operations are same as c++:
x += 1 ‘ x = x + 1
x -= 2 ‘ x = x – 2
x *= 2 ‘ x = x * 2
x /= 10 ‘ x = x / 10

Power operations:

x = 2 ^ 3 ‘ produces x = 2 * 2 * 2
y = x ^ 2.5 ‘ produces x=5.656854

Integer mod operations:

x = 7 \ 3 ‘ produces quotient, x = 2
x = 7 Mod 3 ‘ produces remainder, x=1

 9

1.4 Math Functions

All math functions are in the following name space.
Imports System.Math

All of the available functions in .Net can be categorized in three groups.

1.4.1 Arithmetic functions
Abs, Ceiling, Floor, Min, Max, Sqrt, Exp, Log, Log10, Round, Pow, Sign, IEEERemainder

1.4.2 Trig and inverse trig functions
Sin, Cos, Tan, Asin, Acos, Atan, Atan2

1.4.3 Hyperbolic trig functions
Sinh, Cosh, Tanh

1.4.4 Constants
 E, PI

1.4.4 Constants

A random number with a seed 1234 is generated by
Dim rand As New Random(1234)
To get 100 random numbers between 100 and 1000, try
Dim randomValue As Integer
For i=1 to 100
 randomValue = rand.Next(100,1000)
Next

1.5 Arrays, Collections and Structure

1.5.1 Array operations

Empty array is checked using “Is Nothing”.

If Arr Is Nothing then
 Redim Arr(20)
End If

GetLengh(i) where i is dimension, returns the number of elements.

Dim a(2,5,7) as Integer
a.GetLength(0) ‘returns 3
a.GetLength(1) ‘returns 6
a.GetLength(2) ‘returns 7

 10

Create a copy of array using DirectCast.

Dim arr(4,3) As integer
Dim ArrayCopy(,) As Ingeter = DirectCast(arr.Clone, Integer())

Arrays can be copied partially using the Array.Copy method. In this case, the destination
array size must be bigger than the size of source array.

Dim sourceArr() as Integer = {1, 2, 3, 4, 5}
Dim destArr(20) as Integer
Array.Copy(sourceArr, destArr, 4) ‘ 4 indicates count starting from index=0
 ‘The content in destArr is now “1, 2, 3, 4, 0, 0, 0, 0, …”

The CopyTo method can be only useful if the copying array is one dimensional.

You can sort a partial elements [5,100] of an array arr(100):

Array.Sort(arr, 5, 96) ‘ 5 is the starting index, 96 is the length

You can also clear (set to 0) a part of array.
Array.Clear(arr, 10, 91) ‘ clear elements [10, 100]

Search the index of an element from an array. It is particularly useful for searching string
arrays. The search is case sensitive.

Dim strArray() As String = {“A”, “B”, “C”, “D”, “E”}
i = Array.IndexOf(strArray, “C”) ‘ i=2

1.5.2 Jagged arrays (array of arrays)

Jagged array is used when the size of array is not constant. The following is an example
of two dimensional jagged array.

“00”
“10” “11”
“20” “21” “22”

Dim arr()() As String = { New String() {“00”}, _
 New String() {“10”, “11”}, _
 New String() {“20”, “21”, “22”} }
arr(2)(1) ‘ it contains “21”
arr(1)(0) ‘ it contains “10”

1.5.3 ArrayList

ArrayList is similar to array but has collection functions. It is useful when the array size
changes as you add the elements.

Dim al As new ArrayList(100) ‘ ArrayList must be instantiated using new before it is used.
 ‘ It then allocates a default amount of elements.
al.Add(“1”) ‘ “1” is added to the list

 11

al.Add(“2”) ‘ “2” is added to the list
al.Add(“3”) ‘ “3” is added to the list
al.RemoveAt(1) ‘ “2” is removed
al.Clear ‘ empties all elements

After constructing an ArrayList, each element can be retrieved using the normal indexing
techniques of an array. The number of elements can be retrieved using the count
property.

al.Count ‘ count is not index, it is always one bigger than the last index.

