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Abstract 
Electronic medical records (EMR) constitute a 
valuable resource of patient specific information 
and are increasingly used for clinical practice and 
research. Acronyms present a challenge to retriev-
ing information from the EMR because many acro-
nyms are ambiguous with respect to their full form. 
In this paper we perform a comparative study of 
supervised acronym disambiguation in a corpus of 
clinical notes, using three machine learning algo-
rithms: the naïve Bayes classifier, decision trees 
and Support Vector Machines (SVMs). Our train-
ing features include part-of-speech tags, unigrams 
and bigrams in the context of the ambiguous acro-
nym. We find that the combination of these feature 
types results in consistently better accuracy than 
when they are used individually, regardless of the 
learning algorithm employed. The accuracy of all 
three methods when using all features consistently 
approaches or exceeds 90%, even when the base-
line majority classifier is below 50%.  

Introduction 

Electronic medical records (EMR) constitute a 
valuable resource of patient specific information 
and are increasingly used for clinical practice and 
research. The adoption rates of EMRs across the 
United States are on the rise and are projected to 
reach their maximum by the year 2024 (1). In order 
to maximize the utility of the EMR for care deliv-
ery and research, it is important to “unlock” the 
information contained in the text of clinical reports 
that are part of the EMR. 

Acronyms present a challenge to retrieving in-
formation from the EMR. The problem is that 
many acronyms are ambiguous with respect to their 
full form or sense. Liu et al. (2) show that 33% of 
acronyms listed in the UMLS in 2001 are ambigu-
ous. In a later study, Liu et al. (3) demonstrate that 
81% of acronyms found in MEDLINE abstracts are 
ambiguous and have on average 16 senses. In addi-
tion to problems with text interpretation, Friedman 
et al. (4) also point out that acronyms constitute a 
major source of errors in a system that automati-
cally generates lexicons for medical Natural Lan-
guage Processing (NLP) applications. 

Most previous work on acronym disambigua-
tion has focused on supervised machine learning 
approaches where a corpus of text is annotated for 
acronyms and their sense (i.e., expansion) is manu-
ally disambiguated. Machine learning algorithms 

are then trained on this labeled data to generate 
models, and future ambiguous instances of the 
acronyms are disambiguated using these models. 
The disambiguation is typically cast as a classifica-
tion problem with a known set of senses to be pre-
dicted as the class value. This is the approach we 
adopt in this study, where we view acronym dis-
ambiguation as a special case of the word sense 
disambiguation (WSD) problem. This allows us to 
rely on features and supervised learning algorithms 
that are known to work well on that problem (e.g. 
(5,10,11,12,13,14)).  

However, we are aware that fully supervised 
approaches are usually not scalable due to the time 
and effort involved in manually creating sufficient 
amounts of training data. Thus, our future work 
will focus on semi-supervised and unsupervised 
techniques that require smaller amounts of training 
data, as well as developing methods that gather 
training data automatically. One possible unsuper-
vised approach is to create and cluster context 
vectors (6). Also, there is a hybrid class of machine 
learning techniques for WSD that relies on a small 
set of hand labeled data to bootstrap a larger corpus 
of training data (7).  

Pakhomov et al. (8, 9) developed a method for 
collecting training data for supervised machine 
learning approaches to disambiguating acronyms. 
The method is based on the assumption that the full 
form of an acronym and the acronym itself tend to 
occur in similar contexts. The full form found in 
the text of clinical reports is then used as if it were 
an acronym to generate training data. Pakhomov et 
al. (9) have developed a small manually annotated 
corpus of ninei acronyms and their senses, which 
was used to test their semi-supervised approach to 
data generation. They also showed that traditional 
fully supervised approaches achieve a very high 
level of accuracy (> 90%). 

The objective of this study is three-fold. One is 
to expand and evaluate the corpus of manually 
annotated acronyms to include seven additional 
acronyms for a total of 16. The second is to create a 
benchmark of accuracy results achieved with three 
fully supervised machine learning algorithms that 

                                                   
i Only eight of these nine acronyms were actually 
used in the study by Pakhomov et al. (9). The anno-
tation of the ninth acronym (HD) was completed 
after publication. 



can be used as a point of comparison with other 
approaches to acronym disambiguation. The third 
is to experiment with several combinations of fea-
ture selection methods and learning algorithms in 
order to determine which are most advantageous 
for acronym disambiguation.  

