
- 1 -

A Spelling Correction Program Based on a Noisy Channel Model

Mark D. Kernighan
Kenneth W. Church

William A. Gale

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, N.J., USA

Abstract

This paper describes a new program, correct,
which takes words rejected by the Unix spell
program, proposes a list of candidate corrections,
and sorts them by probability. The probability
scores are the novel contribution of this work.
Probabilities are based on a noisy channel model.
It is assumed that the typist knows what words he
or she wants to type but some noise is added on
the way to the keyboard (in the form of typos and
spelling errors). Using a classic Bayesian
argument of the kind that is very popular in the
speech recognition literature (Jelinek, 1985), one
can often recover the intended correction, c, from
a typo, t, by finding the correction c that
maximizes Pr(c) Pr(t c). The first factor, Pr(c),
is a prior model of word probabilities; the second
factor, Pr(t c), is a model of the noisy channel
that accounts for spelling transformations on letter
sequences (e.g., insertions, deletions, substitutions
and reversals). Both sets of probabilities were
trained on data collected from the Associated
Press (AP) newswire. This text is ideally suited
for this purpose since it contains a large number of
typos (about two thousand per month).

1. Introduction

The correct program reads a list of misspelled
words from the input stream (stdin) and prints a
set of candidate corrections for each word on the
output stream (stdout). Correct also produces a
probability along with each correction (unless
there is only one candidate correction). Here is
some sample output produced by the Unix
command, ‘‘spell < paper  correct,’’ where paper
is a text file containing the misspelled words in

column 1:

Typo Corrections_ __
deterred (100%) metered (0%) petered (0%) detered

lawyer (100%) layer (0%) lawer (0%) laywer

negotations negotiations

???1notcampaigning

progression (94%) procession (4%)
profession (2%)

progession

ususally usually

windy (69%) wink (20%) winks (7%) kinky
(2%) wonky (1%) pinky (1%) dinky (0%)
winy (0%) inky (0%)

winky
















2. Proposing Candidate Corrections

The first stage of correct finds words that differ
from the typo t by a single insertion, deletion,
substitution or reversal. For example, given the
input typo, acress, the first stage generates
candidate corrections in the table below. Thus,
the correct word actresscould be transformed by
the noisy channel into the typo acressby replacing
the t with nothing @ at position 2.2 This unusually
difficult example was selected to illustrate the four
transformations; most typo have just a few
possible corrections, and there is rarely more than
one plausible correction.

Typo Correction Transformation_ _______________________________________
acress actress @ t 2 deletion
acress cress a # 0 insertion
acress caress ac ca 0 reversal
acress access r c 2 substitution
acress across e o 3 substitution
acress acres s # 4 insertion

1. ???indicates that no correction was found.

2. The symbols @ and # represent nulls in the typo and
correction, respectively. The transformations are named
from the point of view of the correction, not the typo.

- 2 -

acress acres s # 5 insertion

3. Scoring

Each candidate correction, c, is scored by
Pr(c) Pr(t c), and then normalized by the sum of
the scores for all proposed candidates. The prior,
Pr(c), is estimated by (f req(c) + 1)/ N, where
f req(c) is the number of times that the word c
appears in the 1988 AP corpus (N = 44 million
words).3

The conditional probabilities, Pr(t c), are
computed from four confusion matrices (see
appendix): (1) del[x,y], the number of times that
the character y was deleted after the character x in
the training set, (2), add[x,y], the number of times
that y was inserted after x, (3) sub[x,y], the
number of times that y (from the correct word)
was typed as x, and (4) rev[x,y], the number of
times that xy was reversed. Probabilities are
estimated from these matrices by dividing by
chars[x,y] and chars[x], the number of times that
xyand x appeared in the training set, respectively.4

Pr(t c) ∼∼















chars[cp , cp +1]

rev[cp , cp +1]_ ______________ , if reversal

chars[cp]

sub[t p , cp]_ __________ , if substitution

chars[cp −1]

add[cp −1 , t p]_ ____________ , if insertion

chars[cp −1 , cp]

del[cp −1 , corp]_ ______________ , if deletion

The five matrices are computed with a
bootstrapping procedure. Initially assume a
uniform distribution over the possible confusions.
Then run the program over the training set (1988
AP corpus) to find corrections for the words that
spell rejects. Use these corrections to update the
confusion matrices, and iterate. The matrices are
smoothed using the Good-Turing method (Good,
1953).

