
Appears in the Proceedings of the Fourteenth National Conference on Arti�cial Intelligence, July 1997, Providence, RIA New Supervised Learning Algorithmfor Word Sense DisambiguationTed Pedersen and Rebecca BruceDepartment of Computer Science and EngineeringSouthern Methodist UniversityDallas, TX 75275-0122fpedersen,rbruceg@seas.smu.eduAbstractThe Naive Mix is a new supervised learning algo-rithm that is based on a sequential method for se-lecting probabilistic models. The usual objective ofmodel selection is to �nd a single model that ade-quately characterizes the data in a training sample.However, during model selection a sequence of modelsis generated that consists of the best{�tting model ateach level of model complexity. The Naive Mix utilizesthis sequence of models to de�ne a probabilistic modelwhich is then used as a probabilistic classi�er to per-form word{sense disambiguation. The models in thissequence are restricted to the class of decomposablelog{linear models. This class of models o�ers a num-ber of computational advantages. Experiments dis-ambiguating twelve di�erent words show that a NaiveMix formulated with a forward sequential search andAkaike's Information Criteria rivals established super-vised learning algorithms such as decision trees (C4.5),rule induction (CN2) and nearest{neighbor classi�ca-tion (PEBLS). Introduction1In this paper, word{sense disambiguation is cast asa problem in supervised learning where a probabilisticclassi�er is induced from a corpus of sense{tagged text.Suppose there is a training sample where each sense{tagged sentence is represented by the feature variables(F1; : : : ; Fn�1; S). The sense of an ambiguous wordis represented by S and (F1; : : : ; Fn�1) represents se-lected contextual features of the sentence. Our goalis to construct a classi�er that will predict the valueof S, given an untagged sentence represented by thecontextual feature variables.We perform a systematic model search whereby aprobabilistic model is selected that describes the in-teractions among the feature variables. How well amodel characterizes the training sample is determinedby measuring the �t of the model to the sample, that is,how well the distribution de�ned by the model matchesthe distribution observed in the training sample. Such1Copyright c1997, American Association for Arti�cialIntelligence (www.aaai.org). All rights reserved.

a model can form the basis of a probabilistic classi�ersince it speci�es the probability of observing any andall combinations of the values of the feature variables.However, before this model is selected many modelsare evaluated and discarded. The Naive Mix combinessome of these models with the best{�tting model toimprove classi�cation accuracy.Suppose a training sample has N sense{tagged sen-tences. There are q possible combinations of values forthe n feature variables, where each such combinationis represented by a feature vector. Let fi and �i be thefrequency and probability of observing the ith featurevector, respectively. Then (f1; : : : ; fq) has a multino-mial distribution with parameters (N; �1; : : : ; �q). The� parameters, � = (�1; : : : ; �q), de�ne the joint proba-bility distribution of the feature variables. These arethe parameters of the fully saturated model, the modelin which the value of each variable is stochastically de-pendent on the values of all other variables. These pa-rameters can be estimated using maximum likelihoodmethods, such that the estimate of �i, b�i, is fiN .For these estimates to be reliable, each of the q pos-sible combinations of feature values must occur in thetraining sample. This is unlikely for NLP data, whichis often sparse and highly skewed (e.g. (Zipf 1935) and(Pedersen, Kayaalp, & Bruce 1996)).However, if the training sample can be adequatelycharacterized by a less complex model with fewer in-teractions between features, then more reliable param-eter estimates can be obtained. We restrict the searchto the class of decomposable models (Darroch, Lau-ritzen, & Speed 1980), since this reduces the modelsearch space and simpli�es parameter estimation.We begin with short introductions to decomposablemodels and model selection. The Naive Mix is dis-cussed, followed by a description of the sense{taggedtext used in our experiments. Experimental results aresummarized that compare the Naive Mix to a range ofother supervised learning approaches. We close with adiscussion of related work.