1.5.4 Searching a value from array

Use the Array.IndexOf method. The search is case sensitive.
Dim sAry() as String = {“Bob”, “Joe”, “Sue”, “Ann”}
index = Array.IndexOf(sAry, “Joe”) ‘ returns index=1
index = Array.IndexOf(sAry, “Kim”) ‘ if search fails, it returns index=-1

1.5.5 Queue Class

When you need FIFO memory or need a circular queue, use the Queue class.

Dim q As New Queue(30) ‘ Set a queue with 30 elements
q.Enqueue(10)
q.Enqueue(20)
q.Enqueue(30)
‘Extract the first value
i = q.Dequeue ‘ i = 10
‘Read the next value but don’t extract
i = q.Peek ‘ i = 20
‘Extract it
i = q.Deque ‘ i = 20
‘ Check how many items are still left in the queue
i = q.Count ‘ i = 1

1.5.6 Array of Controls

Suppose that you have three labels in the form and wish to control them using an array.
The labels can be declared using a label array and the values can be set using the
SetValue method.
Dim lblPBbit As System.Windows.Forms.Label()
 ' Set the lable names as the values of array elements
 lblBit = New System.Windows.Forms.Label(2) {}
 lblBit.SetValue(lblBit0, 0)
 lblBit.SetValue(lblBit1, 1)
 lblBit.SetValue(lblBit2, 2) ‘ Can be retrieved its properties by, e.g., lblBit(2).Name

 12

From a label event, which label was clicked can be identified. The following example
toggles the label text from “0” to “1” or vice versa whenever the label is clicked.

 Dim index As Integer = lblPAbit.IndexOf(lblPAbit, sender)
 If lblPAbit(index).Text = "0" Or lblPAbit(index).Text = "" Then
 lblPAbit(index).Text = "1"
 Else
 lblPAbit(index).Text = "0"
 End If

When controls are mixture of different types, it can be identified using GetType. The
following slice of code show an example usage.

 Dim ctl As Control
 Dim strData As New ArrayList
 Dim strHeader As New ArrayList

 For Each ctl In Me.Controls
 If ctl.GetType Is GetType(Label) Then
 If IsNumeric(ctl.Text.Substring(0, 1)) Then
 strData.Add(ctl.Name + "=" + ctl.Text)
 Else
 strHeader.Add(ctl.Text)
 End If
 End If
 Next

1.5.7 Structures

Structures in general should be claimed as public and placed in a separate module, since
they define a new type of variables. The following shows an example.

Public Structure Person
 Public firstName As String
 Public lastName As String
 Public birthDate As Date
End Structure

After the structure is built, it can be used in the program as
Dim Dave As Person
Dave.firstName=”Dave”
Dave.lastName=”Johnson”
Dave.birthDate=#1/2/1980#

Methods and properties can be included in the structure similarly to classes in VB.net.
Please consult helps in the VS.

1.6 Conditional and Loop Statements

1.6.1 If-then-else Conditional statements:

 13

If a > 0 then
 MsgBox(“ a > 0”)
Elseif a < -3 then
 MsgBox (“ a < -3 and a <=0”)
Else
 MsgBox(“ 3<= a <=0”)
End If

Use a short circuit statement for more than one if conditions. From VS 2003, AndAlso
and OrElse are available.

If a1 > 0 AndAlso a1 > b then ok = True

In this case, if the first condition is OK then it tests the second condition.

If a1 > 0 OrElse Log(a1) > 3 then ok = True

1.6.2 Select Case Statement

When you need to execute one of several groups, depending on the value of an
expression, use Select-Case statements.

Dim Number As Integer = 8
Select Case Number ' Evaluate Number.
 Case 1 To 5 ' Number between 1 and 5, inclusive.
 Debug.WriteLine("Between 1 and 5")
 Case 6, 7, 8 ' Numbers 6, 7, and 8.
 Debug.WriteLine("Numbers 6, 7 and 8")
 Case 9 To 10 ' Number is 9 or 10.
 Debug.WriteLine("Greater than 8")
 Case Else ' Other values.
 Debug.WriteLine("Not between 1 and 10")
End Select

Another trick you can use is the following. Suppose that you want to select a range of
numbers for each execution, then you can use the following example.