3. A count of 1 is added in the numerator in order to avoid
assigning zero probability to a word. See (Gale and
Church, forthcoming) for a discussion of what’s wrong
with this.

4. The chars matrices can be easily replicated, and are
therefore omitted from the appendix.

Returning to the acress example, the seven
proposed transformations are scored by multipling
the prior probability (which is proportial to 1 +
column 4 in the table below) and the channel
probability (column 5) to form a raw score
(column 2), which are normalized to produce
probabilities (column 1). The final results is:
acres(45%), actress(37%), across(18%), access
(0%), caress(0%), cress(0%). This example is
very hard; in fact, the second choice is probably
right, as can be seen from the context: ...was
called a ‘‘stellar and versatileacress whose
combination of sass and glamour has defined
her.... The program would need a much better
prior model in order to handle this case. In the
future, a program might be able to take advantage
of the fact that actress is a considerably more
plausible than acresas an antecedent for whose.

c % Raw freq(c) Pr(t c)_ ___________________________________
actress 37% .16 1343 55./470,000
cress 0% ˜0 0 46./32,000,000
caress 0% ˜0 4 .95/580,000
access 0% ˜0 2280 .98/4,700,000
across 18% .077 8436 93./10,000,000
acres 21% .092 2879 417./13,000,000
acres 23% .098 2879 205./6,000,000

4. Evaluation

Many typos such absorbant have just one
candidate correction, but others such as adjusted
are more difficult and have multiple corrections.
The table below shows examples of typos with
less than ten candidate corrections.

Typo Corrections_ ______________________________________
0 admininistration

1 absorbant absorbent

2 adusted adjusted dusted

ambitious ambitions ambition 3 ambitios

compatibility compactability
comparability computability

4 compatability

after fate aft ate ante 5 afte

daily diary dials dial dimly dilly 6 dialy

police price voice poise pice ponce
poire

7 poice

pilots pivots riots plots pits pots pints
pious

8 piots

splash smash slash spasm stash swash
sash pash spas

9 spash

Most typos have relatively few candidate
corrections. The table below shows the number of

- 3 -

typos5 broken out by the number of corrections in
seven month-long samples of the AP newswire.
In March, for example, there were 720 typos with
0 corrections, 1120 typos with 1 correction, 269
with 2 corrections, etc. The final column shows
that there is a general trend for fewer choices,
though the 0-choice case is special. (The system
was trained on the AP wire from 2/88 - 2/89; the
results below were computed from AP wire during
3/89 - 9/89).

March April May June July Aug Sept Total_ __
0 720 604 542 606 492 465 508 3937

1 1120 997 1037 1007 958 944 930 6993

2 269 224 209 223 199 224 214 1562

3 109 92 89 101 79 87 82 639

4 58 57 62 45 43 59 43 367

5 54 41 20 26 28 24 28 221

6 35 22 19 19 22 17 23 157

7 20 11 13 7 11 15 17 94

8 19 14 14 5 7 7 16 82

9 15 11 6 11 10 8 16 77

10+ 154 97 79 75 53 77 78 613_ __
Total 2573 2170 2090 2125 1902 1927 1955 14,742


































We decided to look at the 2-candidate case in
more detail in order to test how often the top
scoring candidate agreed with a panel of three
judges. The judges were given 564 triples and a
few concordance lines:

absurb absorb absurd
financial community . *E* *S* ‘‘ It is absurb and probably

obscene for any person so engaged to und

The first word of the triple was a spell reject; the
other two were the candidates (in alphabetical
order). The judges were given a 5-way forced
choice. They could circle any one of the three
words, if they thought that was what the author
had intended. Alternatively, if they thought that
the author had intended something else, they could
write down ‘‘other’’. Finally, if they weren’t sure,
they could write ‘‘?’’. The distribution of
responses is shown in the following table.