Decomposable ModelsDecomposable models are a subset of the class ofgraphical models (Whittaker 1990) which is in turna subset of the class of log-linear models (Bishop,Fienberg, & Holland 1975). Although there are farfewer decomposable models than log-linear models fora given set of feature variables, these classes have sub-stantially the same expressive power (Whittaker 1990).In a graphical model, variables are either interde-pendent or conditionally independent of one another.2All graphical models have a graphical representationsuch that each variable in the model is mapped to anode in the graph, and there is an undirected edgebetween each pair of nodes corresponding to interde-pendent variables. The sets of completely connectednodes, i.e. cliques, correspond to sets of interdepen-dent variables. Any two nodes that are not directlyconnected by an edge are conditionally independentgiven the values of the nodes on the path that con-nects them.Decomposable models are those graphical modelsthat express the joint distribution as the product ofthe marginal distributions of the variables in the max-imal cliques of the graphical representation, scaled bythe marginal distributions of variables common to twoor more of these maximal sets.For example, the parameter estimate b�F1 ;F2;F3;Sf1 ;f2;f3;s isthe probability that the feature vector (f1; f2; f3; s)will be observed in a training sample where eachobservation is represented by the feature variables(F1; F2; F3; S), and fi and s are speci�c values ofFi and S. Suppose that the graphical representa-tion of a decomposable model is de�ned by the twocliques, i.e. marginals, (F1; S) and (F2; F3; S). Thefrequencies of these marginals, f(F1 = f1; S = s)and f(F2 = f2; F3 = f3; S = s), are su�cient statis-tics in that they provide enough information to cal-culate maximum likelihood estimates (MLEs) of themodel parameters. The MLEs of the model param-eters are simply the marginal frequencies normalizedby the sample size N . The joint parameter estimatesare formulated from the model parameter estimates asfollows:b�F1 ;F2;F3;Sf1 ;f2;f3;s = f(F1=f1 ;S=s)N � f(F2=f2 ;F3=f3 ;S=s)Nf(S=s)N (1)Thus, it is only necessary to observe the marginals(f1; s) and (f2; f3; s) to estimate the parameter.Because their joint distributions have such closed-form expressions, the parameters can be estimated di-rectly from the training sample without the need for aniterative �tting procedure as is required, for example,to estimate the parameters of maximum entropy mod-els (e.g., (Berger, Della Pietra, & Della Pietra 1996)).2F2 and F5 are conditionally independent given S ifp(F2 = f2jF5 = f5; S = s) = p(F2 = f2jS = s).

Model SelectionModel selection integrates a search strategy and anevaluation criterion. The search strategy determineswhich decomposable models, from the set of all possi-ble decomposable models, will be evaluated during theselection process. In this paper backward sequentialsearch (BSS) and forward sequential search (FSS) areused. Sequential searches evaluate models of increasing(FSS) or decreasing (BSS) levels of complexity, wherecomplexity, c, is de�ned by the number of edges in thegraphical representation of the model. The evaluationcriterion judges how well the model characterizes thedata in the training sample. We use Akaike's Infor-mation Criteria (AIC) (Akaike 1974) as the evaluationcriterion based on the results of an extensive compari-son of search strategies and selection criteria for modelselection reported in (Pedersen, Bruce, &Wiebe 1997).Search StrategyBSS begins by designating the saturated model as thecurrent model. A saturated model has complexity levelc = n(n�1)2 , where n is the number of feature variables.At each stage in BSS we generate the set of decom-posable models of complexity level c � 1 that can becreated by removing an edge from the current modelof complexity level c. Each member of this set is ahypothesized model and is judged using the evaluationcriterion to determine which model results in the leastdegradation in �t from the current model|that modelbecomes the current model and the search continues.At each stage in the selection procedure, the currentmodel is the best{�tting model found for complexitylevel c. The search stops when either (1) every hypoth-esized model results in an unacceptably high degrada-tion in �t or (2) the current model has a complexitylevel of zero.FSS begins by designating the model for indepen-dence as the current model. The model for indepen-dence has complexity level of zero since there are nointeractions among the feature variables. At each stagein FSS we generate the set of decomposable models ofcomplexity level c + 1 that can be created by addingan edge to the current model of complexity level c.Each member of this set is a hypothesized model andis judged using the evaluation criterion to determinewhich model results in the greatest improvement in �tfrom the current model|that model becomes the cur-rent model and the search continues. The search stopswhen either (1) every hypothesized model results in anunacceptably small increase in �t or (2) the currentmodel is saturated.For sparse samples FSS is a natural choice since earlyin the search the models are of low complexity. Thenumber of model parameters is small and they can bemore reliably estimated from the training data. On theother hand, BSS begins with a saturated model whoseparameter estimates are known to be unreliable.