Dim sn As Single =5.6
Select Case True
 ' The following is the only Case clause that evaluates to True.
 Case sn > 1 And sn < 5
 Debug.WriteLine("Between 1 and 5")
 Case sn > 6 And sn < 8 ' Number between 6 and 8.
 Debug.WriteLine("Between 6 and 8")
 Case sn > 9 And sn < 10 ' Number is 9 or 10.
 Debug.WriteLine("Greater than 8")
 Case Else ' Other values.
 Debug.WriteLine("Not between 1 and 10")
End Select

 14

1.6.3. For/Do loops:

Dim i, c As Integer
For i=0 to 10 ‘ 11 loops
 c += 1
Next

‘ loop index can be defined within the loop, then the scope of variable is only valid within the loop
For i as Integer = 0 to 10
 c += 1
Next

For-Each loop can be used for all of the elements in an array or a collection.

Dim ar() As Integer = {1, 2, 3}, i As Integer
For Each i in ar
 MsgBox(Cstr(i))
Next

In Do … Loop structure, While or Until tests can be added at the beginning or end.

Do While x > 0
 x = x \ 2
Loop
‘
Do
 x = x \ 2
Loop While x > 0
‘
Do
 x = x \ 2
Loop Until x < 0
‘

1.7 Commands

To run “Notepad.exe” from your program and wait until the user terminates it, use the
Shell command.

Shell (“notepad”, AppWinStyle.NormalFocus, True)

Running a Notepad this way is inconvenient, since every other function has to wait. You
can make it only wait until a certain amount of time.

‘ Run Notepad, and then wait only 5 seconds and then move on to the next statements
Dim taskID As Long
taskID = Shell(“notepad”, AppWinStyle.NormalFocus, True, 5000)
If taskID = 0 Then
 MsgBox (“Notepad was closed within 5 seconds”)

 15

Else
 MsgBox (“Notepad is still running.”)
End If

‘ Open a text file in the notepad
Shell (“notepad filename.txt”, AppWinStyle.NormalFocus, True, 100)

1.8 Error Handling

Dim x, y as Single
Try
 x = x/y
Catch ex as Exception
 MsgBox (ex.Message)
End Try

Throwing an exception

Throw New System.IO.FileNotFoundException()
‘
‘ or
Dim msg As String = “File Not Found”
Throw New System.IO.FileNotFoundException(msg)

This statement is equivalent to the old way of raising error. The following is still valid
code, but should be avoid.

Err.Raise 345, , “File not found”

1.9 String Functions

Search string
IndexOf

2. Files, Directories, Stream

Always include the following name space.

Imports System.IO

2.1 Files and Stream

2.1.1 Old way but convenient way of saving/retrieving binary data

The following code saves a simple 3x3 matrix in a binary format.
Dim fn As Integer = FreeFile()
 FileOpen(fn, Application.StartupPath & "\data.bin", OpenMode.Binary, OpenAccess.Write)
 Dim mat(,) As Integer = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

 16

 FilePut(fn, mat) ‘ Using FilePutObject(fn, mat) is better and ensures to save the object
 ‘ information
 FileClose(fn)

The saved data can be retrieved using “FileGet()”.
Dim fn As Integer = FreeFile()
 FileOpen(fn, Application.StartupPath & "\data.bin", OpenMode.Binary, OpenAccess.Read)
 Dim mat(2, 2) As Integer
 FileGet(fn, mat) ‘reads the original data back
 FileClose(fn)
 Dim i, j As Integer
 For i = 0 To 2
 For j = 0 To 2
 txt.Text &= mat(i, j) & " " ‘txt is a textbox
 Next
 txt.Text &= vbCrLf
 Next

The main caution during the retrieval should be given to the specification array
dimensions and sizes. They must exactly match with the original dimensions and sizes
stored, otherwise, it causes an error. To avoid this, you can use FilePutObject() and
FileGetObject().

