
Appears in the Working Notes of the AAAI Spring Symposium on Search Techniques for Problem Solving UnderUncertainty and Incomplete Information, March 22{24, 1999, Palo, Alto, CASearch Techniques for Learning Probabilistic Modelsof Word Sense DisambiguationTed PedersenDepartment of Computer ScienceCalifornia Polytechnic State UniversitySan Luis Obispo, CA 93407tpederse@csc.calpoly.eduAbstractThe development of automatic natural language un-derstanding systems remains an elusive goal. Giventhe highly ambiguous nature of the syntax and se-mantics of natural language, it is not possible to de-velop rule{based approaches to understanding evenvery limited domains of text. The di�culty in speci-fying a complete set of rules and their exceptions hasled to the rise of probabilistic approaches where mod-els of natural language are learned from large corporaof text. However, this has proven a challenge sincenatural language data is both sparse and skewed andthe space of possible models is huge. In this paper wediscuss several search techniques used in learning thestructure of probabilistic models of word sense disam-biguation. We present an experimental comparison ofbackward and forward sequential searches as well as amodel averaging approach to the problem of resolvingthe meaning of ambiguous words in text.IntroductionThe di�culty in specifying complete and consistentsets of rules for natural language has encouraged thedevelopment of corpus{based approaches to naturallanguage processing. These methods learn probabilis-tic models of language from large amounts of onlinetext. Such models have two components, a parametricform and parameter estimates. The form of a modeldescribes the dependencies among the features of theevent being modeled while the parameter estimatesrepresent the likelihood of observing each of the variouscombinations of feature values.Our focus here is on the search strategies employedto locate the parametric form of a model when learningfrom a large corpus of online text. The di�culty isthat natural language is exible and ever{changing;many valid sentence constructions, word usages, andsense distinctions are never observed even in very largesamples of text.The challenge is to locate a parametric form thatis both a speci�c representation of the important de-pendencies among the features in a sample of text and

yet general enough to handle the sizeable number ofevents not directly observed in that sample. A para-metric form is too complex if a substantial number ofparameters have zero{valued estimates; this indicatesthat the available sample of text simply does not con-tain enough information to support the estimates re-quired by the model. However, a parametric form istoo simple if relevant dependencies among features arenot represented. In other words, the resulting modelshould achieve an appropriate balance between modelcomplexity and model �t.We present a number of di�erent approaches to lo-cating such models. Sequential model selection �ndsa single parametric form that is judged to achieve thebest balance between model complexity and �t for agiven corpus of text. We extend this methodologywith the Naive Mix (Pedersen & Bruce 1997), an av-eraged probabilistic model based on the sequence ofparametric forms generated during a sequential modelsearch. This paper includes an experimental compari-son of these approaches and discusses possible furtherextensions to these methodologies.Word Sense DisambiguationThis paper focuses on a common problem in naturallanguage processing, word sense disambiguation. Thisis the process of selecting, from a prede�ned set ofpossibilities, the most appropriate meaning for a wordbased upon the context in which it occurs. For exam-ple, in My bank charges pretty low fees, we might wantto determine if bank refers to a �nancial institution orthe side of a river.Our approach has been to cast word sense disam-biguation as a problem in supervised learning where aprobabilistic model is learned from a training corpusof manually disambiguated examples. This model thenserves as a classi�er that determines the most probablesense of an ambiguous word, given the context in whichit occurs. In this paper context is represented by a setof features developed in (Bruce & Wiebe 1994). There



