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Abstract

The Naive Mix is a new supervised learning algo-
rithm that is based on a sequential method for se-
lecting probabilistic models. The usual objective of
model selection is to find a single model that ade-
quately characterizes the data in a training sample.
However, during model selection a sequence of models
is generated that consists of the best—fitting model at
each level of model complexity. The Naive Mix utilizes
this sequence of models to define a probabilistic model
which is then used as a probabilistic classifier to per-
form word—sense disambiguation. The models in this
sequence are restricted to the class of decomposable
log-linear models. This class of models offers a num-
ber of computational advantages. Experiments dis-
ambiguating twelve different words show that a Naive
Mix formulated with a forward sequential search and
Akaike’s Information Criteria rivals established super-
vised learning algorithms such as decision trees (C4.5),
rule induction (CN2) and nearest-neighbor classifica-

tion (PEBLS).

Introduction’

In this paper, word-sense disambiguation 1s cast as
a problem in supervised learning where a probabilistic
classifier is induced from a corpus of sense-tagged text.
Suppose there is a training sample where each sense—
tagged sentence is represented by the feature variables
(Fy,...,Fa_1,5). The sense of an ambiguous word
is represented by S and (Fy, ..., F,_1) represents se-
lected contextual features of the sentence. Our goal
1s to construct a classifier that will predict the value
of S, given an untagged sentence represented by the
contextual feature variables.

We perform a systematic model search whereby a
probabilistic model is selected that describes the in-
teractions among the feature variables. How well a
model characterizes the training sample is determined
by measuring the fit of the model to the sample, that is,
how well the distribution defined by the model matches
the distribution observed in the training sample. Such
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a model can form the basis of a probabilistic classifier
since it specifies the probability of observing any and
all combinations of the values of the feature variables.
However, before this model is selected many models
are evaluated and discarded. The Naive Mix combines
some of these models with the best—fitting model to
improve classification accuracy.

Suppose a training sample has N sense-tagged sen-
tences. There are ¢ possible combinations of values for
the n feature variables, where each such combination
is represented by a feature vector. Let f; and 8; be the
frequency and probability of observing the i'? feature
vector, respectively. Then (f1,..., f;) has a multino-
mial distribution with parameters (N, 01,...,6,). The
6 parameters, § = (01,...,0,), define the joint proba-
bility distribution of the feature variables. These are
the parameters of the fully saturated model, the model
in which the value of each variable is stochastically de-
pendent on the values of all other variables. These pa-
rameters can be estimated using maximum likelihood

methods, such that the estimate of 6;, 6;, is {V—’

For these estimates to be reliable, each of the ¢ pos-
sible combinations of feature values must occur in the
training sample. This is unlikely for NLP data, which
is often sparse and highly skewed (e.g. (Zipf 1935) and
(Pedersen, Kayaalp, & Bruce 1996)).

However, if the training sample can be adequately
characterized by a less complex model with fewer in-
teractions between features, then more reliable param-
eter estimates can be obtained. We restrict the search
to the class of decomposable models (Darroch, Lau-
ritzen, & Speed 1980), since this reduces the model
search space and simplifies parameter estimation.

We begin with short introductions to decomposable
models and model selection. The Naive Mix is dis-
cussed, followed by a description of the sense-tagged
text used in our experiments. Experimental results are
summarized that compare the Naive Mix to a range of
other supervised learning approaches. We close with a
discussion of related work.



Decomposable Models

Decomposable models are a subset of the class of
graphical models (Whittaker 1990) which is in turn
a subset of the class of log-linear models (Bishop,
Fienberg, & Holland 1975). Although there are far
fewer decomposable models than log-linear models for
a given set of feature variables, these classes have sub-
stantially the same expressive power (Whittaker 1990).

