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Abstract

The development of automatic natural language un-
derstanding systems remains an elusive goal. Given
the highly ambiguous nature of the syntax and se-
mantics of natural language, it is not possible to de-
velop rule-based approaches to understanding even
very limited domains of text. The difficulty in speci-
fying a complete set of rules and their exceptions has
led to the rise of probabilistic approaches where mod-
els of natural language are learned from large corpora
of text. However, this has proven a challenge since
natural language data is both sparse and skewed and
the space of possible models is huge. In this paper we
discuss several search techniques used in learning the
structure of probabilistic models of word sense disam-
biguation. We present an experimental comparison of
backward and forward sequential searches as well as a
model averaging approach to the problem of resolving
the meaning of ambiguous words in text.

Introduction

The difficulty in specifying complete and consistent
sets of rules for natural language has encouraged the
development of corpus—based approaches to natural
language processing. These methods learn probabilis-
tic models of language from large amounts of online
text. Such models have two components, a parametric
form and parameter estimates. The form of a model
describes the dependencies among the features of the
event being modeled while the parameter estimates
represent the likelihood of observing each of the various
combinations of feature values.

Our focus here is on the search strategies employed
to locate the parametric form of a model when learning
from a large corpus of online text. The difficulty is
that natural language is flexible and ever—changing;
many valid sentence constructions, word usages, and
sense distinctions are never observed even in very large
samples of text.

The challenge is to locate a parametric form that
is both a specific representation of the important de-
pendencies among the features in a sample of text and

yet general enough to handle the sizeable number of
events not directly observed in that sample. A para-
metric form is too complex if a substantial number of
parameters have zero—valued estimates; this indicates
that the available sample of text simply does not con-
tain enough information to support the estimates re-
quired by the model. However, a parametric form is
too simple if relevant dependencies among features are
not represented. In other words, the resulting model
should achieve an appropriate balance between model
complexity and model fit.

We present a number of different approaches to lo-
cating such models. Sequential model selection finds
a single parametric form that is judged to achieve the
best balance between model complexity and fit for a
given corpus of text. We extend this methodology
with the Naive Miz (Pedersen & Bruce 1997), an av-
eraged probabilistic model based on the sequence of
parametric forms generated during a sequential model
search. This paper includes an experimental compari-
son of these approaches and discusses possible further
extensions to these methodologies.

Word Sense Disambiguation

This paper focuses on a common problem in natural
language processing, word sense disambiguation. This
is the process of selecting, from a predefined set of
possibilities, the most appropriate meaning for a word
based upon the context in which it occurs. For exam-
ple, in My bank charges pretty low fees, we might want
to determine if bank refers to a financial institution or
the side of a river.

Our approach has been to cast word sense disam-
biguation as a problem in supervised learning where a
probabilistic model is learned from a training corpus
of manually disambiguated examples. This model then
serves as a classifier that determines the most probable
sense of an ambiguous word, given the context in which
it occurs. In this paper context is represented by a set
of features developed in (Bruce & Wiebe 1994). There



is one morphological feature describing the ambigu-
ous word, four part—of-speech features describing the
surrounding words, and three co—occurrence features
indicating if certain key words occur in the sentence
with the ambiguous word.

The morphological feature is binary for an ambigu-
ous noun, indicating if it is plural or not. For a verb
it indicates the tense. This feature is not used for ad-
jectives. Each of the four part—of—speech feature vari-
ables can have one of 25 possible values. There are
four such features representing the part—of—speech of
the two words immediately preceding and following
the ambiguous word. Each of the three binary co-
occurrence features indicate whether or not a partic-
ular word occurs in the sentence with the ambiguous
word. The three words represented by these features
are highly indicative of particular senses, as determined
by a statistical test of independence.

Decomposable Models

We restrict our attention to decomposable log-linear
models (Darroch, Lauritzen, & Speed 1980), a subset
of the class of graphical models (Whittaker 1990). In
any graphical model, feature variables are either de-
pendent or conditionally independent of one another.
The parametric form of these models have a graphi-
cal representation such that each feature variable in
the model is represented by a node in the graph, and
there is an undirected edge between each pair of nodes
corresponding to dependent feature variables. Any
two nodes that are not directly connected by an edge
are conditionally independent, given the values of the
nodes on the path that connects them.