is one morphological feature describing the ambigu-ous word, four part{of-speech features describing thesurrounding words, and three co{occurrence featuresindicating if certain key words occur in the sentencewith the ambiguous word.The morphological feature is binary for an ambigu-ous noun, indicating if it is plural or not. For a verbit indicates the tense. This feature is not used for ad-jectives. Each of the four part{of{speech feature vari-ables can have one of 25 possible values. There arefour such features representing the part{of{speech ofthe two words immediately preceding and followingthe ambiguous word. Each of the three binary co{occurrence features indicate whether or not a partic-ular word occurs in the sentence with the ambiguousword. The three words represented by these featuresare highly indicative of particular senses, as determinedby a statistical test of independence.Decomposable ModelsWe restrict our attention to decomposable log{linearmodels (Darroch, Lauritzen, & Speed 1980), a subsetof the class of graphical models (Whittaker 1990). Inany graphical model, feature variables are either de-pendent or conditionally independent of one another.The parametric form of these models have a graphi-cal representation such that each feature variable inthe model is represented by a node in the graph, andthere is an undirected edge between each pair of nodescorresponding to dependent feature variables. Anytwo nodes that are not directly connected by an edgeare conditionally independent, given the values of thenodes on the path that connects them.The graphical representation of a decomposablemodel corresponds to an undirected chordal graphwhose set of maximal cliques de�nes the joint prob-ability distribution of the model. A graph is chordal ifevery cycle of length four or more has a shortcut, i.e.,a chord. A maximal clique is the largest set of nodesthat are completely connected, i.e., dependent.The su�cient statistics of the parameters of a de-composable model are the marginal frequencies of theevents represented by the feature variables that formmaximal cliques in the graphical representation. Eachmaximal clique is made up of a subset of the featurevariables that are all dependent. Together these fea-tures de�ne a marginal event space. The probability ofobserving any speci�c instantiation of these features,i.e., a marginal event, is de�ned by the marginal prob-ability distribution.The joint probability distribution of a decomposablemodel is expressed as the product of the marginal dis-tributions of the variables in the maximal cliques of

the graphical representation, scaled by the marginalprobability distributions of feature variables commonto two or more of these maximal sets. Because theirjoint distributions have such closed{form expressions,the parameters of a decomposable model can be es-timated directly from the training sample using themethod of maximum likelihood.Sequential Model SelectionSequential model selection integrates a search strategyand an evaluation criterion. Since the number of pos-sible parametric forms for a decomposable model isexponential in the number of features, an exhaustivesearch of the possible forms is usually not tractable.A search strategy determines which parametric forms,from the set of all possible parametric forms, will beconsidered during the model selection process. Theevaluation criterion is the ultimate judge of whichparametric form achieves the most appropriate balancebetween complexity and �t, where complexity is de-�ned by the number of dependencies in the model and�t is de�ned as how closely the model represents thedata in the training sample.The search strategies employed here are greedy andresult in the evaluation of models of steadily increasingor decreasing levels of complexity. A number of candi-date models are generated at each level of complexity.The evaluation criterion determines which candidatemodel results in the best �t to the training sample;this model is designated as the current model. Anotherset of candidate models is generated by increasing ordecreasing the complexity of the current model by onedependency. The process of evaluating candidates, se-lecting a current model, and generating new candidatemodels from the current model is iterative and con-tinues until a model is found that achieves the bestoverall balance of complexity and �t. This is the se-lected model and is the ultimate result of the sequentialmodel selection process.Search StrategyWe employ both backward sequential search (Wermuth1976) and forward sequential search (Dempster 1972)as search strategies. Backward sequential search forprobabilistic models of word sense disambiguation wasintroduced in (Bruce & Wiebe 1994) while forward se-quential search was introduced in (Pedersen, Bruce, &Wiebe 1997).Forward searches evaluate models of increasing com-plexity based on how much candidate models improveupon the �t of the current model, while backwardsearches evaluate candidate models based on how muchthey degrade the �t of the current model.



A forward sequential search begins by designatingthe model of independence as the current model. Thelevel of complexity is zero since there are no edges inthe graphical representation of this model. The setof candidate models is generated from the model ofindependence and consists of all possible one edge de-composable models. These are individually evaluatedfor �t by an evaluation criterion. The one edge modelthat exhibits the greatest improvement in �t over themodel of independence is designated as the new cur-rent model. A new set of candidate models is generatedby adding an edge to the current model and consistsof all possible two edge decomposable models. Thesemodels are evaluated for �t and the two edge decom-posable model that most improves on the �t of the oneedge current model becomes the new current model.A new set of three edge candidate models is generatedby adding one edge at a time to the two edge currentmodel. Forward sequential search continues until: (1)none of the candidate decomposable models of com-plexity level i + 1 results in an appreciable improve-ment in �t over the current model of complexity leveli, as de�ned by the evaluation criterion, or (2) the cur-rent model is the saturated model. In either case thecurrent model is selected and the search ends.For the sparse and skewed samples typical of naturallanguage data, forward sequential search is a naturalchoice. Early in the search the models are of low com-plexity and the number of parameters in the model isrelatively small. This results in few zero{valued esti-mates and ensures that the model selection process isbased upon the best available training information.A backward sequential search begins by designatingthe saturated model as the current model. If thereare n feature variables then the number of edges inthe saturated model is n(n�1)2 . As an example, given10 feature variables there are 45 edges in a saturatedmodel. The set of candidate models consists of eachpossible decomposable model with 44 edges generatedby removing a single edge from the saturated model.These candidates are evaluated for �t and the 44 edgemodel that results in the least degradation in �t fromthe saturated model becomes the new current model.Each possible 43 edge candidate decomposable modelis generated by removing a single edge from the 44 edgecurrent model and then evaluated for �t. Backwardsequential search continues until: (1) every candidatedecomposable model of complexity level i � 1 resultsin an appreciable degradation in �t from the currentmodel of complexity level i, as de�ned by the evalu-ation criterion, or (2) the current model is the modelof independence. In either case the current model isselected and the search ends.