In a graphical model, variables are either interde-
pendent or conditionally independent of one another.?
All graphical models have a graphical representation
such that each variable in the model is mapped to a
node in the graph, and there is an undirected edge
between each pair of nodes corresponding to interde-
pendent variables. The sets of completely connected
nodes, i.e. cliques, correspond to sets of interdepen-
dent variables. Any two nodes that are not directly
connected by an edge are conditionally independent
given the values of the nodes on the path that con-
nects them.

Decomposable models are those graphical models
that express the joint distribution as the product of
the marginal distributions of the variables in the max-
imal cliques of the graphical representation, scaled by
the marginal distributions of variables common to two
or more of these maximal sets. N

For example, the parameter estimate Hilf;f}f;’s 18

the probability that the feature vector (f1, fa, f3,5)
will be observed in a training sample where each
observation is represented by the feature variables
(Fy, Fa2, F5,5), and f; and s are specific values of
F; and S. Suppose that the graphical representa-
tion of a decomposable model is defined by the two
cliques, i.e. marginals, (F1,S) and (Fs, F5,S5). The
frequencies of these marginals, f(F, = fi,5 = s)
and f(Fy = fa, F5 = f3,5 = s), are sufficient statis-
tics in that they provide enough information to cal-
culate maximum likelihood estimates (MLEs) of the
model parameters. The MLEs of the model param-
eters are simply the marginal frequencies normalized
by the sample size N. The joint parameter estimates
are formulated from the model parameter estimates as
follows:

F(F1=f1,5=5) « f(Fa=f2,F3=f3,5=s)
N N

F(S=s) (1)

N

oF1,Fo F5,8
fi,f2,08,8

Thus, it 1s only necessary to observe the marginals
(f1,8) and (f2, f3,s) to estimate the parameter.
Because their joint distributions have such closed-
form expressions, the parameters can be estimated di-
rectly from the training sample without the need for an
iterative fitting procedure as is required, for example,
to estimate the parameters of maximum entropy mod-
els (e.g., (Berger, Della Pietra, & Della Pietra 1996)).

2F, and Fy are conditionally independent given S if

p(F2 = f2|F5 = f5,S = S) = p(F2 = f2|S = S).

Model Selection

Model selection integrates a search strategy and an
evaluation criterion. The search strategy determines
which decomposable models, from the set of all possi-
ble decomposable models, will be evaluated during the
selection process. In this paper backward sequential
search (BSS) and forward sequential search (FSS) are
used. Sequential searches evaluate models of increasing
(FSS) or decreasing (BSS) levels of complexity, where
complexity, ¢, is defined by the number of edges in the
graphical representation of the model. The evaluation
criterion judges how well the model characterizes the
data in the training sample. We use Akaike’s Infor-
mation Criteria (AIC) (Akaike 1974) as the evaluation
criterion based on the results of an extensive compari-
son of search strategies and selection criteria for model
selection reported in (Pedersen, Bruce, & Wiebe 1997).

Search Strategy

BSS begins by designating the saturated model as the
current model. A saturated model has complexity level
c=" n2—1 , where n 1s the number of feature variables.
At each stage in BSS we generate the set of decom-
posable models of complexity level ¢ — 1 that can be
created by removing an edge from the current model
of complexity level ¢. Each member of this set 1s a
hypothesized model and is judged using the evaluation
criterion to determine which model results in the least
degradation in fit from the current model—that model
becomes the current model and the search continues.
At each stage in the selection procedure, the current
model is the best—fitting model found for complexity
level ¢. The search stops when either (1) every hypoth-
esized model results in an unacceptably high degrada-
tion in fit or (2) the current model has a complexity
level of zero.

FSS begins by designating the model for indepen-
dence as the current model. The model for indepen-
dence has complexity level of zero since there are no
interactions among the feature variables. At each stage
in FSS we generate the set of decomposable models of
complexity level ¢ + 1 that can be created by adding
an edge to the current model of complexity level e.
Each member of this set is a hypothesized model and
is judged using the evaluation criterion to determine
which model results in the greatest improvement in fit
from the current model—that model becomes the cur-
rent model and the search continues. The search stops
when either (1) every hypothesized model results in an
unacceptably small increase in fit or (2) the current
model is saturated.

