Unsupervised Context Discrimination and Cluster Stopping

Anagha Kulkarni

Department of Computer Science University of Minnesota, Duluth

What is a "Context"?

- For the purpose of this thesis which deals with written text:
 - A Sentence
 - A Paragraph
 - Complete Text from a document

More generally any unit of text per se!

What is "Context Discrimination"?

Grouping contexts based on their mutual similarity or dissimilarity.

Example:

- 1. We had a very hot summer last year.
- 2. Germany is hosting FIFA 2006.
- 3. The weather in Duluth is highly dynamic and thus hard to predict.
- 4. England is out of World Cup 2006!

Word Sense Discrimination (WSD)

- About: Ambiguous words (target or head word).
- **Task**: To group the given contexts based on the meaning of the ambiguous word.

Example:

- 1. Let us roll this sheet and bind it with a *tape*.
- 2. I prefer this brand of *tape* over any other because it binds the best.
- 3. As she sang the melodious song he recorded her on the *tape*.
- 4. As he moved forward to adjust the volume of the *tape* playing this loud song...

Name Discrimination

- **About**: People, places, organizations sharing same name (target or head word).
- **Task**: To group the given contexts based on the underlying entity of the ambiguous name.

Example:

- 1. George Miller is an Emeritus Professor of Psychology at the Princeton University and is often referred to as the father of the WordNet.
- 2. The Mad-Max movie made the Australian director, George Miller, a celebrity overnight.
- 3. George Miller is an acclaimed movie director.

Email Clustering

- About: Email grouping
- **Task**: To group the given emails based on the similarity of their contents. *Headless* Clustering! Example:
 - 1. "Hi, I'm looking for a program which is able to **display** 24 bit **images**. We are using a **Sun Sparc** equipped with **Parallax graphics** board running **X11**. Thanks in advance."
 - 2. "I currently have some **grayscale image** files that are not in any standard **format**. They simply contain the 8-bit **pixel** values. I would like to **display** these **images** on a **PC**. The conversion to a **GIF format** would be helpful. "
 - 3. "I really feel the need for a knowledgeable **hockey** observer to explain this year's **playoffs** to me. I mean, the obviously superior Toronto **team** with the best center and the best **goalie** in the **league** keeps losing."

What is "Unsupervised Context Discrimination"?

Discriminating Contexts:

- Without using any labeled/tagged data.
- Without using external knowledge resources
- Using only what is present in the contexts!
- Why?
 - To avoid the knowledge acquisition bottleneck
 - To keep the method applicable across domains
 - To keep the method applicable across languages
 - To keep the method applicable across time

Approach to WSD by Purandare & Pedersen [2004]

Based on the hypothesis of Contextual Similarity by Miller and Charles (1991):

"any two words are semantically similar to the extent that their contexts are similar"

Major contributions of this thesis

• Generalized Purandare and Pedersen [2004] approach for WSD to the broader problem of Context Discrimination.

• Introduced three measures for the cluster stopping problem.

• Introduced preliminary method of cluster labeling.

Methodology: 5 Steps

Methodology: Lexical Feature Extraction

Step1

Lexical Features

- Lexical Features: Are the words or word-pairs of a language that can be used to represent the given contexts.
- Can be selected from: the test data or a separate feature selection data.
- No external knowledge in any shape or form used.
- No syntactic information about the features used either.

Example:

Movie

Professor

Director

Psychology

Mad-Max

Princeton

Australia

WordNet

George Miller is a Emeritus **Professor** of **Psychology** at the **Princeton** University and is often referred to as the father of the **WordNet**.

Types of Lexical Features

• Unigrams: Single words.

Example: Movie, Professor, Director, Psychology...

• Bigrams: Ordered word-pairs.

Example: Movie Director, Princeton University...

• Co-occurrences: Unordered word-pairs.

Example: Director Movie, Princeton University...

• Target Co-occurrences: Unordered word-pairs of which one of the words is the target word.

Example: tape playing, binding tape...

Feature Filtering Techniques

- **Frequency cutoff:** Remove features occurring less than X times. To remove rare features.
- **Stoplisting:** To remove function words such as "the", "of", "in", "a", "an" etc.