For sparse and skewed training samples, backwardsequential search should be used with care. Backwardsearch begins with the saturated model where the num-ber of parameters equals the number of events in theevent space. Early in the search the models are of highcomplexity. Parameter estimates based on the satu-rated model or other complex models are often unre-liable since many of the marginal events required tomake maximum likelihood estimates are not observedin the training sample.Evaluation CriteriaThe degradation and improvement in �t of candidatemodels relative to the current model is assessed by anevaluation criterion. We employ Akaike's InformationCriteria (AIC) (Akaike 1974) and the Bayesian Infor-mation Criteria (BIC) (Schwarz 1978) as evaluationcriteria. These are formulated as follows during se-quential model selection:AIC = �G2 � 2��dof (1)BIC = �G2 � log(N)��dof (2)The degree to which a candidate model improvesupon or degrades the �t of the current model is mea-sured by the di�erence between the log{likelihood ra-tio G2 of the candidate and current model, �G2. Thismeasure is treated as a raw score and not assigned sig-ni�cance. �dof represents the di�erence between theadjusted degrees of freedom for the current and can-didate models. Like �G2, it is treated as a raw scoreand is not used to assign signi�cance. In Equation 2, Nrepresents the number of observations in the trainingsample.AIC and BIC explicitly balance model �t and com-plexity; �t is determined by the value of �G2 whilecomplexity is expressed in terms of the di�erence in theadjusted degrees of freedom of the two models, �dof .Small values of �G2 imply that the �t of the candidatemodel to the training data does not deviate greatlyfrom the �t obtained by the current model. Likewise,small values for the adjusted degrees of freedom, �dof ,suggest that the candidate and current models do notdi�er greatly in regards to complexity.During backward search the candidate model withthe lowest negative AIC or BIC value is selected asthe current model of complexity level i � 1. This isthe model that results in the least degradation in �twhen moving from a model of complexity level i to oneof i � 1. This degradation is judged acceptable if theAIC or BIC value for the candidate model of complex-ity level i � 1 is negative. If there are no such candi-date models then the degradation in �t is unacceptably



large and model selection stops and the current modelof complexity level i becomes the selected model.During forward search the candidate model with thelargest positive AIC or BIC value is selected as thecurrent model of complexity level i + 1. This is themodel that results in the largest improvement in �twhen moving from a model of complexity level i toone of i+1. This improvement is judged acceptable ifthe AIC or BIC value for the model of complexity leveli+ 1 is positive. If there are no such models then theimprovement in �t is unacceptably small and modelselection stops and the current model of complexitylevel i becomes the selected model.Naive MixThe usual objective of sequential model selection is to�nd a single model that achieves the best representa-tion of the training sample both in terms of complexityand �t. However, our experimental results show thatvarious combinations of search strategy and evaluationcriterion can locate structurally di�erent models thatstill result in very similar levels of disambiguation ac-curacy. This suggests that there is an element of un-certainty in model selection and that it might be moree�ective to utilize a range of models rather than a sin-gle best model.The Naive Mix is based on the premise that each ofthe models identi�ed as a current model during a se-quential search have important information that couldbe utilized for word sense disambiguation. Sequen-tial searches result in a series of decomposable models(m1;m2,: : :, mr�1;mr) where m1 is the initial currentmodel and mr is the selected model. Each model mi isdesignated as the current model at the ith step in thesearch process. During forward searchm1 is the modelof independence and during backward search m1 is thesaturated model. A Naive Mix is created by averagingthe r di�erent parametric forms and resulting sets ofparameter estimates into a single model.A Naive Mix can be created using either forward orbackward search. However, there are a number of ad-vantages to formulating a Naive Mix with a forwardsearch. First, the inclusion of very simple models in aNaive Mix eliminates the problem of zero{valued pa-rameter estimates in the averaged probabilistic model.The �rst model in the Naive Mix is the model of in-dependence which has no dependencies among the fea-tures and no zero{valued parameter estimates. Second,forward search incrementally builds on the strongestdependencies among features while backward searchincrementally removes the weakest dependencies. Thusa Naive Mix formulated with backward search can po-tentially contain many irrelevant dependencies while a