For sparse samples FSS is a natural choice since early
in the search the models are of low complexity. The
number of model parameters is small and they can be
more reliably estimated from the training data. On the
other hand, BSS begins with a saturated model whose
parameter estimates are known to be unreliable.



During both BSS and FSS, model selection also per-
forms feature selection. If a model is selected where
there is no edge connecting a feature variable to the
classification variable then that feature is not relevant
to the classification being performed and is removed
from the model.

Evaluation Criteria

Akaike’s Information Criteria (AIC) is an alternative
to using a pre-defined significance level to judge the
acceptability of a model. AIC rewards good model fit
and penalizes models with large numbers of parameters
via the following definition:

AIC = G* — 2 x dof (2)

Model fit 1s measured by the Log-likelihood ratio
statistic G?. The parameter penalty is expressed as
2 x dof where dof is the adjusted degrees of freedom of
the model being evaluated. The adjusted dof is equal
to the number of model parameters that can be esti-
mated from the training sample. The Log-likelihood
ratio statistic is defined as:

q
GZ:QXZfixlogg (3)

i=1

where f; and e; are the observed and expected counts
for the #** feature vector, respectively. The observed
count f; is simply the frequency in the training sample.
The expected count e; is the count in the distribution
defined by the model. The smaller the value of G? the
better the fit of the hypothesized model.

During BSS the hypothesized model with the largest
negative AIC value is selected as the current model, i.e.
the best—fitting model, of complexity level ¢ — 1, while
during FSS the hypothesized model with the largest
positive AIC value is selected as the current model of
complexity level ¢+ 1. The fit of all hypothesized mod-
els is judged to be unacceptable when the AIC values
for those models are greater than zero in the case of
BSS, or less than zero in the case of FSS.

The Naive Mix

The Naive Mix 1s based on the premise that the best—
fitting model found at each level of complexity during
a sequential search has important information that can
be exploited for word—sense disambiguation. A Naive
Mix 1s a probabilistic classifier based on the average of
the distributions defined by the best—fitting models at
each complexity level.

Sequential model selection results in a sequence of
decomposable models (mq,ma,...,myr_1,m;) where
my 1s the initial model and m, is the final model se-
lected. Each model m; was designated as the current
model at the 5% stage in model selection. During FSS
my 1s the model for independence where all feature
variables are independent and there are no edges in
the graphical representation of the model. During BSS

my 1s the saturated model where all variables are com-
pletely dependent and edges connect every node in the
graphical representation of the model.

A Naive Mix is formulated as the average of the
joint probability distributions defined by each model in
the sequence (my,ma, ..., my_1, m,) generated during
model selection:

AFL Pt S)yuerage — lzg(Fl,...,Fn_l,S)ml (1)
ri—l

where g1 Fn=150m, represents the joint parameter
estimates formulated from the parameters of the de-
composable model m;.

The averaged joint distribution is defined by the av-
erage joint parameters and used as the basis of a proba-
bilistic classifier. Suppose we wish to classify a feature
vector having values (f1, fa, ..., fa—1,5) where the un-
known sense is represented by the variable S. The fea-
ture vector (f1,..., fn—1) represents the values of the
observed contextual features. S takes the sense value
that has the highest probability of occurring with the
observed contextual features, as defined by the param-
eter estimates:

argmaz ~(Fy Py, Frn_1,5)average
so= TRTE I 0

We prefer the use of FSS over BSS for formulat-
ing a Naive Mix. FSS incrementally builds on the
strongest interactions while BSS incrementally elimi-
nates the weakest interactions. As a result, the in-
termediate models generated during BSS may contain
irrelevant interactions.