5. For the purposes of this experiment, a typo is a lowercase
word rejected by the Unix spell program.

Judge 1 Judge 2 Judge 3_ _____________________________
choice 0 99 124 93
choice 1 188 176 167
choice 2 175 159 151
other 28 26 30
? 74 79 123_ _____________________________
total 564 564 564

The results show that spell is rejecting too many
words, since choice 0 (spell error) is selected
about 20% of the time. In these cases, correctwas
given a non-problem to correct:

acquirees acquirers acquires
be acquirers , as they have been , than acquirees . *E* *S* If

the industrials had attracted bids th

Since we were mostly concerned with evaluating
the scoring function, we didn’t want to be
distracted with errors in spell and other problems
that are beyond the scope of this paper. Therefore,
we decided to consider only those cases where at
least two judges circled one of the two candidates,
and they agreed with each other. This left 332
triples.

The following table shows that correct agrees
with the majority of the judges in 87% of the 332
cases of interest. In order to help calibrate this
result, three inferior methods are also evaluated.
The no-prior method ignores the prior probability.
The no-channel method ignores the channel
probability. Finally, the neither method ignores
both probabilities and selects the first candidate in
all cases. As the following table shows, correct is
significantly better than the three inferior
alternatives. Both the channel and the prior
probabilities provide a significant contribution,
and the combination of the two is signicantly
better than either in isolation. The second half of
the table evaluates the judges against one another
and shows that they significantly out-perform
correct, indicating that there is plenty of room for
further improvement.6 All three judges found the
task more difficult and more time consuming than
they had expected. Each judge spent about half a

6. Judges were not scored on a triple if they selected ‘‘?,’’
‘‘other’’ or ‘‘spell error’’; They were only evaluated on a
triple if they selected one of the two proposed candidates.
A triple was graded ‘‘correct’’ if it agreed with the majority
opinion, and ‘‘incorrect’’ if it did not.

- 4 -

day grading the 564 triples.

Method Discrimination σ %_ _____________________________________
correct 288/332 ± 6.2 87%
no-prior 267/332 ± 7.2 80%
prior-only 254/332 ± 7.8 77%
alphabetic 172/332 ± 9.1 52%_ _____________________________________
Judge 1 326/328 ± 1.4 99%
Judge 2 317/321 ± 2.0 99%
Judge 3 292/302 ± 3.2 97%

We were also interested in testing whether the
score predicted accuracy. Figure 1 (at the end of
this paper) shows that this is indeed so. The
horizontal axis shows the score from correct
averaged over a group of typos. The vertical axis
shows (a smooth of) the fraction of this group that
agreed with the majority opinion of the judges.
The straight line indicates perfection. As you can
see, the line corresponding to correct (labeled
with 1’s) follows the perfection line fairly well.
The other two lines show that the no-prior method
(labeled with p’s) and the no-channel method
(labeled with c’s) are not nearly as good at
predicting their own accuracy.

5. Conclusions

There have been a number of spelling correction
programs in the past such as Kucera (1988) that
generated a list of candidates by looking for
insertions, deletions, substitutions and reversals,
much as we have been doing here. Our
contribution is the emphasis on scoring. Doug
McIlroy, the author of the Unix spell program,
intentionally focused on the spelling detection
problem, and argued that spelling correction was a
bad idea so long as the corrector couldn’t separate
the plausible candidates from the implausible
ones. He felt that it was probably more distracting
than helpful to bury the user under a long list of
mostly implausible candidates. In this work, we
have attempted to show that it is possible to sort
the candidates by a likelihood function that agrees
well enough with human judges to be helpful.

In future work, we would hope to extend the prior
model to take advantage of context. We noticed
that the human judges were extremely reluctant to
cast a vote given only the information available to
the program, and that they were much more
comfortable when they could see a concordance
line or two. Perhaps our program could take
advantage of these contextual cues by adopting
very simple language modeling techniques such as

trigrams, that have proven effective for speech
recognition applications (Jelinek, 1985).
Hopefully more interesting language models
would improve performance even more.

References

Gale, W., Church, K., (forthcoming), ‘‘What’s
Wrong with Adding One?’’

Good, I.J., (1953), ‘‘The population frequencies of
species and the estimation of population
parameters,’’ Biometrika, v. 40, pp. 237-264.

Jelinek, F. (1985) ‘‘Self-organized Language
Modeling for Speech Recognition,’’ IBM Report.

Kucera, H., (1988), ‘‘Automated Word
Substitution Using Numerical Rankings of
Structural Disparity Between Misspelled Words &
Candidate Substitution Words,’’ Patent Number:
4,783,758.

