
To: Ted Pederson
From: Brent Eggenberger
Date: May 7, 2004
Subject: Google Sets

Introduction:

The amount of information available on the Internet today is growing very

rapidly. Through the use of Google, people are able to query this information at an

incredible speed. Although Google has an excellent search engine, the new Google Sets

have been drawing quite a bit of attention. Google Sets are designed to return a list of

related words from the user’s set of input words. The output from Google Sets can be

quite accurate. With this document, I propose to try to mimic Google Sets. I intend to

use information from Google to identify sets of related words.

Statement of Problem:

 It is often difficult to find the true meaning of a word in the English language.

The definition of a word may vary between different dictionaries. In order to add a

related word to a set, the general meaning of the other words must be known.

Discovering a new set of related words is a useful tool. It helps produce a broader

vocabulary for all writers. This project will be very similar to a thesaurus.

 Finding a solid technique to compare related words can be tough. One idea of

(Jeh and Widom 2002) is that “two objects are similar if they are related to similar

objects.” Through extensive work, these two have devised a general similarity measuring

tool called SimRank. They present their algorithm for generating a SimRank score in

their paper. I intend to use their idea of similarity in my algorithm. In a query from

Google, I think related words to the query term(s) will often appear in the first few pages.

This paper will be a valuable resource for creating a powerful algorithm in finding sets of

related words.

 Producing an efficient algorithm will inevitably rely on Google’s page ranking

procedure. Understanding how it will affect my outputs is crucial. Although it is

difficult to find Google’s exact ranking algorithm, a group from Stanford discusses a

general page ranking procedure (Page, Brin, Motwani, and Winograd 2001). Their

method incorporates how much human attention each page has received. They

demonstrate their procedure in a published paper. In general, a page receives a higher

ranking when many other pages link to it. This is called backlinking. So, if there are

multiple pages linking to page X, then page X will have a higher ranking. Having the

knowledge of what to expect from Google will help when ranking my set of possible

related words.

Plan of Action:

In order to mimic Google Sets to my best abilities, I will have to work in a series

of steps. The very first thing that needs to be completed is setting up an account with

Google to obtain a developers kit. This will give access to Google’s services, such as the

ability to perform a query inside a Perl script. The next step is to perform a query on

each of the user’s words that he/she has for input. The results from these queries will

help me find text that may contain related words. My hypothesis is that most of the

related words are going to appear in the same text as those initial words. Once I have the

results of the queries I will be able to start searching through them.

 In order to accurately find a set of related words, I propose to use the following

algorithm:

1. Perform a query on the user’s input words using the Google API.

2. Store the results of the cached pages into one text file

3. Remove any associated HTML tags from the text file.

4. Continue to remove any garbage text from the text file.

5. Apply a part of speech tag to all remaining words in the text file.

6. Record the frequency of the types in the text.

7. Apply a weight to each word, based on the cached page the word occurs in.

8. Remove words from the text that are not the same part of speech as the user’s

input words.

9. Based on the frequency and rank of each word, display the results.

 To illustrate my algorithm, I will offer an example as a means of clarification. I

use the words: red, brown, green for my input set of related words. Next, I perform a

query on the combined words (red, brown, and green). From the results, I generate one

large text file containing all of the cached pages. I proceed to remove all HTML tags. I

then filter out any garbage text. At this point, I will use Eric Brill’s part of speech tagger

and tag each word of my text. I then apply a rank to each word when recording the

frequency. If a word appears in the first returned cached page, the word frequency is

multiplied by 10. A word appearing in the second cached page will have the frequency

of each word multiplied by 9 and so on down the 10 cached pages. Next, I remove words

that are not the same part of speech as red, brown, green. I am now left with my results.

I display the resulting words according to their frequency to standard out.

Evaluation Measure:

 The task of finding related words can be very difficult using the English language.

In order to judge the accuracy of my final project, I will need to execute my program

multiple times on different sets of words. I intend to use two sources for a comparison

tool. This will include the GoogleSets web page and WordNet 2.0. The GoogleSets web

page allows a user to enter a set of related words and Google returns a new list of related

words. The WordNet 2.0 software package will be incorporated into my program. Using

a Perl module, I can access the huge database provided by WordNet. I intend to display

all relevant hypernyms and hyponyms for each input word to the user. After I have run

my program several times, I will manually test it for precision and recall on the top 25

words returned. To do this I will use the following formulas:

Recall = # of words appearing in my output that appear in GoogleSets or WN output
 total # of words in the output of GoogleSets or WN

Precision = # of words that appear in my output that appear in GoogleSets or WN
 total # of words that my program returned (25).

The higher the precision and recall, the more accurate my program performed.

Results:

I tested my program on a variety of different sets of words. To illustrate my first

example, I ran my program on three different nouns: mud, gravel, and dirt. Table 1

summarizes my results.

Table 1: mud, gravel, dirt
GoogleSets WordNet

Recall: 25.00% 9.30%
Precision: 16.00% 16.00%

These numbers indicate, even though they are low, that my program can be effective at

retrieving a set of related words. The lower numbers may be due to Eric Brill’s part of

speech tagger that I used. His tagger defaults to a noun when it can not determine a

word’s part of speech.

 My second example displays how well my program can handle proper nouns.

Tiger Woods, Phil Mickelson, and Ernie Els were used for my input set. The resulting

set of words from my program, to an extent, all pertained to golf. Table 2 summarizes

the results:

Table 2: Tiger Woods, Phil Mickelson, Ernie Els
GoogleSets WordNet

Recall: 35.42% 0.00%
Precision: 68.00% 0.00%

This set of words performed very well in comparison to GoogleSets. It was able to return

many names of professional golfers. My program does not have the capability to retain

two word phrases like Google, so it can not display a person’s whole name. Rather, the

first and last names are separated, but usually not to far away on the list. WordNet did

not prove to be a very good comparison for this set of data. The database from WordNet

tends to only contain historical or famous names.

 My final example illustrates the program’s effectiveness with verbs. Three verbs

related to the action moving were given as the input set. They included walking, running,

and swimming. Table 3 displays the results:

Table 3: walking, running, swimming
GoogleSets WordNet

Recall: 8.51% 7.41%
Precision: 16.00% 8.00%

Using a tagger, my program is limited to producing words that are the same part of

speech as the input words. In this case, I felt like it produced an excellent set of words.

The entire list was other verbs, usually words ending in ‘ing’. These numbers do not

reflect my intuition. Google, more than WordNet, returned a list that contains nouns and

adjectives. This may be the cause of the lower numbers.

Conclusion:

 I have presented a moderately accurate program that produces sets of related

words. It is able to retrieve information from Google, parse the text, apply a part of

speech tag, and display the results according to the word’s frequency. My experiments

show that it holds the qualities to be an effective program. In order to make the recall

and precision numbers higher, and better ranking algorithm needs to be devised.

Although my program does not always produce the same results as GoogleSets, most of

the time it is an effective tool for producing words that are related.

 Works Cited

L.Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing

order to the Web, Stanford University, Computer Science Dept technical report,

October 2001, http://citeseer.nj.nec.com/368196.html.

Jeh, G., and Widom, J. SimRank: a measure of structural-context similarity. Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining. July 23-26. 2002. Edmonton, Alberta, Canada

