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A unifying methodology

• Dempster, Laird & Rubin (1977) unified 
many strands of apparently unrelated work 
under the banner of The EM Algorithm

• EM had gone incognito for many years
– Newcomb (1887) 
– McKendrick (1926)
– Hartley (1958)
– Baum et. al. (1970)
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A general framework for solving 
many kinds of problems 

• Filling in missing data in a sample
• Discovering the value of latent variables
• Estimating parameters of HMMs
• Estimating parameters of finite mixtures
• Unsupervised learning of clusters
• …
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EM allows us to make MLE 
under adverse circumstances

• What are Maximum Likelihood Estimates?
• What are these adverse circumstances?
• How does EM triumph over adversity?
• PANEL: When does it really work?  
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Maximum Likelihood Estimates
• Parameters describe the characteristics of a 

population. Their values are estimated from 
samples collected from that population.

• A MLE is a parameter estimate that is most 
consistent with the sampled data. It 
maximizes the likelihood function. 
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Coin Tossing!
• How likely am I to toss a head? A series of 

10 trials/tosses yields (h,t,t,t,h,t,t,h,t,t)
– (x1=3, x2=7), n=10

• Probability of tossing a head = 3/10
• That’s a MLE! This estimate is absolutely 

consistent with the observed data. 
• A few underlying details are masked… 
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Coin tossing unmasked

• Coin tossing is well described by the 
binomial distribution since there are n 
independent trials with two outcomes.

• Given 10 tosses, how likely is 3 heads?
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Maximum Likelihood Estimates

• We seek to estimate the parameter such that 
it maximizes the likelihood function. 

• Take the first derivative of the likelihood 
function with respect to the parameter theta 
and solve for 0. This value maximizes the 
likelihood function and is the MLE.
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Maximizing the likelihood 
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Multinomial MLE example

• There are n animals classified into one of 
four possible categories (Rao 1973).
– Category counts are the sufficient statistics to 

estimate multinomial parameters
• Technique for finding MLEs is the same

– Take derivative of likelihood function
– Solve for zero
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Multinomial MLE example
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Multinomial MLE example
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Multinomial MLE runs aground?
• Adversity strikes! The observed data is 

incomplete. There are really 5 categories. 
• y1 is the composite of 2 categories (x1+x2)

– p(y1)= ½ + ¼ *pi, p(x1) = ½, p(x2)= ¼* pi
• How can we make a MLE, since we can’t 

observe category counts x1 and x2?!
– Unobserved sufficient statistics!?
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EM triumphs over adversity!

• E-STEP: Find the expected values of the 
sufficient statistics for the complete data X, 
given the incomplete data Y and the current 
parameter estimates 

• M-STEP: Use those sufficient statistics to 
make a MLE as usual!
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MLE for complete data
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MLE for complete data
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E-step

• What are the sufficient statistics?
– X1 => X2 = 125 – x1  

• How can their expected value be computed?
– E [x1 | y1] = n*p(x1)

• The unobserved counts x1 and x2 are the 
categories of a binomial distribution with a 
sample size of 125. 
– p(x1) + p(x2) = p(y1) = ½ + ¼*pi
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E-Step

• E[x1|y1] = n*p(x1)
– p(x1) = ½ / (½+ ¼*pi)

• E[x2|y1] = n*p(x2)  = 125 – E[x1|y1]
– p(x2)= ¼*pi / ( ½ + ¼*pi)

• Iteration 1? Start with pi = 0.5 (this is just a 
random guess…)  
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E-Step Iteration 1

• E[x1|y1] = 125* (½ / (½+ ¼*0.5)) = 100
• E[x2|y1] = 125 – 100 = 25

• These are the expected values of the sufficient 
statistics, given the observed data and current 
parameter estimate (which was just a guess)
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M-Step iteration 1

• Given sufficient statistics, make MLEs as usual
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E-Step Iteration 2

• E[x1|y1] = 125* (½ / (½+ ¼*0.608)) = 95.86
• E[x2|y1] = 125 – 95.86 = 29.14

• These are the expected values of the sufficient 
statistics, given the observed data and current 
parameter estimate (from iteration 1)
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M-Step iteration 2

• Given sufficient statistics, make MLEs as usual
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Result?

• Converge in 4 iterations to pi=.627
– E[x1|y1] = 95.2
– E[x2|y1] = 29.8
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Conclusion
• Distribution must be appropriate to problem
• Sufficient statistics should be identifiable 

and have computable expected values
• Maximization operation should be possible
• Initialization should be good or lucky to 

avoid saddle points and local maxima

• Then…it might be safe to proceed…