2.1.2 Using File Stream

‘Read a line from a text file
Dim sr As New StreamReader(“C:\file.txt”)
Dim txtData As String = sr.ReadLine
‘You can also read until the end of file using seek
Do Until sr.Peek = -1
 txtData += sr.ReadLine
Loop
‘At the end make sure you close the stream
sr.Close()

‘Write a text file
Dim sw As New StreamWriter(Application.StartupPath + “\file.txt”)
sw.Write(“This is a test”)
sw.Close()

For reading and writing binary files, the BinaryReader and BinaryWriter classes are used.
However, unlike the text reading and writing, the short form cannot be used. A file
stream must be defined before applying the BinaryReader and BinaryWriter.
Dim st As Stream = File.Open(“C:\test.dat”, FileMode.Create, FileAccess.Write)
Dim bw As New BinaryWriter(st)

For i as Integer = 1 to 10
 bw.Write (data(i))
Next
bw.Close()

‘ Reading back the data
Dim st As Stream = File.Open(“C:\test.dat”, FileMode.Open, FileAccess.Read)

 17

Dim br As New BinaryReader(st)

Do Until br.PeekChar=-1
 data(i) = br.ReadDouble
Loop
br.Close()
st.Close()

2.1.3 Reading and Writing from Strings

Lines in a multi-line text in a long string can be read using StringReader.ReadLine.
Dim LString, s As String
Dim strR As New StringReader(LString)
Do Until strR.Peek = -1
 s = strR.ReadLine
Loop

For writing StringWriter class is used.

2.2 Getting All of the Filenames in a Directory

Following example is useful when you want to display all of the *.txt files in a directory
say, “C:\myfiles”.

For Each fname As String In Directory.GetFiles(“C:\myfiles”, “*.txt”)
 Textbox.Text = fname + vbCrLF
Next

You can easily modify file’s last write time using the file class.
File.SetCreation(fname, Date.Now)

2.3 Getting All of the Directories in a Directory

The following example shows how to get all of the directories in a given directory and
the getting files of the directory.
Dim dname, fname As String
For Each dname In Directory.GetDirectories(txtFolder.Text)
 txt1.Text += dname + vbCrLf
 For Each fname In Directory.GetFiles(dname, "*.txt")
 txt1.Text += fname + vbCrLf
 Next
Next

2.4 Extraction of Path and filename

 18

In the process of file and path handling, we often need to extract the filename or path
only from the complete path. The Path and Directory classes can be used.
‘ Assume that pathFile = “C:\MyFile\file.txt”
pathStr = Directory.GetParent(pathFile).ToString ‘pathStr=”C:\MyFile”
name = Path.GetFileName(pathFile) ‘name=”file.txt”
name = Path.GetExtension(pathFile) ‘name=”.txt”
name = Path.GetFileNameWithoutExtension(pathFile) ‘name =”file”
name = Path.Root(pathFile) ‘name=”C:\”

Path.HasExtension(pathFile) ‘returns true/false

2.5 How to Check Existence of Directory

 Suppose that you need to check existence of a directory before you create a directory.
The following example checks the directory before it creates.
 ' Create a directory if it does not exist
 Dim dirPath As String
 dirPath = Application.StartupPath + "\Daylets"
 If Not Directory.Exists(dirPath) Then
 Directory.CreateDirectory(dirPath)
 End If
 The whole directory is deleted by,
 Directory.Delete(dirPath)

3. Frequently Used Utilities

3.1 Variable Type Conversions(Casting)

There are several three different ways of converting one type to another, for example,
converting a string to an integer. The first method is using the old VB conversion routines
that are still available. These are very convenient, and I encourage you to use them.
Below are the complete list.
CBool(expression)
CByte(expression)
CChar(expression)
CDate(expression)
CDbl(expression)
CDec(expression)
CInt(expression)
CLng(expression)
CObj(expression)
CShort(expression)
CSng(expression)
CStr(expression)

and here is an example.
‘ convert string “12.5” to single 12.5
Dim s As Single = CSng(“12.5”)