McIlroy, M., (1982), ‘‘Development of a Spelling
List,’’ IEEE Transactions on Communications,
Vol. COM-30, No. 1.

- 5 -

6. Appendix: Confusion Matrices

del[X, Y] = Deletion of Y after X
X Y (Deleted Letter)

a b c d e f g h i j k l m n o p q r s t u v w x y z_ ___
a 0 7 58 21 3 5 18 8 61 0 4 43 5 53 0 9 0 98 28 53 62 1 0 0 2 0
b 2 2 1 0 22 0 0 0 183 0 0 26 0 0 2 0 0 6 17 0 6 1 0 0 0 0
c 37 0 70 0 63 0 0 24 320 0 9 17 0 0 33 0 0 46 6 54 17 0 0 0 1 0
d 12 0 7 25 45 0 10 0 62 1 1 8 4 3 3 0 0 11 1 0 3 2 0 0 6 0
e 80 1 50 74 89 3 1 1 6 0 0 32 9 76 19 9 1 237 223 34 8 2 1 7 1 0
f 4 0 0 0 13 46 0 0 79 0 0 12 0 0 4 0 0 11 0 8 1 0 0 0 1 0
g 25 0 0 2 83 1 37 25 39 0 0 3 0 29 4 0 0 52 7 1 22 0 0 0 1 0
h 15 12 1 3 20 0 0 25 24 0 0 7 1 9 22 0 0 15 1 26 0 0 1 0 1 0
i 26 1 60 26 23 1 9 0 1 0 0 38 14 82 41 7 0 16 71 64 1 1 0 0 1 7
j 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
k 4 0 0 1 15 1 8 1 5 0 1 3 0 17 0 0 0 1 5 0 0 0 1 0 0 0
l 24 0 1 6 48 0 0 0 217 0 0 211 2 0 29 0 0 2 12 7 3 2 0 0 11 0
m 15 10 0 0 33 0 0 1 42 0 0 0 180 7 7 31 0 0 9 0 4 0 0 0 0 0
n 21 0 42 71 68 1 160 0 191 0 0 0 17 144 21 0 0 0 127 87 43 1 1 0 2 0
o 11 4 3 6 8 0 5 0 4 1 0 13 9 70 26 20 0 98 20 13 47 2 5 0 1 0
p 25 0 0 0 22 0 0 12 15 0 0 28 1 0 30 93 0 58 1 18 2 0 0 0 0 0
q 0 18 0 0 0 0 0
r 63 4 12 19 188 0 11 5 132 0 3 33 7 157 21 2 0 277 103 68 0 10 1 0 27 0
s 16 0 27 0 74 1 0 18 231 0 0 2 1 0 30 30 0 4 265 124 21 0 0 0 1 0
t 24 1 2 0 76 1 7 49 427 0 0 31 3 3 11 1 0 203 5 137 14 0 4 0 2 0
u 26 6 9 10 15 0 1 0 28 0 0 39 2 111 1 0 0 129 31 66 0 0 0 0 1 0
v 9 0 0 0 58 0 0 0 31 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 0
w 40 0 0 1 11 1 0 11 15 0 0 1 0 2 2 0 0 2 24 0 0 0 0 0 0 0
x 1 0 17 0 3 0 0 1 0 0 0 0 0 0 0 6 0 0 0 5 0 0 0 0 1 0
y 2 1 34 0 2 0 1 0 1 0 0 1 2 1 1 1 0 0 17 1 0 0 1 0 0 0
z 1 0 0 0 2 0 2
@ 

































20 14 41 31 20 20 7 6 20 3 6 22 16 5 5 17 0 28 26 6 2 1 24 0 0 2

add[X, Y] = Insertion of Y after X
X Y (Inserted Letter)