Experimental Data

The sense-tagged text used in these experiments is
that described in (Bruce, Wiebe, & Pedersen 1996)
and consists of every sentence from the ACL/DCI Wall
Street Journal corpus that contains any of the nouns
interest, bill, concern, and drug, any of the verbs close,
help, agree, and include, or any of the adjectives chief,
public, last, and common.

The extracted sentences were manually tagged with
senses defined in the Longman Dictionary of Con-
temporary English (LDOCE). The number of possible
senses for each word as well as the number of sense—
tagged training sentences and held—out test sentences
for each word are shown in Figure 2.

A sentence with an ambiguous word is represented
by a feature set with three types of contextual feature
variables, one morphological feature describing the am-
biguous word, four part-of-speech (POS) features de-
scribing the surrounding words, and three collocation
based features.

The morphological feature is binary for nouns, in-
dicating if the noun is plural or not. For verbs it
indicates the tense of the verb. This feature is not
used for adjectives. Each of the four POS feature vari-
ables can have one of 25 possible POS tags. These



Ch C Cs
agree million that to
bill auction discount | treasury
chief economist | executive | officer
close at cents trading
common | million sense share
concern | about million that
drug company | FDA generic
help him not then
include are be n
interest | in percent rate
last month week year
public going offering school

Figure 1: Collocation—specific variables

tags are derived from the first letter of the tags in the
ACL/DCT WSJ corpus. There are four POS feature
variables representing the POS of the two words imme-
diately preceding and following the ambiguous word.
The three binary collocation-specific feature variables
indicate whether or not a particular word occurs in the
same sentence as the ambiguous word. These colloca-
tions are shown in Figure 1. They were selected from
among the 400 words that occurred most frequently
in the sentences containing the ambiguous word. The
three words chosen were found to be the most indica-
tive of the sense of the ambiguous word using a test
for independence.

Experimental Results

The success of a learning algorithm when applied to
a particular problem depends on how appropriate the
assumptions made in formulating the algorithm are for
the data in that problem. The assumptions implicit in
the formulation of a learning algorithm result in a bias,
a preference for one generalized representation of the
training sample over another.

In these experiments we use the following nine differ-
ent methods to disambiguate each of the 12 ambiguous
words. Below, we briefly describe each algorithm.

Majority classifier: The performance of a proba-
bilistic classifier should not be worse than the major-
ity classifier which assigns to each ambiguous word the
most frequently occurring sense in the training sample.

Naive Bayes classifier (Duda & Hart 1973): A
probabilistic classifier based on a model where the fea-
tures (Fy, Fa, ..., Fh_1) are all conditionally indepen-
dent given the value of the classification variable S.

n—1
p(S|F1, Py, Fazy) = T p(FilS) (6)
i=1

This classifier is most accurate when the model for con-
ditional independence fits the data.
PEBLS (Cost & Salzberg 1993): A k nearest—

neighbor algorithm where classification is performed

by assigning a test instance to the majority class of
the & closest training examples. In these experiments
we used k£ = 1, i.e. each test instance is assigned the
tag of the single most similar training instance, and all
features were weighted equally. With these parameter
settings, PEBLS is a standard nearest-neighbor classi-
fier and is most appropriate for data where all features
are relevant and equally important for classification.

C4.5 (Quinlan 1992): A decision tree algorithm in
which classification rules are formulated by recursively
partitioning the training sample. Each nested parti-
tion is based on the feature value that provides the
greatest increase in the information gain ratio for the
current partition. The final partitions correspond to a
set of classification rules where the antecedent of each
rule is a conjunction of the feature values used to form
the corresponding partition. The method is biased to-
ward production of simple trees, trees with the fewest
partitions, where classification 1s based on the smallest
number of feature values.

CN2 (Clark & Niblett 1989): A rule induction al-
gorithm that selects rules that cover the largest possi-
ble subsets of the training sample as measured by the
Laplace error estimate. This method is biased towards
the selection of simple rules that cover as many train-
ing instances as possible.