 19

The second method uses the CType(expression, typename) conversion function. The
advantage is that you don’t have to remember the conversion name, but select it from the
pop up list in the editor. CType works with both reference and value types.
Dim s As Single = CType(“12.5”, Single)

The third method is using the DirectCast keyword. DirectCast only works with
references.
Dim s As Single = DirectCast (“12.5”, Single)

Since string is a reference, it works. However, the following fails.
Dim Q As Object = 2.37 ' Requires Option Strict to be Off.
Dim J As Integer = DirectCast(Q, Integer) ' Fails.
Dim I As Integer = CType(Q, Integer) ' Succeeds.

3.2 Splitting a string into an array of strings

Often we need to divide a string according to delimiters in order to control each element.
For that the Split() command is very convenient.
Dim sa() as String
Dim s as String = “d1, d2, d3”
sa = Split(s, “,”)
‘ sa then contains sa(0) = “d1” sa(1) = ”d2” sa(2)=”d3”

3.3 OpenFileDialog/FolderBrowserDialog/Set Attributes/Set Access Time

It is convenient when you want users to choose files using a built in dialog windows.
‘ This example allows users to choose files from a list of *.txt
OpenFileDialog1.Title = "Select a Inductance Signature Data File."
‘ You can display only certain types of files, e.g., *.txt or *.csv. Each choice should be entered by
‘ “|” separator, and two fields must be provided within each field, i.e., “file description | mask”.
OpenFileDialog1.Filter = "Data files (*.TXT)|*.TXT|Data files (*.csv)|*.csv"
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then
 fname = OpenFileDialog1.FileName
Else
 Exit Sub
End If

You may use the SaveFileDialog control in a similar manner.

Folder browser dialog is used to obtain the folder name.
fbDialog.SelectedPath = "C:\MyPrograms" ‘it is convenient to set the initial directory
fbDialog.ShowNewFolderButton = False ‘do not allow to create new folder
If fbDialog.ShowDialog = DialogResult.OK Then
 textbox1.Text += fbDialog.SelectedPath
 End If

 20

It will display the selected folder to the textbox.

In the following example, all of the files in the selected directory are set to read-only
attribute using the folderBrowserDialog. Attributes can be useful in handling files.
If fbDialog.ShowDialog = DialogResult.OK Then
 selectedPath = fbDialog.SelectedPath
 txtOutput.Text += selectedPath + vbCrLf 'display the list of files in that directory

 Dim fname As String
 Dim attr As FileAttributes
 For Each fname In Directory.GetFiles(selectedPath, "*.*")
 txtOutput.Text += fname + vbCrLf
 attr = File.GetAttributes(fname)
 attr = attr Or FileAttributes.ReadOnly ‘attributes are bits and must use Or to maintain
the rest of existing setting
 File.SetAttributes(fname, attr)
 Next
 End If

Another useful method is setting the last access time of the file. It can be done using:
 File.SetLastAccessTime(fname, Date.Now)

3.4 Scrolling the textbox after filling in text

Make sure to set the Scrollbars property to Vertical and use the following three lines of
code slice. It will then properly scroll the text up in the textbox.

TextBox1.SelectionStart = TextBox1.TextLength + 1
TextBox1.SelectionLength = 0
TextBox1.ScrollToCaret()

3.5 Form-to-Form Communication Using Events

Since the form traps its own events within the form class, it is tricky to trap the event of
other forms. For example, when a peripheral form is closed which collected input from
the user, we wish take an action from the main form based on the results obtained from
the peripheral form. I find that using event handling techniques work nicely for this
purpose. Read the section “4. Generating and Trapping Events” for the basic technique.

3.6 Run Notepad from a program at run time.

Use the process class. The following example opens the file in Application.StartupPath +
"\TToutput.txt" on a notepad.
Imports System.Diagnostics
 Dim proc As New Process
 proc.StartInfo.FileName = "Notepad.exe"
 proc.StartInfo.Arguments = Application.StartupPath + "\TToutput.txt"

 21

 proc.Start()

3.7 Ubound() of an array.

Frequently, you will need to know the number of elements in an array. In particular, if an
array is passes to a subroutine and does not use a fixed length, the number of elements in
the array is important information. The utility routine Ubound() provides the highest
available index of the indicated dimension. An example is given below.