Materials and Methods 

DATASET: We have created a corpus of 7,738 
manually disambiguated instances of 16 ambiguous 
acronyms. This corpus is derived from the Mayo 
Clinic database of clinical notes. Nine of the acro-
nyms were annotated previous to this study, while 
the remaining seven were newly annotated for this 
work. The annotation was carried out the same way 
in both cases, the only difference being the current 
process was based on the entire database of 17 
million notes spanning years 1994–2005, while the 
previous one was based on a 1.7 million note sub-
set from 2002.  

Table 1 summarizes the data for the 16 acro-
nyms. The acronym and the total number of in-
stances are shown in the first column, where those 
from the previous study are underlined. Then the 
top three expansions and associated instance counts 
(N) are shown in the second and third column. If 
there are more than three expansions for an acro-
nym, then we combine the counts of the remaining 
expansions into a single row. We show the percent-
age of the total instances that have a given expan-
sion in the fourth column.  

METHODS: The objective of our experiments 
is to compare the efficacy of three different ma-
chine learning algorithms: the naïve Bayes classi-
fier, the C4.5 decision tree learner, and a Support 
Vector Machine, when used with four types of 
feature sets: unigrams, bigrams, part-of-speech 
tags, and the combination of all three of these. In 
our experiments we perform 10-fold cross-
validation (using disjoint folds) for each of the 16 
acronyms for each of the possible combinations of 
the three learning algorithms and four feature sets. 
We also report results for the Majority classifier, 
which assigns the most frequent expansion to all of 
the instances of an acronym. This serves as a base-
line above which any reasonable method would be 
expected to perform.  

The naïve Bayes classifier has a long history of 
success in word sense disambiguation (e.g., 10, 
11). It is the simplest method we employ, since it 
assumes the parametric form of a model of condi-
tional independence (that describes the relation-
ships among the features) and so only needs to 
learn the parameters of this model.  Decision trees 
are a part of this study since they too have a long 
history in word sense disambiguation (e.g, (5, 13)). 
They are a generalization of decision lists, which 
were successfully utilized by Yarowsky (12). 
Pedersen (13) later explored decision trees with 
bigram features, and found them to perform at high 

levels of accuracy. Finally, Support Vector Ma-
chines have fared well in recent comparative 
evaluations of supervised word sense disambigua-
tion systems (e.g., (14)). We use the implementa- 
 

Table 1: Distribution of Acronym Expansions 

Acr. 
 

Top 3 Expansions N  (%) 

AC 
 
464 

Acromioclavicular 
Antitussive with Codeine 
Acid Controller 
10 more expansions 

146 
139 
109 
70 

31.47 
29.96 
23.49 
15.08 

APC 
 
376 

Argon Plasma Coagulation 
Adenomatous Polyposis Coli 
Atrial Premature Contraction 
10 more expansions 

157 
94 
55 
70 

41.76 
25.00 
14.63 
18.62 

LE 
 
615 

Limited Exam 
Lower Extremity 
Initials 
5 more expansions 

291 
270 
44 
10 

47.32 
43.90 
7.15 
1.62 

PE 
 
519 

Pulmonary Embolism 
Pressure Equalizing 
Patient Education 
12 more expansions 

251 
160 
48 
60 

48.36 
30.82 
9.24 

11.56 
CP 
 
578 

Chest Pain 
Cerebral Palsy 
Cerebellopontine 
19 more expansions 

321 
110 
88 
59 

55.54 
19.03 
15.22 
10.21 

HD 
 
254 

Huntington's Disease 
Hemodialysis 
Hospital Day 
9 more expansions 

142 
75 
22 
15 

55.91 
29.52 
8.66 
5.91 

CF 
 
710 

Cystic Fibrosis 
Cold Formula 
Complement Fixation 
6 more expansions 

530 
101 
36 
43 

74.65 
14.22 
5.07 
6.06 

MCI 
 
344 

Mild Cognitive Impairment 
Methylchloroisothiazolinone 
Microwave Communications, 
Inc. 
5 more expansions 

269 
34 
18 

 
23 

78.20 
9.88 
5.23 

 
6.69 

ID 
 
574 

Infectious Disease 
Identification 
Idaho 
Identified 
4 more expansions 

450 
105 

7 
7 
5 

78.4 
18.29 
1.21 
1.21 
0.87 

LA 
 
488 

Long Acting 
Person 
Left Atrium 
5 more expansions 

385 
53 
17 
33 

78.89 
10.86 
3.48 
6.76 

MI 
 
690 

Myocardial Infarction 
Michigan 
Unknown 
2 more expansions 

590 
96 
2 
2 

85.51 
13.91 
0.29 
0.29 

ACA 
 
541 

Adenocarcinoma 
Anterior Cerebral Artery 
Anterior Communication Artery 
3 more expansions 