The graphical representation of a decomposable
model corresponds to an undirected chordal graph
whose set of maximal cliques defines the joint prob-
ability distribution of the model. A graph is chordal if
every cycle of length four or more has a shortcut, i.e.,
a chord. A maximal clique is the largest set of nodes
that are completely connected, i.e., dependent.

The sufficient statistics of the parameters of a de-
composable model are the marginal frequencies of the
events represented by the feature variables that form
maximal cliques in the graphical representation. Each
maximal clique is made up of a subset of the feature
variables that are all dependent. Together these fea-
tures define a marginal event space. The probability of
observing any specific instantiation of these features,
i.e., a marginal event, is defined by the marginal prob-
ability distribution.

The joint probability distribution of a decomposable
model is expressed as the product of the marginal dis-
tributions of the variables in the maximal cliques of

the graphical representation, scaled by the marginal
probability distributions of feature variables common
to two or more of these maximal sets. Because their
joint distributions have such closed—form expressions,
the parameters of a decomposable model can be es-
timated directly from the training sample using the
method of maximum likelihood.

Sequential Model Selection

Sequential model selection integrates a search strategy
and an evaluation criterion. Since the number of pos-
sible parametric forms for a decomposable model is
exponential in the number of features, an exhaustive
search of the possible forms is usually not tractable.
A search strategy determines which parametric forms,
from the set of all possible parametric forms, will be
considered during the model selection process. The
evaluation criterion is the ultimate judge of which
parametric form achieves the most appropriate balance
between complexity and fit, where complexity is de-
fined by the number of dependencies in the model and
fit is defined as how closely the model represents the
data in the training sample.

The search strategies employed here are greedy and
result in the evaluation of models of steadily increasing
or decreasing levels of complexity. A number of candi-
date models are generated at each level of complexity.
The evaluation criterion determines which candidate
model results in the best fit to the training sample;
this model is designated as the current model. Another
set of candidate models is generated by increasing or
decreasing the complexity of the current model by one
dependency. The process of evaluating candidates, se-
lecting a current model, and generating new candidate
models from the current model is iterative and con-
tinues until a model is found that achieves the best
overall balance of complexity and fit. This is the se-
lected model and is the ultimate result of the sequential
model selection process.

Search Strategy

We employ both backward sequential search (Wermuth
1976) and forward sequential search (Dempster 1972)
as search strategies. Backward sequential search for
probabilistic models of word sense disambiguation was
introduced in (Bruce & Wiebe 1994) while forward se-
quential search was introduced in (Pedersen, Bruce, &
Wiebe 1997).

Forward searches evaluate models of increasing com-
plexity based on how much candidate models improve
upon the fit of the current model, while backward
searches evaluate candidate models based on how much
they degrade the fit of the current model.



A forward sequential search begins by designating
the model of independence as the current model. The
level of complexity is zero since there are no edges in
the graphical representation of this model. The set
of candidate models is generated from the model of
independence and consists of all possible one edge de-
composable models. These are individually evaluated
for fit by an evaluation criterion. The one edge model
that exhibits the greatest improvement in fit over the
model of independence is designated as the new cur-
rent model. A new set of candidate models is generated
by adding an edge to the current model and consists
of all possible two edge decomposable models. These
models are evaluated for fit and the two edge decom-
posable model that most improves on the fit of the one
edge current model becomes the new current model.
A new set of three edge candidate models is generated
by adding one edge at a time to the two edge current
model. Forward sequential search continues until: (1)
none of the candidate decomposable models of com-
plexity level i« + 1 results in an appreciable improve-
ment in fit over the current model of complexity level
i, as defined by the evaluation criterion, or (2) the cur-
rent model is the saturated model. In either case the
current model is selected and the search ends.

For the sparse and skewed samples typical of natural
language data, forward sequential search is a natural
choice. Early in the search the models are of low com-
plexity and the number of parameters in the model is
relatively small. This results in few zero—valued esti-
mates and ensures that the model selection process is
based upon the best available training information.