a b c d e f g h i j k l m n o p q r s t u v w x y z_ ___
a 15 1 14 7 10 0 1 1 33 1 4 31 2 39 12 4 3 28 134 7 28 0 1 1 4 1
b 3 11 0 0 7 0 1 0 50 0 0 15 0 1 1 0 0 5 16 0 0 3 0 0 0 0
c 19 0 54 1 13 0 0 18 50 0 3 1 1 1 7 1 0 7 25 7 8 4 0 1 0 0
d 18 0 3 17 14 2 0 0 9 0 0 6 1 9 13 0 0 6 119 0 0 0 0 0 5 0
e 39 2 8 76 147 2 0 1 4 0 3 4 6 27 5 1 0 83 417 6 4 1 10 2 8 0
f 1 0 0 0 2 27 1 0 12 0 0 10 0 0 0 0 0 5 23 0 1 0 0 0 1 0
g 8 0 0 0 5 1 5 12 8 0 0 2 0 1 1 0 1 5 69 2 3 0 1 0 0 0
h 4 1 0 1 24 0 10 18 17 2 0 1 0 1 4 0 0 16 24 22 1 0 5 0 3 0
i 10 3 13 13 25 0 1 1 69 2 1 17 11 33 27 1 0 9 30 29 11 0 0 1 0 1
j 0 1 0 0 0 0 0
k 2 4 0 1 9 0 0 1 1 0 1 1 0 0 2 1 0 0 95 0 1 0 0 0 4 0
l 3 1 0 1 38 0 0 0 79 0 2 128 1 0 7 0 0 0 97 7 3 1 0 0 2 0
m 11 1 1 0 17 0 0 1 6 0 1 0 102 44 7 2 0 0 47 1 2 0 1 0 0 0
n 15 5 7 13 52 4 17 0 34 0 1 1 26 99 12 0 0 2 156 53 1 1 0 0 1 0
o 14 1 1 3 7 2 1 0 28 1 0 6 3 13 64 30 0 16 59 4 19 1 0 0 1 1
p 23 0 1 1 10 0 0 20 3 0 0 2 0 0 26 70 0 29 52 9 1 1 1 0 0 0
q 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
r 15 2 1 0 89 1 1 2 64 0 0 5 9 7 10 0 0 132 273 29 7 0 1 0 10 0
s 13 1 7 20 41 0 1 50 101 0 2 2 10 7 3 1 0 1 205 49 7 0 1 0 7 0
t 39 0 0 3 65 1 10 24 59 1 0 6 3 1 23 1 0 54 264 183 11 0 5 0 6 0
u 15 0 3 0 9 0 0 1 24 1 1 3 3 9 1 3 0 49 19 27 26 0 0 2 3 0
v 0 2 0 0 36 0 0 0 10 0 0 1 0 1 0 1 0 0 0 0 1 5 1 0 0 0
w 0 0 0 1 10 0 0 1 1 0 1 1 0 2 0 0 1 1 8 0 2 0 4 0 0 0
x 0 0 18 0 1 0 0 6 1 0 0 0 1 0 3 0 0 0 2 0 0 0 0 1 0 0
y 5 1 2 0 3 0 0 0 2 0 0 1 1 6 0 0 0 1 33 1 13 0 1 0 2 0
z 2 0 0 0 5 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4
@ 46 8 9 8 26 11 14 3 5 1 17 5 6 2 2 10 0 6 23 2 11 1 2 1 1 2

































- 6 -

sub[X, Y] = Substitution of X (incorrect) for Y (correct)
X Y (correct)