473 
62 
3 
3 

87.43 
11.46 
0.006 
0.006 

GE 
 
591 

Gastroesophageal 
General Exam 
Generose 
General Electric 

521 
40 
22 
8 

88.15 
6.77 
3.72 
1.35 

HA 
 
509 

Headache 
Hearing Aid 
Hydroxyapatite 
2 more expansions 

470 
30 
6 
3 

92.34 
5.89 
1.18 
0.59 

FEN 
 
80 

Fluids, Electrolytes and Nutrition 
Drug Fen Phen 
Unknown 

78 
1 
1 

97.50
1.25 
1.25 

NSR 
405 

Normal Sinus Rhythm 
Nasoseptal Reconstruction 

401 
4 

99.01 
0.99 



tions of these learning algorithms provided by the 
Weka Data Mining suite (17) and maintain their 
default configuration settings. 

FEATURES: We identify four sets of features 
for our experiments: 

Part-of-Speech (POS) tags:  The part-of-
speech of the two words to the left and the two 
words to the right of the acronym to be expanded 
(the target) are used as features, as is the part-of-
speech tag of the acronym itself. We use a modi-
fied version of the Brill part-of-speech tagger cre-
ated by Hepple (16), which provides 55 POS tags 
including punctuation. This is distributed as part of 
the ANNIE system in the General Architecture for 
Text Engineering (GATE) toolkit. Part-of-speech 
tags are commonly used as features in WSD, and 
have been found to provide a surprising amount of 
disambiguation information on their own (e.g., 
(16)). 

Unigrams: Individual words that appear five or 
more times in the training examples for an acronym 
are considered as features. These must occur in a 
flexible window centered around the target acronym 
that extends five positions to the left and five posi-
tions to the right. A flexible window skips low 
frequency or stop words found near the target acro-
nym, so the flexible window can be understood as 
the first five high frequency content words that 
appear to the left and to the right of the target acro-
nym, no matter how far they are from the target. 
However, this flexible window is confined to a 
single clinical note, although it does cross sentence 
and section boundaries if necessary. Stop words are 
function words (articles, prepositions, etc.) that do 
not provide meaningful content on their own. We 
use a manually created list of 107 stop words con-
sisting mainly of propositions, pronouns, auxiliary 
verbs and proper nouns denoting calendar items.   

Bigrams: In our experiments, bigrams are two 
consecutive words that occur together five or more 
times. Neither of the words in a bigram may be 
found in the stop list that we employ for unigrams. 
A flexible window of five is used for bigrams as 
well, which means that five significant bigrams to 
the left and right of the acronym (within the same 
clinical note) are used as features.  

Unigrams + bigrams + POS: The fourth set of 
features combines all of the above 3 sets – POS 
tags, unigrams and bigrams into one larger set of 
features. 

Results and Discussion 

There were a number of questions that motivated 
these experiments. First, we were interested to see 
if the different types of features would result in 
significantly different performance when used with 
several different learning algorithms. Second, we 
were interested to see the effect of the distribution 
of the senses in the acronyms on our overall results. 
Third, we wanted to characterize the effect of the 

flexible window method of selecting lexical fea-
tures. Finally, we wanted to compare the results of 
these methods with those reported in (9), at least 
for the eight acronyms in common between the two 
studies.  
 Feature Comparison (AC, APC, LE, PE)30405060708090100 Decision Trees Naïve Bayes SVMClassifierPOS bigrams unigrams ALL Majority  

Chart 1: Disambiguation Accuracy of  
Acronyms with majority sense < 50%  

  Feature Comparison (CP, HD, CF, MCI, ID, LA)30405060708090100 Decision Trees Naïve Bayes SVMClassifierPOS bigrams unigrams ALL Majority  
Chart 2: Disambiguation Accuracy of Acronyms 

with majority sense > 50% and < 80%  
 Feature Comparison (MI, ACA, GE, HA, FEN, NSR)30405060708090100 Decision Trees Naïve Bayes SVMClassifierPOS bigrams unigrams ALL Majority  

Chart 3: Disambiguation Accuracy of 
 Acronyms with majority sense > 80% 

 
In Charts 1-3, we present averaged results for 

the different learning algorithms when trained with 
data consisting of the different types of features we 
utilized. The acronyms in these charts are selected 
based on the distribution of the majority sense in 
the data, where Chart 1 includes the acronyms that 
have a majority sense of less than 50%, Chart 2 
includes those that have a majority sense between 
50% and 80%, and Chart 3 includes acronyms with 
a majority sense over 80%. 