During both BSS and FSS, model selection also per-forms feature selection. If a model is selected wherethere is no edge connecting a feature variable to theclassi�cation variable then that feature is not relevantto the classi�cation being performed and is removedfrom the model.Evaluation CriteriaAkaike's Information Criteria (AIC) is an alternativeto using a pre-de�ned signi�cance level to judge theacceptability of a model. AIC rewards good model �tand penalizes models with large numbers of parametersvia the following de�nition:AIC = G2 � 2� dof (2)Model �t is measured by the Log{likelihood ratiostatistic G2. The parameter penalty is expressed as2�dof where dof is the adjusted degrees of freedom ofthe model being evaluated. The adjusted dof is equalto the number of model parameters that can be esti-mated from the training sample. The Log-likelihoodratio statistic is de�ned as:G2 = 2� qXi=1 fi � log fiei (3)where fi and ei are the observed and expected countsfor the ith feature vector, respectively. The observedcount fi is simply the frequency in the training sample.The expected count ei is the count in the distributionde�ned by the model. The smaller the value of G2 thebetter the �t of the hypothesized model.During BSS the hypothesized model with the largestnegative AIC value is selected as the current model, i.e.the best{�tting model, of complexity level c� 1, whileduring FSS the hypothesized model with the largestpositive AIC value is selected as the current model ofcomplexity level c+1. The �t of all hypothesized mod-els is judged to be unacceptable when the AIC valuesfor those models are greater than zero in the case ofBSS, or less than zero in the case of FSS.The Naive MixThe Naive Mix is based on the premise that the best{�tting model found at each level of complexity duringa sequential search has important information that canbe exploited for word{sense disambiguation. A NaiveMix is a probabilistic classi�er based on the average ofthe distributions de�ned by the best{�tting models ateach complexity level.Sequential model selection results in a sequence ofdecomposable models (m1;m2; : : : ;mr�1;mr) wherem1 is the initial model and mr is the �nal model se-lected. Each model mi was designated as the currentmodel at the ith stage in model selection. During FSSm1 is the model for independence where all featurevariables are independent and there are no edges inthe graphical representation of the model. During BSS

m1 is the saturated model where all variables are com-pletely dependent and edges connect every node in thegraphical representation of the model.A Naive Mix is formulated as the average of thejoint probability distributions de�ned by each model inthe sequence (m1;m2; : : : ;mr�1;mr) generated duringmodel selection:b�(F1 ;:::;Fn�1 ;S)average = 1r rXi=1 b�(F1;:::;Fn�1 ;S)mi (4)where b�(F1 ;:::;Fn�1 ;S)mi represents the joint parameterestimates formulated from the parameters of the de-composable model mi.The averaged joint distribution is de�ned by the av-erage joint parameters and used as the basis of a proba-bilistic classi�er. Suppose we wish to classify a featurevector having values (f1; f2; : : : ; fn�1; S) where the un-known sense is represented by the variable S. The fea-ture vector (f1; : : : ; fn�1) represents the values of theobserved contextual features. S takes the sense valuethat has the highest probability of occurring with theobserved contextual features, as de�ned by the param-eter estimates:S = argmaxs b�(F1 ;F2;:::;Fn�1 ;S)averagef1 ;f2;:::;fn�1 ;s (5)We prefer the use of FSS over BSS for formulat-ing a Naive Mix. FSS incrementally builds on thestrongest interactions while BSS incrementally elimi-nates the weakest interactions. As a result, the in-termediate models generated during BSS may containirrelevant interactions.Experimental DataThe sense{tagged text used in these experiments isthat described