 Dim Highest, MyArray(10, 15, 20), AnyArray(6) as Integer
 Highest = UBound(MyArray, 1) ' Returns 10.
 Highest = UBound(MyArray, 2) ' Returns 15
 Highest = UBound(MyArray, 3) ' Returns 20.
 Highest = UBound(AnyArray) ' Returns 6.

4. Generating and Trapping Events

4.1 Handling of Windows Generated Events

Events can be trapped using WithEvents variable. However, more simple way of dealing
with events is using EventHadler. Suppose that you wish to generate a button
dynamically inside the program. First, create a button, i.e.,

Dim btnExit As New System.Windows.Forms.Button

Next, you add event handler that processes the btnExit click event as:
AddHandler btnExit.Click, Addressof ProcBtnExit

The event handling routine can then be written using the address defined by the
AddHandler as:
Sub ProcBtnExit(ByVal sender as Object, ByVal e as EventArgs)
 Application.Exit()
End Sub

If you use the design time GUI to generate a click event, Windows generates the event
handling routine as:
Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click
 your code
End Sub

Frequently, you will find that you need to call this subroutine from other subroutines
without the users’ actual click action. If such cases arise, you can simply call this
subroutine using:
btnExt(Me, e)

 22

4.2 Creating and Trapping Custom Events

In the previous example (4.1), the event was created by Win32 control. Sometime, you
will need to create your own event and the corresponding event handler. It can be done
using the following example.

First, let’s create a class that generates an event when some data is received.
Class DataCollection
 Event GotData(ByVal data as String) ‘define event
 ‘
 ‘ Data collection unit
 Sub RecData
 ‘read it from a source such as a serial port
 Dim msg As String = ReadLineFromSerial()
 RaiseEvent GotData(msg)
 End Sub
End Class
This class is capable of generating an event whenever data is received from the serial port
assuming that ReadLineFromSerial() reads a line from the serial port. Next we need to
trap the event in the application, which can be done by adding an AddHandler.
Public Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 AddHandler dc.GotData, AddressOf OnReceive
 Timer1.Enabled = True
 End Sub
 ‘ lines of codes generated by Windows will be here

 Public dc As New DataCollection

 Private Sub OnReceive(ByVal msg As String)
 MsgBox(msg)
 End Sub
End Class

In the above example, a string was passed as a result of the event. However, you do not
have to pass a value if using a property is more efficient.

5. GDI+

 23

GDI+ is used to produce text and graphic outputs. It also deals with bitmaps and other
kind of images. In order to use GDI+, the following namespaces are used:
Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Imaging
Imports System.Drawing.Text

5.1 Graphics Object Reference

In order to draw graphics on a drawing surface, you must first get a reference to a
Graphic object. There are two approaches: (1) get a Graphics object from the argument of
an event, or (2) get a Graphics object by using the CreateGraphics method.

5.1.1 Getting from the argument of event

In a form, a paint event exposes Graphics reference. Other events do not expose the
reference to Graphics object such as the Resize event.
Private Sub Form1_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 'Get graphics object for the form's surface
 Dim gr As Graphics = e.Graphics
 gr.DrawEllipse(Pens.Red, 0, 0, Me.ClientSize.Width, Me.ClientSize.Height)
 End Sub

If you resize the form, you will notice that the drawings are distorted since repaint is not
executed again. The following solves this problem by redrawing the graph object using
another Win32 event.

5.1.2 Using CreateGraphics

If the event parameter does not expose a reference to the Graphics object, you can use the
CreateGraphics method. After using this object the graphic object must be destroyed to
save the resource.
Private Sub Form1_Resize(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MyBase.Resize
 Dim gr As Graphics = Me.CreateGraphics
 gr.DrawEllipse(Pens.Red, 0, 0, Me.ClientSize.Width, Me.ClientSize.Height)
 gr.Dispose()
 Me.Refresh()
 End Sub

Me.Refresh() is needed to activate the paint action after the drawing.