For bigrams and co-occurrences:

- OR Mode: Remove if either of the words is a stopword.
- AND Mode: Remove only if both the words are stopwords.
- Statistical tests of association (bigrams, co-occurrences): To check if the two words in a word-pair occur together just by chance or they are truly related.

Methodology: Context Representation

Step2

Context Representation

The task of translating each textual context into a format that a computer can understand.

Example:

Context vector: C1

- Context1: George Miller is an Emeritus Professor of Psychology at the Princeton University and is often referred to as the father of the WordNet.
- Context2: The Mad-Max movie made the Australian director, George Miller, a celebrity overnight.
 Context vector: C2

First Order Context Representation (Order1)

		Movie	Professor	Director	Psychology	Mad-Max	Princeton	Australian
Contex	t1	0	1	0	1	0	1	0
Contex	t2	1	0	1	0	1	0	1

Second Order Context Representation (Order2)

Tries to go beyond the "exact match" strategy of Order1 by capturing indirect relationships.

Example

- 1. George Miller is an acclaimed movie director.
- 2. George Miller has since continued his work in the film industry.
- 3. Film director George Miller in the news for "Mad-Max".

Order2: Step1: Creating the word-by-word matrix

E 1981 :	Director	University	Mad-Max	Psychology	Industry	
Movie	1	0	0	0	0	0
Professor	0	1	0	1	0	0
Princeton	0	1	0	0	0	1
Film	1	0	0	0	1	0
Australian	1	0	1	0	0	0
Celebrity	1	0	0	0	1	0
Father	0	0	0	0	0	1
	1	0	1	0	1	0

Order2: Step2: Creating the context vectors

George Miller is an acclaimed movie director.

George Miller has since continued his work in the film industry.

Singular Value Decomposition (SVD)

Order1 matrix: M1

	Movie	Professor	Director	Psychology	Mad-Max	Princeton	Australian	University
Context1	0	1	0	0	0	1	0	1
Context2	0	0	0	1	0	1	0	1
Context3	0	1	0	1	0	0	0	0
Context4	1	0	0	0	1	0	1	0
Context5	0	0	1	0	0	0	1	1
Context6	1	0	1	0	1	0	0	0

SVD reduced matrix: M1_{reduced}

	d1	d2	d3	d4
Context1	0.7859	-0.5961	0.0579	-0.3261
Context2	0.7859	-0.5961	0.0579	-0.3261
Context3	0.3546	-0.3662	0.7115	0.7662
Context4	0.5385	0.8373	0.3087	-0.1271
Context5	0.7716	0.2139	-0.8758	0.4897
Context6	0.5385	0.8373	0.3087	-0.1271

SVD (cont.)

Order2: Step1: Word-by-word matrix: M2

	Director	University	Max	Psychology	Overnight	WordNet
Movie	1	0	0	0	0	0
Professor	0	1	0	1	0	0
Princeton	0	1	0	0	0	1
Mad	1	0	1	0	0	0
Australian	1	0	0	0	0	0
Celebrity	1	0	0	0	1	0
Father	0	0	0	0	0	1

	d1	d2	d3
Movie	-0.6360	0	0
Professor	0	-0.7933	-0.8230
Princeton	0	-0.9893	0.3663
Mad	-0.8145	0	0
Australian	-0.6360	0	0
Celebrity	-0.8145	0	0
Father	0	-0.4403	0.6600

SVD reduced matrix: M2_{reduced}

Step3

Building blocks of Cluster Stopping

• Criterion functions (crfun): Metric that the clustering algorithms use to assess and optimize the quality of the generated clusters.

• Types:

- Internal: Maximize within cluster similarity (I1, I2)
- External: Minimize between cluster similarity (E1)
- Hybrid: Internal + External (H1, H2)
- Cluster a dataset iteratively into *m* clusters and record *crfun*(*m*) values...

Contrived dataset: #contexts = 80, expected k = 4

m

Real dataset: #contexts = 900, expected k = 4 (DS)

Cluster Stopping Measures

Based on the criterion functions.

• Do not require any form of user input such as setting a threshold value.