A backward sequential search begins by designating
the saturated model as the current model. If there
are n feature variables then the number of edges in
the saturated model is M As an example, given
10 feature variables there are 45 edges in a saturated
model. The set of candidate models consists of each
possible decomposable model with 44 edges generated
by removing a single edge from the saturated model.
These candidates are evaluated for fit and the 44 edge
model that results in the least degradation in fit from
the saturated model becomes the new current model.
Each possible 43 edge candidate decomposable model
is generated by removing a single edge from the 44 edge
current model and then evaluated for fit. Backward
sequential search continues until: (1) every candidate
decomposable model of complexity level ¢ — 1 results
in an appreciable degradation in fit from the current
model of complexity level i, as defined by the evalu-
ation criterion, or (2) the current model is the model
of independence. In either case the current model is
selected and the search ends.

For sparse and skewed training samples, backward
sequential search should be used with care. Backward
search begins with the saturated model where the num-
ber of parameters equals the number of events in the
event space. Early in the search the models are of high
complexity. Parameter estimates based on the satu-
rated model or other complex models are often unre-
liable since many of the marginal events required to
make maximum likelihood estimates are not observed
in the training sample.

Evaluation Criteria

The degradation and improvement in fit of candidate
models relative to the current model is assessed by an
evaluation criterion. We employ Akaike’s Information
Criteria (AIC) (Akaike 1974) and the Bayesian Infor-
mation Criteria (BIC) (Schwarz 1978) as evaluation
criteria. These are formulated as follows during se-
quential model selection:

AIC = AG* — 2 x Adof (1)
BIC = AG? — log(N) x Adof (2)

The degree to which a candidate model improves
upon or degrades the fit of the current model is mea-
sured by the difference between the log-likelihood ra-
tio G? of the candidate and current model, AG?. This
measure is treated as a raw score and not assigned sig-
nificance. Adof represents the difference between the
adjusted degrees of freedom for the current and can-
didate models. Like AG?, it is treated as a raw score
and is not used to assign significance. In Equation 2, NV
represents the number of observations in the training
sample.

AIC and BIC explicitly balance model fit and com-
plexity; fit is determined by the value of AG? while
complexity is expressed in terms of the difference in the
adjusted degrees of freedom of the two models, Adof.
Small values of AG? imply that the fit of the candidate
model to the training data does not deviate greatly
from the fit obtained by the current model. Likewise,
small values for the adjusted degrees of freedom, Adof,
suggest that the candidate and current models do not
differ greatly in regards to complexity.

During backward search the candidate model with
the lowest negative AIC or BIC value is selected as
the current model of complexity level ¢ — 1. This is
the model that results in the least degradation in fit
when moving from a model of complexity level ¢ to one
of i — 1. This degradation is judged acceptable if the
AIC or BIC value for the candidate model of complex-
ity level ¢ — 1 is negative. If there are no such candi-
date models then the degradation in fit is unacceptably



large and model selection stops and the current model
of complexity level i becomes the selected model.

During forward search the candidate model with the
largest positive AIC or BIC value is selected as the
current model of complexity level ¢ + 1. This is the
model that results in the largest improvement in fit
when moving from a model of complexity level ¢ to
one of i + 1. This improvement is judged acceptable if
the AIC or BIC value for the model of complexity level
i+ 1 is positive. If there are no such models then the
improvement in fit is unacceptably small and model
selection stops and the current model of complexity
level ¢ becomes the selected model.

Naive Mix

The usual objective of sequential model selection is to
find a single model that achieves the best representa-
tion of the training sample both in terms of complexity
and fit. However, our experimental results show that
various combinations of search strategy and evaluation
criterion can locate structurally different models that
still result in very similar levels of disambiguation ac-
curacy. This suggests that there is an element of un-
certainty in model selection and that it might be more
effective to utilize a range of models rather than a sin-
gle best model.

The Naive Mix is based on the premise that each of
the models identified as a current model during a se-
quential search have important information that could
be utilized for word sense disambiguation. Sequen-
tial searches result in a series of decomposable models
(my,ma,. .., m,_1,m,) where m; is the initial current
model and m,. is the selected model. Each model m; is
designated as the current model at the it step in the
search process. During forward search m is the model
of independence and during backward search m; is the
saturated model. A Naive Mix is created by averaging
the r different parametric forms and resulting sets of
parameter estimates into a single model.