in (Bruce, Wiebe, & Pedersen 1996)and consists of every sentence from the ACL/DCI WallStreet Journal corpus that contains any of the nounsinterest, bill, concern, and drug, any of the verbs close,help, agree, and include, or any of the adjectives chief,public, last, and common.The extracted sentences were manually tagged withsenses de�ned in the Longman Dictionary of Con-temporary English (LDOCE). The number of possiblesenses for each word as well as the number of sense{tagged training sentences and held{out test sentencesfor each word are shown in Figure 2.A sentence with an ambiguous word is representedby a feature set with three types of contextual featurevariables, one morphological feature describing the am-biguous word, four part{of-speech (POS) features de-scribing the surrounding words, and three collocationbased features.The morphological feature is binary for nouns, in-dicating if the noun is plural or not. For verbs itindicates the tense of the verb. This feature is notused for adjectives. Each of the four POS feature vari-ables can have one of 25 possible POS tags. These



C1 C2 C3agree million that tobill auction discount treasurychief economist executive o�cerclose at cents tradingcommon million sense shareconcern about million thatdrug company FDA generichelp him not theninclude are be ininterest in percent ratelast month week yearpublic going o�ering schoolFigure 1: Collocation{speci�c variablestags are derived from the �rst letter of the tags in theACL/DCI WSJ corpus. There are four POS featurevariables representing the POS of the two words imme-diately preceding and following the ambiguous word.The three binary collocation-speci�c feature variablesindicate whether or not a particular word occurs in thesame sentence as the ambiguous word. These colloca-tions are shown in Figure 1. They were selected fromamong the 400 words that occurred most frequentlyin the sentences containing the ambiguous word. Thethree words chosen were found to be the most indica-tive of the sense of the ambiguous word using a testfor independence.Experimental ResultsThe success of a learning algorithm when applied toa particular problem depends on how appropriate theassumptions made in formulating the algorithm are forthe data in that problem. The assumptions implicit inthe formulation of a learning algorithm result in a bias,a preference for one generalized representation of thetraining sample over another.In these experiments we use the following nine di�er-ent methods to disambiguate each of the 12 ambiguouswords. Below, we briey describe each algorithm.Majority classi�er: The performance of a proba-bilistic classi�er should not be worse than the major-ity classi�er which assigns to each ambiguous word themost frequently occurring sense in the training sample.Naive Bayes classi�er (Duda & Hart 1973): Aprobabilistic classi�er based on a model where the fea-tures (F1; F2; : : : ; Fn�1) are all conditionally indepen-dent given the value of the classi�cation variable S.p(SjF1; F2; : : : ; Fn�1) = n�1Yi=1 p(FijS) (6)This classi�er is most accurate when the model for con-ditional independence �ts the data.PEBLS (Cost & Salzberg 1993): A k nearest{neighbor algorithm where classi�cation is performed

by assigning a test instance to the majority class ofthe k closest training examples. In these experimentswe used k = 1, i.e. each test instance is assigned thetag of the single most similar training instance, and allfeatures were weighted equally. With these parametersettings, PEBLS is a standard nearest{neighbor classi-�er and is most appropriate for data where all featuresare relevant and equally important for classi�cation.C4.5 (Quinlan 1992): A decision tree algorithm inwhich classi�cation rules are formulated by recursivelypartitioning the training sample. Each nested parti-tion is based on the feature value that provides thegreatest