a b c d e f g h i j k l m n o p q r s t u v w x y z_ ___
a 0 0 7 1 342 0 0 2 118 0 1 0 0 3 76 0 0 1 35 9 9 0 1 0 5 0
b 0 0 9 9 2 2 3 1 0 0 0 5 11 5 0 10 0 0 2 1 0 0 8 0 0 0
c 6 5 0 16 0 9 5 0 0 0 1 0 7 9 1 10 2 5 39 40 1 3 7 1 1 0
d 1 10 13 0 12 0 5 5 0 0 2 3 7 3 0 1 0 43 30 22 0 0 4 0 2 0
e 388 0 3 11 0 2 2 0 89 0 0 3 0 5 93 0 0 14 12 6 15 0 1 0 18 0
f 0 15 0 3 1 0 5 2 0 0 0 3 4 1 0 0 0 6 4 12 0 0 2 0 0 0
g 4 1 11 11 9 2 0 0 0 1 1 3 0 0 2 1 3 5 13 21 0 0 1 0 3 0
h 1 8 0 3 0 0 0 0 0 0 2 0 12 14 2 3 0 3 1 11 0 0 2 0 0 0
i 103 0 0 0 146 0 1 0 0 0 0 6 0 0 49 0 0 0 2 1 47 0 2 1 15 0
j 0 1 1 9 0 0 1 0 0 0 0 2 1 0 0 0 0 0 5 0 0 0 0 0 0 0
k 1 2 8 4 1 1 2 5 0 0 0 0 5 0 2 0 0 0 6 0 0 0 4 0 0 3
l 2 10 1 4 0 4 5 6 13 0 1 0 0 14 2 5 0 11 10 2 0 0 0 0 0 0
m 1 3 7 8 0 2 0 6 0 0 4 4 0 180 0 6 0 0 9 15 13 3 2 2 3 0
n 2 7 6 5 3 0 1 19 1 0 4 35 78 0 0 7 0 28 5 7 0 0 1 2 0 2
o 91 1 1 3 116 0 0 0 25 0 2 0 0 0 0 14 0 2 4 14 39 0 0 0 18 0
p 0 11 1 2 0 6 5 0 2 9 0 2 7 6 15 0 0 1 3 6 0 4 1 0 0 0
q 0 0 1 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0 14 0 30 12 2 2 8 2 0 5 8 4 20 1 14 0 0 12 22 4 0 0 1 0 0
s 11 8 27 33 35 4 0 1 0 1 0 27 0 6 1 7 0 14 0 15 0 0 5 3 20 1
t 3 4 9 42 7 5 19 5 0 1 0 14 9 5 5 6 0 11 37 0 0 2 19 0 7 6
u 20 0 0 0 44 0 0 0 64 0 0 0 0 2 43 0 0 4 0 0 0 0 2 0 8 0
v 0 0 7 0 0 3 0 0 0 0 0 1 0 0 1 0 0 0 8 3 0 0 0 0 0 0
w 2 2 1 0 1 0 0 2 0 0 1 0 0 0 0 7 0 6 3 3 1 0 0 0 0 0
x 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
y 0 0 2 0 15 0 1 7 15 0 0 0 2 0 6 1 0 7 36 8 5 0 0 1 0 0
z 
































0 0 0 7 0 0 0 0 0 0 0 7 5 0 0 0 0 2 21 3 0 0 0 0 3 0

rev[X, Y] = Reversal of XY
X Y

a b c d e f g h i j k l m n o p q r s t u v w x y z_ ___
a 0 0 2 1 1 0 0 0 19 0 1 14 4 25 10 3 0 27 3 5 31 0 0 0 0 0
b 0 0 0 0 2 0 0 0 0 0 0 1 1 0 2 0 0 0 2 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 1 85 0 0 15 0 0 13 0 0 0 3 0 7 0 0 0 0 0
d 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0
e 1 0 4 5 0 0 0 0 60 0 0 21 6 16 11 2 0 29 5 0 85 0 0 0 2 0
f 0 0 0 0 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 4 0 0 0 2 0 0 0 0 0 0 1 0 15 0 0 0 3 0 0 3 0 0 0 0 0
h 12 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
i 15 8 31 3 66 1 3 0 0 0 0 9 0 5 11 0 1 13 42 35 0 6 0 0 0 3
j 0
k 0 0 0 0 2 0
l 11 0 0 12 20 0 1 0 4 0 0 0 0 0 1 3 0 0 1 1 3 9 0 0 7 0
m 9 0 0 0 20 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 0 0 0 0 0
n 15 0 6 2 12 0 8 0 1 0 0 0 3 0 0 0 0 0 6 4 0 0 0 0 0 0
o 5 0 2 0 4 0 0 0 5 0 0 1 0 5 0 1 0 11 1 1 0 0 7 1 0 0
p 17 0 0 0 4 0 0 1 0 0 0 0 0 0 1 0 0 5 3 6 0 0 0 0 0 0
q 0
r 12 0 0 0 24 0 3 0 14 0 2 2 0 7 30 1 0 0 0 2 10 0 0 0 2 0
s 4 0 0 0 9 0 0 5 15 0 0 5 2 0 1 22 0 0 0 1 3 0 0 0 16 0
t 4 0 3 0 4 0 0 21 49 0 0 4 0 0 3 0 0 5 0 0 11 0 2 0 0 0
u 22 0 5 1 1 0 2 0 2 0 0 2 1 0 20 2 0 11 11 2 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w 0 0 0 0 0 0 0 4 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 8 0
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
y 0 1 2 0 0 0 1 0 0 0 0 3 0 0 0 2 0 1 10 0 0 0 0 0 0 0
z 0
