FSS/BSS AIC: A probabilistic classifier based on
the single best—fitting model selected using FSS or BSS
with AIC as the evaluation criterion. Both procedures
are biased towards the selection of models with the
smallest number of interactions.

FSS/BSS AIC Naive Mix: A probabilistic classi-
fier based on the averaged joint probability distribution
of the sequence of models, (my,ma,...,mp_1,m;),
generated during FSS AIC or BSS AIC sequential
search. Each model, m;, generated during FSS AIC is
formulated by potentially extending the feature set of
the previous model m;_;. Each model, m;, generated
during BSS AIC is formulated by potentially decreas-
ing the feature set of the previous model m;_;. Both
methods are biased towards the classification prefer-
ences of the most informative features, those included
in the largest number of models in the sequence.

Figure 2 reports the accuracy of each method ap-
plied to the disambiguation of each of the 12 words.
The highest accuracy achieved for each word is in bold
face. At the bottom of the table, the average accuracy
of each method is stated along with a summary com-
parison of the performance of each method to FSS AIC
Naive Mix. The row designated win—tie—loss states the
number of words for which the accuracy of FSS AIC
Naive Mix was greater than (win), equal to (tie), or
less than (loss) the method in that column.

C4.5, FSS AIC Naive Mix, and Naive Bayes have
the highest average accuracy. However, the difference
between the most accurate, C4.5, and the least accu-
rate, PEBLS, is only 2.4 percent. In a word-by-word
comparison, C4.5 most often achieves the highest ac-



FSS AIC BSS AIC
word/ # train/ | Majority | Naive FSS Naive BSS Naive
# senses 7 test classifier | Bayes | PEBLS | C4.5 | CN2 | AIC Mix AIC Mix
agree/3 1356/141 .766 .936 922 957 | 943 | 936 957 922 922
bill/3 1335/134 .709 .866 .851 .881 | .881 | .858 .888 .851 .828
chief/2 1036/112 .875 964 964 982 | 964 | .964 973 964 955
close/6 1534/157 .682 .834 .860 828 | 822 | .841 .803 841 .854
common/6 | 1111/115 .870 913 904 922 | 896 | .896 904 .896 922
concern/4 1488/149 651 872 819 .839 | .859 | .826 .846 .839 .82
drug/2 1217/122 672 .828 770 812 | 795 | 812 .828 .844 787
help/4 1398/139 127 .748 T 791 | .813 | .791 791 791 .806
include/2 1558/163 933 951 951 .969 | .969 | 945 .969 939 933
interest /6 2368/244 b21 .738 1T 783 | 713 | 734 734 742 738
last/3 3180/326 939 .926 .948 957 | 939 | 929 939 942 948
public/7 867/89 .506 .584 539 .584 | 517 | .28 539 517 562
average 738 847 .835 859 | 843 | .838 .848 .841 .842
win—tie—loss 11-1-0 6-1-5 8-2-2 3-3-6 | 7-1-4 | 9-2-1 7-1-4 5-0-7

Figure 2: Disambiguation Accuracy

curacy of all methods. FSS AIC fares most poorly in
that 1t 1s never the most accurate of all the methods.

The win-tie-loss summary shows that FSS AIC
Naive Mix compares most favorably to PEBLS and
FSS AIC, and fares least well against C4.5 and BSS
AIC Naive Mix. The high number of losses relative to
BSS AIC Naive Mix is an interesting contrast to the
lower average accuracy and word-by-word performance
of that method. But it highlights the competitive per-
formance of BSS AIC Naive Mix on this data set.