increase in the information gain ratio for thecurrent partition. The �nal partitions correspond to aset of classi�cation rules where the antecedent of eachrule is a conjunction of the feature values used to formthe corresponding partition. The method is biased to-ward production of simple trees, trees with the fewestpartitions, where classi�cation is based on the smallestnumber of feature values.CN2 (Clark & Niblett 1989): A rule induction al-gorithm that selects rules that cover the largest possi-ble subsets of the training sample as measured by theLaplace error estimate. This method is biased towardsthe selection of simple rules that cover as many train-ing instances as possible.FSS/BSS AIC: A probabilistic classi�er based onthe single best{�tting model selected using FSS or BSSwith AIC as the evaluation criterion. Both proceduresare biased towards the selection of models with thesmallest number of interactions.FSS/BSS AIC Naive Mix: A probabilistic classi-�er based on the averaged joint probability distributionof the sequence of models, (m1;m2; : : : ;mr�1;mr),generated during FSS AIC or BSS AIC sequentialsearch. Each model, mi, generated during FSS AIC isformulated by potentially extending the feature set ofthe previous model mi�1. Each model, mi, generatedduring BSS AIC is formulated by potentially decreas-ing the feature set of the previous model mi�1. Bothmethods are biased towards the classi�cation prefer-ences of the most informative features, those includedin the largest number of models in the sequence.Figure 2 reports the accuracy of each method ap-plied to the disambiguation of each of the 12 words.The highest accuracy achieved for each word is in boldface. At the bottom of the table, the average accuracyof each method is stated along with a summary com-parison of the performance of each method to FSS AICNaive Mix. The row designated win{tie{loss states thenumber of words for which the accuracy of FSS AICNaive Mix was greater than (win), equal to (tie), orless than (loss) the method in that column.C4.5, FSS AIC Naive Mix, and Naive Bayes havethe highest average accuracy. However, the di�erencebetween the most accurate, C4.5, and the least accu-rate, PEBLS, is only 2.4 percent. In a word-by-wordcomparison, C4.5 most often achieves the highest ac-



FSS AIC BSS AICword/ # train/ Majority Naive FSS Naive BSS Naive# senses # test classi�er Bayes PEBLS C4.5 CN2 AIC Mix AIC Mixagree/3 1356/141 .766 .936 .922 .957 .943 .936 .957 .922 .922bill/3 1335/134 .709 .866 .851 .881 .881 .858 .888 .851 .828chief/2 1036/112 .875 .964 .964 .982 .964 .964 .973 .964 .955close/6 1534/157 .682 .834 .860 .828 .822 .841 .803 .841 .854common/6 1111/115 .870 .913 .904 .922 .896 .896 .904 .896 .922concern/4 1488/149 .651 .872 .819 .839 .859 .826 .846 .839 .852drug/2 1217/122 .672 .828 .770 .812 .795 .812 .828 .844 .787help/4 1398/139 .727 .748 .777 .791 .813 .791 .791 .791 .806include/2 1558/163 .933 .951 .951 .969 .969 .945 .969 .939 .933interest/6 2368/244 .521 .738 .717 .783 .713 .734 .734 .742 .738last/3 3180/326 .939 .926 .948 .957 .939 .929 .939 .942 .948public/7 867/89 .506 .584 .539 .584 .517 .528 .539 .517 .562average .738 .847 .835 .859 .843 .838 .848 .841 .842win{tie{loss 11-1-0 6-1-5 8-2-2 3-3-6 7-1-4 9-2-1 7-1-4 5-0-7Figure 2: Disambiguation Accuracycuracy of all methods. FSS AIC fares most poorly inthat it is never the most accurate of all the methods.The win{tie{loss summary shows that FSS AICNaive Mix compares most favorably to PEBLS andFSS AIC, and fares least well against C4.5 and BSSAIC Naive Mix. The high number of losses relative toBSS AIC Naive Mix is an interesting contrast to thelower average accuracy and word-by-word performanceof that method. But it highlights the competitive per-formance of BSS AIC Naive Mix on this data set.FSS AIC Naive Mix, FSS AIC, C4.5 and CN2 allperform a general{to{speci�c search that adds