5.2 Imaging

5.2.1 Loading and Saving Images

 24

GDI+ can load images from the following formats: bitmaps (BMP), GIF, JPEG, PNG,
and TIFF.

6. Regular Expression

Imports System.Text.RegularExpressions

Regular expressions are awkward and contorted looking language, but can be useful. For
example, the following removes digits followed by an “a” character.

Dim data As String = “a1 a2 a3”
Dim rex As New Regex(“a\d”)
Writeline(rex.Replace(data, “a”)) ‘ should print, “a a a”

Suppose you wish to import data from a semicolon delimited file. The data looks like the
following line.
“Andrew”;”Fuller”;1/19/1952;”908 W. Capital Way”;”Tacoma”

Dim re As New
Regex(“””(?<fname>[^””]+)””;””(?<lname>[^””]+)””;(?<bdate>[^;]+);”&”””(?<addr>[^””]+)””;””(<city>[^”
”]+)”””
Dim ma As Match
Dim table(,) As String

i=0
For Each ma In re.Matches(fileText)

 table(i, 0) = ma.Groups(“fname”).Value
 table(i, 1) = ma.Groups(“lname”).Value
 table(i, 2) = ma.Groups(“bdate”).Value
 table(i, 3) = ma.Groups(“addr”).Value
 table(i, 4) = ma.Groups(“city”).Value
 i +=1
Next

As you see, the syntax of the regular expression looks dizzy but not overly complex.

The main syntax for the above example is:
(?<name>substr) Means, capture the substring and assign it a name. The name must
 not contain any punctuation symbols.
[^””] Means, any character except those in the list between the square
 bracket.

+ Means one or more matches

 25

The syntax of regular expressions can be easily learned, but I recommend to avoid it in
Windows programming if possible. It unnecessarily adds complexity in reading the code.

The above could have easily accomplished using simple coding as below.

Dim items() As String
items = Split(TextLine, “;”)

And then simply you could remove the unnecessary characters using the String object.

7. Threading

For writing threads, the following name space should be on the top of your program.
Imports System.Threading

Threads can be viewed as separate small programs within a program. Let’s suppose you
are acquiring data from a serial port and you wish to run that function as a thread.

Dim th As New Thread(New ThreadStart(AddressOf GetData))
th.Start() ‘run the sub GetData as a new thread
 ‘This thread, th, is terminated when it exits the GetData() sub.
 ‘If you wish to force the termination, you can issue th.Abort().
 ‘It is important to remember that threads start asynchronously, i.e., it may not
 ‘immediately start executing the sub GetData().

Somewhere in your code should have the subroutine for GetData()
Sub GetData()
 Dim s as String
 GetSerialData(s)
 PassToBuffer(s)
 Thread.CurrentThread.Sleep(10) ‘ wait for 10ms
End Sub

When you are using a thread, there is a risk that other objects may use the section of the
code or break in between the code. To ensure that only one thread use a section of code at
a time, SyncLock statements is used. For the above example, SyncLock can be placed for
the segment of getting the data and putting the data into a buffer to ensure that only one
thread executes these two routines. This removes any chance that the data is copied to a
wrong place.

Sub GetData()
 Dim s as String
 SyncLock Me
 GetSerialData(s)

 26

 PassToBuffer(s)
 End SyncLock
 Thread.CurrentThread.Sloop(10) ‘ wait for 10ms
End Sub

Another approach to synchronization is using the Mutex (mutual exclusive) class. The
Mutex class can be owned by only one thread at a time.

Dim m As New Mutex
Sub GetData()
 Dim s as String
 m.WaitOne()
 GetSerialData(s)
 PassToBuffer(s)
 m.ReleaseMutex()
 Thread.CurrentThread.Sloop(10) ‘ wait for 10ms
End Sub

 27

	Quick Learning of Visual Basic .Net for Students Who Already Know C or Java