FSS AIC Naive Mix, FSS AIC, C4.5 and CN2 all
perform a general-to—specific search that adds features
to their representation of the training sample based on
some measure of information content increase. These
methods all perform feature selection and have a bias
towards simpler models. The same is true of BSS AIC
and BSS AIC Naive Mix which perform a specific-to—
general search for the simplest model. All of these
methods can suffer from fragmentation with sparse
data. Fragmentation occurs when the rules or model
are complex, incorporating a large number of feature
values to describe a small number of training instances.
When this occurs, there is inadequate support in the
training data for the inference being specified by the
model or rule. FSS AIC Naive Mix was designed to
reduce the effects of fragmentation in a general-to—
specific search by averaging the distributions of high
complexity models with those of low complexity mod-
els that include only the most relevant features.

Nearest—neighbor approaches such as PEBLS are
well-suited to making classifications that require the
use of the full feature set as long as all features are
independent and relevant. Neither the Naive Bayes
classifier nor PEBLS perform a search to create a rep-
resentation of the training sample. The Naive Bayes
specifies the form of a model in which all features are

used in classification but, as in PEBLS, their interde-
pendencies are not considered. Weights are assigned
to features via parameter estimates from the training
sample. These weights allow some discounting of less
relevant features. As implemented here, PEBLS stores
all instances of the training sample and treats each
feature independently and equally, making it more sus-
ceptible to misclassification due to irrelevant features.
As shown in (Bruce, Wiebe, & Pedersen 1996), all of
the features used in these experiments are good indica-
tors of the classification variable, although not equally
so. The lower accuracy of PEBLS relative to Naive
Bayes indicates that some weighting is appropriate.

Related Work

Sequential model selection using decomposable mod-
els was first applied to word—sense disambiguation
in (Bruce & Wiebe 1994). The Naive Mix extends
that work by considering an entire sequence of models
rather than just the best—fitting model.

Comparative studies of machine learning algorithms
applied to word—sense disambiguation are relatively
rare. (Leacock, Towell, & Voorhees 1993) compares a
neural network, a Naive Bayes classifier, and a con-
tent vector when disambiguating six senses of lne.
They report that all three methods are equally accu-
rate. (Mooney 1996) utilizes this same data and ap-
plies an even wider range of approaches comparing a
Naive Bayes classifier, a perceptron, a decision—tree,
a nearest—neighbor classifier, a logic based Disjunctive
Normal Form learner, a logic based Conjunctive Nor-
mal Form learner, and a decision list learner. He finds
the Naive Bayes classifier and the perceptron to be the
most accurate of these approaches.

The feature set in both studies of the line data was
very different than ours. Binary features represent the



occurrence of all words within approximately a 50 word
window of the ambiguous word, resulting in nearly
3,000 binary features. It is perhaps not surprising that
a simple model, such as Naive Bayes, would provide a
manageable representation of such a large feature set.

PEBLS was first applied to word—sense disambigua-
tion in (Ng & Lee 1996). Using the same sense-tagged
text for interest as used in this paper, they draw com-
parisons between PEBLS and a probabilistic classifier
based on the best—fitting single model found during a
model search (Bruce & Wiebe 1994). They find that
the combination of PEBLS and a broader set of fea-
tures leads to significant improvements in accuracy.

In recognition of the uncertainty in model selection,
there has been a recent trend in model selection re-
search away from the selection of a single model (e.g.,
(Madigan & Raftery 1994)); the Naive Mix reflects this
trend. A similar trend exists in machine learning based
on the supposition that no learning algorithm is supe-
rior for all tasks. This supposition has lead to hy-
brid approaches that combine various methods (e.g.,
(Domingos 1996)) and approaches that select the most
appropriate learning algorithm based on the character-
istics of the training data (e.g., (Brodley 1995)).

Conclusion

The Naive Mix extends existing statistical model se-
lection by taking advantage of intermediate models
discovered during the selection process. Features are
selected during a systematic model search and then
appropriately weighted via averaged parameter esti-
mates. Experimental evidence suggests that the Naive
Mix results in a probabilistic model that is usually
a more accurate classifier than one based on a sin-
gle model selected during a sequential search. It also
proves to be competitive with a diverse set of super-
vised learning algorithms such as decision trees, rule
induction, and nearest—neighbor classification.
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