Measuring Semantic Relatedness Using a Medical Taxonomy

Siddharth Patwardhan
10/08/2003
WordNet::Similarity v0.05

- Perl implementation of measures of semantic relatedness.
- Distributed on CPAN.
- WordNet-based measures.
- Some of the measures combine the structure and content of WordNet with statistical information from corpora.
WordNet::Similarity – Implementation Details

WordNet

Text Corpus

(Word Vectors, Information Content)

Semantic Relatedness Module

Application Program
Quick Recap of the Measures

• Simple Edge Counts…
 – Leacock Chodorow.

• Information Content Based…
 – Resnik
 – Lin
 – Jiang Conrath

• Others…
 – Gloss Overlaps
 – Vector
Using a Medical Taxonomy

- A number of semantic networks, similar to WordNet, exist in the Medical Domain.
- By replacing WordNet with a semantic network like SNOMED CT or MeSH, we could measure the semantic relatedness of medical terms.
Applications

• Medical Informatics involves a great deal of text processing.
• Document Clustering.
• Retrieving relevant information.
• Ontology Construction?
Resources – SNOMED

• An ontology of clinical terms.
• Very similar to WordNet (concepts + relationships).
• Does not contain definitions.
• Predominant *is-a* hierarchy.
• Single root node.
Resources – UMLS

• An effort by NLM to provide a single complete repository medical taxonomies.
• Combine a large number of taxonomies (SNOMED, MeSH, ICD,…).
• Also, have manually created links between the nodes of different taxonomies.
Resources – Patient Data

• Hospitals like Mayo collect large amounts of patient data in the form of
 – Patient diagnoses.
 – Tests results.
 – Prescriptions, etc.

• It is plain text, since it is generated by physicians.

• Serves as a large corpus of medical text.
A Generic Interface

• Instead of making the measures SNOMED specific or WordNet specific, we create a generic interface to the measures, such that any network may be plugged in, and be used for measuring relatedness.

• All the taxonomy specific details go into the interface.
Using a Medical Taxonomy

Semantic Relatedness Measure

Application
What is the interface?

The interface is basically a Perl object, which has a set of pre-decided methods.

new()
taxonomy (CONCEPT)exists (CONCEPT)pathsToRoot (CONCEPT)depth (TAXONOMY)numberOfTaxonomies()root (TAXONOMY)version()relations()query (CONCEPT, REL)querySense (CONCEPT, REL)queryWord (CONCEPT, REL)getConcepts (TERM)getConceptList()getTerms (CONCEPT)getTermList()getError()
Snomed::Interface

- Created an interface to SNOMED.
- For term-to-concept mapping, in addition to using the terms in SNOMED, we used a database of clusters of terms mapped to concepts.
- These clusters were also used as “definitions” of concepts in some of the measures.
Using the modules

```perl
#!/usr/bin/perl -w

use Snomed::Interface;
use WordNet::Similarity::vector;

$sm = Snomed::Interface->new();
$measure = WordNet::Similarity::vector->new($sm);

$rel = $measure->getRelatedness("118170006","363708005");

($c1) = $sm->getConcepts("diabetes");
($c2) = $sm->getConcepts("blood sugar");

$rel = $measure->getRelatedness($c1, $c2);
```
Evaluation

• This is a hard task, and we have not yet evaluated the usefulness of “ported” measures.

• We made an attempt at it.

• We had a physician create a list of medical term pairs.

• We had 14 experts in the medical domain score these pairs.
Evaluation

• It turned out that the experts did not agree much on the relatedness of the pairs.

• We haven’t yet built an application that uses the measures – but this, in my mind, would be a better way to evaluate its potential in a real world task.
Future Work

- Main task to determine if the measures in the medical domain are any good at all.
- Using these in an application.
- Exploring other domains.
Conclusions

• We were able to generalize the semantic relatedness measures to the Medical Informatics field.

• We pulled apart the strong tie of the measures to WordNet.