A Naive Mix can be created using either forward or
backward search. However, there are a number of ad-
vantages to formulating a Naive Mix with a forward
search. First, the inclusion of very simple models in a
Naive Mix eliminates the problem of zero—valued pa-
rameter estimates in the averaged probabilistic model.
The first model in the Naive Mix is the model of in-
dependence which has no dependencies among the fea-
tures and no zero—valued parameter estimates. Second,
forward search incrementally builds on the strongest
dependencies among features while backward search
incrementally removes the weakest dependencies. Thus
a Naive Mix formulated with backward search can po-
tentially contain many irrelevant dependencies while a

forward search only includes the most important de-
pendencies.

Experimental Results

The sense-tagged text used in these experiments was
created by (Bruce & Wiebe 1994) and is fully described
in (Bruce, Wiebe, & Pedersen 1996). It consists of
every sentence from the ACL/DCI Wall Street Journal
corpus that contains any of the nouns interest, bill,
concern, and drug, any of the verbs close, help, agree,
and include, or any of the adjectives chief, public, last,
and common.

The extracted sentences were manually tagged with
senses defined in the Longman Dictionary of Contem-
porary English. The number of possible senses for each
word is between 2 and 7 and the number of sense—
tagged sentences for each word ranges from 800 to
3000. A separate model is learned for each word; the
accuracy of each model is evaluated via 10-fold cross
validation. All of the sense—tagged examples for a word
are randomly shuffled and divided into 10 equal folds.
Nine folds are used as the training sample and the re-
maining fold acts as a held—out test set. This process
is repeated 10 times so that each fold serves as the
test set once. The average disambiguation accuracy
and standard deviation over the 10 folds is reported
for each method in Figure 1.

We show the disambiguation accuracy of models se-
lected using both forward and backward searches as
well as a Naive Mix formulated from a forward sequen-
tial search using AIC. In addition, we report the accu-
racy of two no—search techniques, the majority classify
and the Naive Bayesian classifier (Duda & Hart 1973).
The majority classifier assumes that the parametric
form is the model of independence and classifies ev-
ery usage of an ambiguous word with its most frequent
sense from the training data. Naive Bayes assumes a
parametric form such that all the contextual features
are conditionally independent of one another, given the
sense of the ambiguous word. While this is an unreal-
istic assumption, it proves to perform well in this and
a wide range of other domains.

Figure 1 also shows, in parenthesis, the complexity
of the models selected by AIC and BIC using back-
ward and forward search. The complexity of the ma-
jority classifier is zero since the parametric form of the
model of independence has no dependencies. The com-
plexity of Naive Bayes is seven for adjectives and eight
for nouns and verbs. The number of models included
in the Naive Mix for each word is equal to the complex-
ity of the model selected by forward sequential search
using AIC. The key observation here is that despite
widely varying levels of complexity, accuracy is often



Majority Naive Naive Mix Search AIC BIC
Bayes (FSS AIC) || Strategy
agree 777 .032 | 930 .026 | .948 .017 B .909 .026 (15) | .924 .023 (9)
F 911 .026 (13) | .921 .024 (7)
bill .681 .044 | .865 .026 | .897 .026 B .836 .036 (26) | .850 .034 (7)
F 851 .029 (20) | .851 .041 (11)
chief 862 .026 | .943 .015 | 951 .016 B 945 .020 (14) | .936 .020 (6)
F .939 .020 (14) | .943 .021 (7)
close .680 .033 | .817 .023 | .831 .033 B .806 .029 (13) | .742.031 (3)
F .810 .040 (10) | .763 .040 (3)
common | .802 .029 | .832 .034 | .853 .024 B .850.019 (7) | .815.030 (2)
F .846 .023 (7) | .815.030 (2)
concern | .639 .054 | .859 .037 | .846 .039 B .838 .038 (16) | .767 .031 (6)
F .830 .025 (13) | .864 .038 (9)
drug 575 .033 | .807 .036 | .815 .041 B 792 .043 (14) | .784 .041 (9)
F .800 .037 (12) | .784 .041 (9)
help 753 .032 | .780 .033 | .796 .038 B 77036 (6) | .797 .030 (4)
F 798 .033 (4) | .797 .030 (4)
include | .912 .024 | .044 .021 | .956 .018 B 912 .030 (16) | .949 .016 (8)
F 950 .012 (9) | .950 .019 (9)
interest | .529 .026 | .763 .016 | .800 .019 B 751 .018 (21) | .676 .025 (6)
F 757 .026 (15) | .734 .020 (4)
last 933 .014 | .919 .011 .940 .016 B 931 .015 (14) | .920 .011 (9)
F 927 .021 (14) | .915 .012 (2)
public .560 .055 | .593 .054 | .615 .055 B .600 .047 (8) | .597 .053 (3)
F .614 .053 (6) | .602 .050 (3)
average | .725 .838 .854 B .829 813
F .836 .828