featuresto their representation of the training sample based onsome measure of information content increase. Thesemethods all perform feature selection and have a biastowards simpler models. The same is true of BSS AICand BSS AIC Naive Mix which perform a speci�c{to{general search for the simplest model. All of thesemethods can su�er from fragmentation with sparsedata. Fragmentation occurs when the rules or modelare complex, incorporating a large number of featurevalues to describe a small number of training instances.When this occurs, there is inadequate support in thetraining data for the inference being speci�ed by themodel or rule. FSS AIC Naive Mix was designed toreduce the e�ects of fragmentation in a general{to{speci�c search by averaging the distributions of highcomplexity models with those of low complexity mod-els that include only the most relevant features.Nearest{neighbor approaches such as PEBLS arewell{suited to making classi�cations that require theuse of the full feature set as long as all features areindependent and relevant. Neither the Naive Bayesclassi�er nor PEBLS perform a search to create a rep-resentation of the training sample. The Naive Bayesspeci�es the form of a model in which all features are

used in classi�cation but, as in PEBLS, their interde-pendencies are not considered. Weights are assignedto features via parameter estimates from the trainingsample. These weights allow some discounting of lessrelevant features. As implemented here, PEBLS storesall instances of the training sample and treats eachfeature independently and equally, making it more sus-ceptible to misclassi�cation due to irrelevant features.As shown in (Bruce, Wiebe, & Pedersen 1996), all ofthe features used in these experiments are good indica-tors of the classi�cation variable, although not equallyso. The lower accuracy of PEBLS relative to NaiveBayes indicates that some weighting is appropriate.Related WorkSequential model selection using decomposable mod-els was �rst applied to word{sense disambiguationin (Bruce & Wiebe 1994). The Naive Mix extendsthat work by considering an entire sequence of modelsrather than just the best{�tting model.Comparative studies of machine learning algorithmsapplied to word{sense disambiguation are relativelyrare. (Leacock, Towell, & Voorhees 1993) compares aneural network, a Naive Bayes classi�er, and a con-tent vector when disambiguating six senses of line.They report that all three methods are equally accu-rate. (Mooney 1996) utilizes this same data and ap-plies an even wider range of approaches comparing aNaive Bayes classi�er, a perceptron, a decision{tree,a nearest{neighbor classi�er, a logic based DisjunctiveNormal Form learner, a logic based Conjunctive Nor-mal Form learner, and a decision list learner. He �ndsthe Naive Bayes classi�er and the perceptron to be themost accurate of these approaches.The feature set in both studies of the line data wasvery di�erent than ours. Binary features represent the



occurrence of all words within approximately a 50 wordwindow of the ambiguous word, resulting in nearly3,000 binary features. It is perhaps not surprising thata simple model, such as Naive Bayes, would provide amanageable representation of such a large feature set.PEBLS was �rst applied to word{sense disambigua-tion in (Ng & Lee 1996). Using the same sense{taggedtext for interest as used in this paper, they draw com-parisons between PEBLS and a probabilistic classi�erbased on the best{�tting single model found during amodel search (Bruce & Wiebe 1994). They �nd thatthe combination of PEBLS and a broader set of fea-tures leads to signi�cant improvements in accuracy.In recognition of the uncertainty in model selection,there has been a recent trend in model selection re-search away from the selection of a single model (e.g.,(Madigan & Raftery 1994)); the Naive Mix reects thistrend. A similar trend