forward search only includes the most important de-pendencies. Experimental ResultsThe sense{tagged text used in these experiments wascreated by (Bruce &Wiebe 1994) and is fully describedin (Bruce, Wiebe, & Pedersen 1996). It consists ofevery sentence from the ACL/DCI Wall Street Journalcorpus that contains any of the nouns interest, bill,concern, and drug, any of the verbs close, help, agree,and include, or any of the adjectives chief, public, last,and common.The extracted sentences were manually tagged withsenses de�ned in the Longman Dictionary of Contem-porary English. The number of possible senses for eachword is between 2 and 7 and the number of sense{tagged sentences for each word ranges from 800 to3000. A separate model is learned for each word; theaccuracy of each model is evaluated via 10{fold crossvalidation. All of the sense{tagged examples for a wordare randomly shu�ed and divided into 10 equal folds.Nine folds are used as the training sample and the re-maining fold acts as a held{out test set. This processis repeated 10 times so that each fold serves as thetest set once. The average disambiguation accuracyand standard deviation over the 10 folds is reportedfor each method in Figure 1.We show the disambiguation accuracy of models se-lected using both forward and backward searches aswell as a Naive Mix formulated from a forward sequen-tial search using AIC. In addition, we report the accu-racy of two no{search techniques, the majority classifyand the Naive Bayesian classi�er (Duda & Hart 1973).The majority classi�er assumes that the parametricform is the model of independence and classi�es ev-ery usage of an ambiguous word with its most frequentsense from the training data. Naive Bayes assumes aparametric form such that all the contextual featuresare conditionally independent of one another, given thesense of the ambiguous word. While this is an unreal-istic assumption, it proves to perform well in this anda wide range of other domains.Figure 1 also shows, in parenthesis, the complexityof the models selected by AIC and BIC using back-ward and forward search. The complexity of the ma-jority classi�er is zero since the parametric form of themodel of independence has no dependencies. The com-plexity of Naive Bayes is seven for adjectives and eightfor nouns and verbs. The number of models includedin the Naive Mix for each word is equal to the complex-ity of the model selected by forward sequential searchusing AIC. The key observation here is that despitewidely varying levels of complexity, accuracy is often