- 3 measures:
 - PK2
 - PK3
 - Adapted Gap Statistic

$$PK2(m) = \frac{crfun(m)}{crfun(m-1)}$$

July 5, 2006

27

$$PK3(m) = \frac{2 * crfun(m)}{crfun(m-1) + crfun(m+1)}$$

July 5, 2006

28

Adapted Gap Statistic

• Based on Gap Statistic by Tibshirani et al. (2001)

• The main idea:

- Null hypothesis: H0: For the given dataset optimal k = 1.
- Alternative hypothesis: H1: For the given dataset optimal k > 1

• Algorithm:

- Generate a data for the null reference model with expected k = 1.
- Generate a plot (P_{Observed}) of crfun(m) values for the given or observed data.
- Generate a plot (P_{Reference}) of crfun(m) values for the generated reference data.
- Compare P_{Observed} with the P_{reference} and find the largest "gap" between them.
- The first point of maximum gap is the optimal *k* value!

Adapted Gap Statistic

July 5, 2006

30

Adapted Gap Statistic (cont.)

Methodology: Clustering

Step4

Clustering

- One of the primary methods of unsupervised learning.
- We support 3 types of clustering algorithms:
 - Hierarchical (e.g.: Agglomerative)
 - Partitional (e.g.: K-means)
 - Hybrid (e.g.: Repeated Bisections)
- Aim: To appropriately group the given set of context vectors into *k* clusters.

Methodology: Cluster Labeling

Step5

Cluster Labeling

- **Aim**: To identify the underlying entity for each cluster.
- Descriptive labels: Top N bigrams of that cluster.
- **Discriminating labels**: Top N bigrams unique to that cluster.
- Can use frequency or statistical tests of association (like in feature selection) to select the top N bigrams.

Cluster labels for an ambiguous name Richard Alston:

Clusters	Assigned Cluster Labels				
C0: Australian Senator	Communications Information, Media Release, Minister Communications, Information Technology				
C1: Choreographer	Artistic Director, Dance Company				

Experimental Data – 4 genre

NameConflate genre

- Name discrimination data.
- **Source**: *The New York Times* archives (Jan '02 to Dec '04)
- Method: Creating pseudo ambiguity by conflation.
- Multi-dimensional ambiguity: 2, 3, 4, 5 or 6 names.
- Distinct (e.g. "Bill Gates" & "Jason Kidd")
 - 7 datasets
- Subtle (e.g. "Bill Gates" & "Steve Jobs")
 - 6 datasets

Web genre

- Name discrimination data.
- Source: The World Wide Web using Google search engine
 - Contents from top 50 (html) pages.
 - Traversed one level deep.
- Method: Manually cleaned and annotated.
- Name variations: "Mr. Miller", "Dr. Miller", "G. Miller"...
- 5 datasets
 - Richard Alston, 2 entities, 247 contexts.
 - Sarah Connor, 2 entities, 150 contexts
 - George Miller, 3 entities, 286 contexts
 - Michael Collins, 4 entities, 333 contexts
 - **Ted Pedersen**, 4 entities, 359 contexts

Email genre

- Email Clustering data.
- Source: 20 Newsgroups dataset
 - 20, 000 USENET posting manually categorized into 20 groups.
 - e.g.: comp.graphics and rec.sport.hockey
- **Method**: Creating artificial mixing of contexts by combining posting from two or more groups.
- Multi-dimensional ambiguity: Conflated 2, 3 or 4 groups.
- **Distinct** (e.g. "sci.electronics" & "soc.religion.christian")
 - 7 datasets
- Subtle (e.g. "sci.crypt" & "sci.electronics")
 - 6 datasets

WSD genre

- Word Sense Discrimination data.
- Datasets for 4 ambiguous words: "hard", "serve", "line" and "interest".

• **Source**: The cleaned and SENSEVAL2 formatted versions of these datasets distributed by Dr. Ted Pedersen.