Figure 1: Disambiguation Accuracy

relatively similar across these techniques.

Overall the Naive Mix results in consistent improve-
ments over the performance of single models selected
using forward and backward sequential search. This
suggests that combining multiple models into an av-
eraged model may address some of the difficulties of
sequential searches. Forward search techniques quickly
identify highly indicative single features for disam-
biguation but may overlook the effect of more subtle
dependencies. The Naive Mix and related model aver-
aging techniques may offer a solution since they com-
bine a series of models that distributes the impact of
individual features on classification.

We also note that BIC generally selects models of
lower complexity and lower accuracy than AIC dur-
ing both forward and backward search. Since BIC as-
sesses a greater complexity penalty than AIC, it has
a stronger bias towards less complex models. As a re-
sult backward search with BIC is more aggressive in
removing dependencies than is backward search with

AIC; likewise forward search with BIC is less likely
to add dependencies than is forward search with AIC.
The feature set employed is shown in (Bruce, Wiebe,
& Pedersen 1996) to be very indicative of word senses;
thus the tendency of BIC to eliminate or not include
features in the model works to its disadvantage. How-
ever, BIC may be the most appropriate evaluation cri-
terion when dealing with data that includes irrelevant
features.

The Naive Bayesian classifier results in accuracy
comparable to all of the methods that perform model
search. This is curious since it simply makes strong
assumptions about the dependencies among features
instead of performing a search. Its success is further
evidence that there is uncertainly inherent in model
selection; very different parametric forms often result
in very similar disambiguation performance.

The accuracy of the majority classifier is a reason-
able lower bound for any supervised learning approach
to word sense disambiguation. The other approaches



exceed its performance for most words, although help,
include, last, and public are exceptions. For these
words the majority classifier proves to be as accurate
as any other method. Two of these words, last and
include, have majority senses in the training data that
occur more than 90% of the time; this makes accuracy
greater than the majority classifier unlikely. However,
the majority senses of public and help are 56% and 75%
so there is certainly room for improvement. However,
the most accurate models for these words have four
and six dependencies so the resulting model does not
include most of the possible features. For these words
the feature set may need to be modified in order to
improve disambiguation performance.

Future Work

We suggest the use of forward sequential searches for
learning probabilistic models of word sense disam-
biguation. Forward searches begin with low complexity
models where parameter estimates made from training
data are relatively reliable. However, forward searches
make highly localized decisions early in the search and
may not locate models with more complex dependency
structures. While the Naive Mix addresses this to some
extent, we continue to develop alternative approaches
to this problem.

Given the success of Naive Bayes, an alternative
strategy would be to begin forward searches with its
parametric form rather than the model of indepen-
dence. However, this strategy presumes that all the
features are relevant to disambiguation and does not
allow the selection process to remove irrelevant fea-
tures. This could be overcome by starting the selection
process with the form of the Naive Bayesian classifier
and then perform some variant of backward search to
see if any dependencies should be removed. The model
that results from this backward search then serves as
the starting point for a forward search. At various
intervals the strategy could be reversed from forward
to backward, backward to forward, and so on, before
arriving at a selected model.

An alternative to starting the forward searches at
Naive Bayes is to generate a model of moderate com-
plexity randomly and then search backward for some
number of steps, then forward, and so on until until a
model is selected. This entire process is repeated some
number of times so that a variety of random starting
models are employed. The models that are ultimately
selected presumably differ somewhat and could be av-
eraged together in a randomized variant of the Naive
Mix.
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