exists in machine learning basedon the supposition that no learning algorithm is supe-rior for all tasks. This supposition has lead to hy-brid approaches that combine various methods (e.g.,(Domingos 1996)) and approaches that select the mostappropriate learning algorithm based on the character-istics of the training data (e.g., (Brodley 1995)).ConclusionThe Naive Mix extends existing statistical model se-lection by taking advantage of intermediate modelsdiscovered during the selection process. Features areselected during a systematic model search and thenappropriately weighted via averaged parameter esti-mates. Experimental evidence suggests that the NaiveMix results in a probabilistic model that is usuallya more accurate classi�er than one based on a sin-gle model selected during a sequential search. It alsoproves to be competitive with a diverse set of super-vised learning algorithms such as decision trees, ruleinduction, and nearest{neighbor classi�cation.AcknowledgmentsThis research was supported by the O�ce of NavalResearch under grant number N00014-95-1-0776.ReferencesAkaike, H. 1974. A new look at the statistical modelidenti�cation. IEEE Transactions on Automatic Con-trol AC-19(6):716{723.Berger, A.; Della Pietra, S.; and Della Pietra,V. 1996. A maximum entropy approach to natu-ral language processing. Computational Linguistics22(1):39{71.Bishop, Y.; Fienberg, S.; and Holland, P. 1975. Dis-crete Multivariate Analysis. Cambridge, MA: TheMIT Press.Brodley, C. 1995. Recursive automatic bias selectionfor classi�er construction. Machine Learning 20:63{94.

Bruce, R., and Wiebe, J. 1994. Word-sense disam-biguation using decomposable models. In Proceedingsof the 32nd Annual Meeting of the Association forComputational Linguistics, 139{146.Bruce, R.; Wiebe, J.; and Pedersen, T. 1996. Themeasure of a model. In Proceedings of the Conferenceon Empirical Methods in Natural Language Process-ing, 101{112.Clark, P., and Niblett, T. 1989. The CN2 inductionalgorithm. Machine Learning 3(4):261{283.Cost, S., and Salzberg, S. 1993. A weighted near-est neighbor algorithm for learning with symbolic fea-tures. Machine Learning 10(1):57{78.Darroch, J.; Lauritzen, S.; and Speed, T. 1980.Markov �elds and log-linear interaction models forcontingency tables. The Annals of Statistics 8(3):522{539.Domingos, P. 1996. Unifying instance{based andrule{based induction. Machine Learning 24:141{168.Duda, R., and Hart, P. 1973. Pattern Classi�cationand Scene Analysis. New York, NY: Wiley.Leacock, C.; Towell, G.; and Voorhees, E. 1993.Corpus-based statistical sense resolution. In Proceed-ings of the ARPA Workshop on Human LanguageTechnology, 260{265.Madigan, D., and Raftery, A. 1994. Model selec-tion and accounting for model uncertainty in graphi-cal models using Occam's Window. Journal of Amer-ican Statistical Association 89:1535{1546.Mooney, R. 1996. Comparative experiments on dis-ambiguatingword senses: An illustration of the role ofbias in machine learning. In Proceedings of the Con-ference on Empirical Methods in Natural LanguageProcessing, 82{91.Ng, H., and Lee, H. 1996. Integrating multipleknowledge sources to disambiguate word sense: Anexemplar-based approach. In Proceedings of the 34thAnnual Meeting of the Society for Computational Lin-guistics, 40{47.Pedersen, T.; Bruce, R.; and Wiebe, J. 1997. Sequen-tial model selection for word sense disambiguation. InProceedings of the Fifth Conference on Applied Nat-ural Language Processing.Pedersen, T.; Kayaalp, M.; and Bruce, R. 1996. Sig-ni�cant lexical relationships. In Proceedings of theThirteenth National Conference on Arti�cial Intelli-gence, 455{460.Quinlan, J. 1992. C4.5: Programs for Machine Learn-ing. San Mateo, CA: Morgan Kaufmann.Whittaker, J. 1990. Graphical Models in Applied Mul-tivariate Statistics. New York: John Wiley.Zipf, G. 1935. The Psycho-Biology of Language.Boston, MA: Houghton Mi�in.