Experiments

Genre	Sub-genre	#datasets	#parameter-settings	Total
NameConflate Data	Distinct	7	144	1008
	Subtle	6	144	864
Email Data	Distinct	7	72	504
	Subtle	6	72	432
Word Sense Disambiguation Data	-	4	144	576
Web Data	-	5	144	720
			Total	4104

Experimental Results

Order1 and unigrams vs. Order2 and bigrams

F-measure using Order1 & unigram

NameConflate-Distinct

NameConflate-Subtle

Without SVD vs. With SVD

Email-Distinct

Repeated Bisection vs. Agglomerative Clustering

F-measure using Repeated Bisections

F-measure using Repeated Bisections

NameConflate-Subtle

NameConflate: Distinct vs. Subtle

NameConflate-Distinct

NameConflate-Subtle

Email: Distinct vs. Subtle

Email-Distinct

Email-Subtle

Cluster Stopping Results

NameConflate: k predictions

Given PK2 PK3 Gap Predicted

NameConflate-Distinct

NameConflate-Subtle

		Given								
		PK2			PK3		Gap			
Predicted	2	3	4	2	3	4	2	3	4	
1	7	4	3	8	5	7	52	46	51	
2	19	6	5	59	50	38	21	18	15	
3	28	15	17	22	18	24	14	4	8	
4	14	33	14)	7	16	7	2	5	(1)	

Web: k predictions

		Given									
		PK2			PK3		Gap				
Predicted	2	3	4	2	3	4	2	3	4		
1	3	-	2	5	1	3	71	38	78		
2	41	6	13	92	29	57	20	7	15		
3	56	13	33	26	12	24	17	4	11		
4	12	20	29	2	9	18	7	3	3		

Email: k predictions

Email-distinct

	Given									
		PK2			PK3		Gap			
Predicted	2	3	4	2	3	4	2	3	4	
1	2	-	-	2	1	1	47	22	27	
2	8	6	17	43	19	23	10	5	9	
3	27	14	10	22	11	10	12	5	4	
4	11	7	8	13	9	11	1	3	3	

Email-subtle

	Given									
		PK2			PK3		Gap			
Predicted	2	3	4	2	3	4	2	3	4	
1	-	-	-	-	1	-	32	32	24	
2	8	4	9	30	30	26	5	5	5	
3	14	21	11	14	11	17	5	7	8	
4	6	4	4	4	3	2	1	2		

WSD: k predictions

	Given									
		PK2			PK3		Gap			
Predicted	3	4	6	3	4	6	3	4	6	
1	1	2	7	4	2	15	21	21	38	
2	18	4	44	26	17	60	11	5	37	
3	15	19	21	11	16	10	4	2	7	
4	10	8	12	4	5	10	1	-	4	
5	3	5	8	1	2	4	-	2	-	
6	1	4	2	-	1	1	3	3	4	

Conclusions

- Generalized the approach of by Purandare and Pedersen [2004] for WSD
 - Name Discrimination (headed clustering)
 - Email Clustering (headless clustering)
 - Thus in general for "Context Discrimination"
- Proposed and experimented with 3 cluster stopping measures.
- PK3 exhibits maximum agreement with the given number of clusters.

Conclusions (cont.)

- Order1 and Order2 provide a complimenting pair of context representations.
- Applying SVD generally does not help our methods.
- Performance of the clustering algorithm of repeated bisections is generally comparable with agglomerative except for the subtle type of datasets.
- We also find that our methods are better equipped to deal with "distinct" type of datasets than with "subtle" type of datasets.

Related Work

- Mann and Yarowsky, CoNLL 2003.
 Perform name disambiguation based on biographical data from WWW.
- Salvador and Chan, IEEE-ICTAI 2004.
 Introduce L-method for cluster-stopping which is based on fitting lines through evaluation graphs.
- Hamerly and Elkan, NIPS 2003.
 Introduce G-means method for cluster-stopping which is based on fitting a Gaussian distribution to each cluster.

Future Work

 Comparison with Latent Semantic Analysis (LSA)

• Improving the quality of automatically generated cluster labels

Develop ensembles of cluster stopping methods

Explore the effect of automatically generated stoplists

Links

SenseClusters

Project: http://senseclusters.sourceforge.net/

Web-interface: http://marimba.d.umn.edu/cgi-bin/SC-cgi/index.cgi

- NameConflate and other Data generation utilities
 - http://www.d.umn.edu/~tpederse/tools.html
- Data and Publications
 - http://www.d.umn.edu/~tpederse/data.html
 - http://www.d.umn.edu/~tpederse/senseclusters-pubs.html