Majority Naive Naive Mix Search AIC BICBayes (FSS AIC) Strategyagree .777 .032 .930 .026 .948 .017 B .909 .026 (15) .924 .023 (9)F .911 .026 (13) .921 .024 (7)bill .681 .044 .865 .026 .897 .026 B .836 .036 (26) .850 .034 (7)F .851 .029 (20) .851 .041 (11)chief .862 .026 .943 .015 .951 .016 B .945 .020 (14) .936 .020 (6)F .939 .020 (14) .943 .021 (7)close .680 .033 .817 .023 .831 .033 B .806 .029 (13) .742 .031 (3)F .810 .040 (10) .763 .040 (3)common .802 .029 .832 .034 .853 .024 B .850 .019 (7) .815 .030 (2)F .846 .023 (7) .815 .030 (2)concern .639 .054 .859 .037 .846 .039 B .838 .038 (16) .767 .031 (6)F .830 .025 (13) .864 .038 (9)drug .575 .033 .807 .036 .815 .041 B .792 .043 (14) .784 .041 (9)F .800 .037 (12) .784 .041 (9)help .753 .032 .780 .033 .796 .038 B .777 .036 (6) .797 .030 (4)F .798 .033 (4) .797 .030 (4)include .912 .024 .944 .021 .956 .018 B .912 .030 (16) .949 .016 (8)F .950 .012 (9) .950 .019 (9)interest .529 .026 .763 .016 .800 .019 B .751 .018 (21) .676 .025 (6)F .757 .026 (15) .734 .020 (4)last .933 .014 .919 .011 .940 .016 B .931 .015 (14) .920 .011 (9)F .927 .021 (14) .915 .012 (2)public .560 .055 .593 .054 .615 .055 B .600 .047 (8) .597 .053 (3)F .614 .053 (6) .602 .050 (3)average .725 .838 .854 B .829 .813F .836 .828Figure 1: Disambiguation Accuracyrelatively similar across these techniques.Overall the Naive Mix results in consistent improve-ments over the performance of single models selectedusing forward and backward sequential search. Thissuggests that combining multiple models into an av-eraged model may address some of the di�culties ofsequential searches. Forward search techniques quicklyidentify highly indicative single features for disam-biguation but may overlook the e�ect of more subtledependencies. The Naive Mix and related model aver-aging techniques may o�er a solution since they com-bine a series of models that distributes the impact ofindividual features on classi�cation.We also note that BIC generally selects models oflower complexity and lower accuracy than AIC dur-ing both forward and backward search. Since BIC as-sesses a greater complexity penalty than AIC, it hasa stronger bias towards less complex models. As a re-sult backward search with BIC is more aggressive inremoving dependencies than is backward search with

AIC; likewise forward search with BIC is less likelyto add dependencies than is forward search with AIC.The feature set employed is shown in (Bruce, Wiebe,& Pedersen 1996) to be very indicative of word senses;thus the tendency of BIC to eliminate or not includefeatures in the model works to its disadvantage. How-ever, BIC may be the most appropriate evaluation cri-terion when dealing with data that includes irrelevantfeatures.The Naive Bayesian classi�er results in accuracycomparable to all of the methods that perform modelsearch. This is curious since it simply makes strongassumptions about the dependencies among featuresinstead of performing a search. Its success is furtherevidence that there is uncertainly inherent in modelselection; very di�erent parametric forms often resultin very similar disambiguation performance.The accuracy of the majority classi�er is a reason-able lower bound for any supervised learning approachto word sense disambiguation. The other approaches



exceed its performance for most words, although help,include, last, and public are exceptions. For thesewords the majority classi�er proves to be as accurateas any other method. Two of these words, last andinclude, have majority senses in the training data thatoccur more than 90% of the time; this makes accuracygreater than the majority classi�er unlikely. However,the majority senses of public and help are 56% and 75%so there is certainly room for improvement. However,the most accurate models for these words have fourand six dependencies so the resulting model does notinclude most of the possible features. For these wordsthe feature set may need to be modi�ed in order toimprove disambiguation performance.Future WorkWe suggest the use of forward sequential searches forlearning probabilistic models of word sense disam-biguation. Forward searches begin with low complexitymodels where parameter estimates made from trainingdata are relatively reliable. However, forward searchesmake highly localized decisions early in the search andmay not locate models with more complex dependencystructures. While the Naive Mix addresses this to someextent, we continue to develop alternative approachesto this problem.Given the success of Naive Bayes, an alternativestrategy would be to begin forward searches with itsparametric form rather than the model of indepen-dence. However, this strategy presumes that all thefeatures are relevant to disambiguation and does notallow the selection process to remove irrelevant fea-tures. This could be overcome by starting the selectionprocess with the form of the Naive Bayesian classi�erand then perform some variant of backward search tosee if any dependencies should be removed. The modelthat results from this backward search then serves asthe starting point for a forward search. At variousintervals the strategy could be reversed from forwardto backward, backward to forward, and so on, beforearriving at a selected model.An alternative to starting the forward searches atNaive Bayes is to generate a model of moderate com-plexity randomly and then search backward for somenumber of steps, then forward, and so on until until amodel is selected. This entire process is repeated somenumber of times so that a variety of random startingmodels are employed. The models that are ultimatelyselected presumably di�er somewhat and could be av-eraged together in a randomized variant of the NaiveMix.
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