From Charts 1-3, it is clear that regardless of 
the distribution of the majority sense, the overall 
disambiguation accuracy attained is typically at or 



above 90%. This means that the high level of per-
formance does not depend on having a skewed 
distribution of senses (with a high majority sense) 
but rather these methods are carrying out their 
disambiguation task at very high levels of accuracy 
regardless of the baseline from which they start.  

It is also clear that for all methods the unigram 
features and the combination of all features pro-
vides the highest level of performance. In each of 
the charts, there is little or no difference between 
the unigram results and the all-features result, sug-
gesting that the unigram features are providing 
much of the disambiguation accuracy in the com-
bined feature set.  

We do note one interesting difference in the 
performance of these methods based on their ma-
jority sense baseline. For those acronyms with a 
less pronounced majority sense (Chart 1), note that 
the POS tags and the bigrams significantly lag 
behind the unigrams and combined features. This 
continues to a lesser extent for those acronyms with 
somewhat more pronounced majority senses (Chart 
2), and then disappears for those with very skewed 
majority senses (Chart 3). We believe that this 
shows quite clearly that unigrams and the com-
bined feature set are in general superior to the POS 
tags and bigrams, since they are providing more 
disambiguation accuracy in the more difficult case 
where the majority sense is relatively low. To be 
fair, it is likely that bigrams did not perform well 
due to the fact that they were selected using a fre-
quency cutoff, when in general more informative 
bigrams can be selected using measures of associa-
tion such as Pearson‘s Chi-Squared test or the Log-
likelihood Ratio (13). Finally, it is interesting that 
POS tags have performed at a high level of accu-
racy on their own, suggesting that a significant 
percentage of acronym ambiguity can be resolved 
using syntactic information only.  

In Charts 1-3, it is interesting to note that the 
different learning algorithms perform at very simi-
lar levels of accuracy when they are using the same 
features. While there are differences between them, 
they are smaller than the differences observed for a 
single algorithm when using different features. For 
example, the accuracy when using POS tags with 
the three algorithms in Chart 1 varies from 71% to 
76%, while the difference between POS tags and 
unigrams for SVMs varies from 76% to 91%. This 
indicates that the key to attaining high accuracy is 
not the choice of the learning algorithm, but rather 
the features.   

An intuitive way to see this in Charts 1-3 is to 
notice that the differences between the bars of the 
same shade (feature) across the three methods is 
much less (generally) than the differences observed 
among the different features within a single 
method. In fact, these differences are statistically 
significant. Using a two-tailed paired t-test with 
α=0.05, the improvement of unigrams over POS 

tags and bigrams and that of all-features over POS 
tags, bigrams and unigrams across all the 16 acro-
nyms is significant with p < 0.01. 

The flexible window that we have introduced 
in this paper is a novel way of formulating sets of 
lexical features. We experimented with various 
different sizes of windows using different feature 
types, and summarize those results in Chart 4. 
 Fixed vs. Flexible Window Performance707580859095 1 2 3 4 5 6 7 8 9 10Window Sizefixed-bigrams flexi-bigramsfixed-unigrams flexi-unigramsfixed-unigrams+bigrams flexi-unigrams+bigrams  
Chart 4: Effect on disambiguation accuracy of 
increasing the size of the flexible window for 

feature selection 
 

We see the average accuracy across all three 
methods for each of the different types of features 
indicated. We note first that bigrams in a fixed 
window performed significantly worse than all 
other measures, and the use of the flexible window 
significantly improved upon bigrams. For example, 
a flexible window of size five results in accuracy of 
87% for bigrams, while a fixed window of size five 
achieved an accuracy of 74%. We note smaller but 
still significant (α=0.05, p < 0.001) improvements 
for unigrams and a combination of unigrams and 
bigrams when moving from a fixed window to a 
flexible one.  

We believe that a flexible window as we pro-
pose offers significant advantages over fixed win-
dows, in that the number of features that will occur 
in a fixed window can vary to a large extent de-
pending on syntactic and lexical variations. As 
such, the flexible window allows us to capture 
exactly the number of features that we believe to be 
important. In general we have found that flexible 
window sizes of three to five tend to work well in 
practice.  

Finally, in Table 2 we compare our results 
with those of Pakhomov, et al. (9) on the eight 
acronyms that are common between our studies. 
The best results obtained by Pakhomov were using 
a Maximum Entropy model, except for CF which 
attained its best result with a decision tree.  

In Table 2 we underline and italicize those 
values where a difference of one percentage point 
or greater in the methods is observed. In general 
both sets of results are quite good, and certainly 
represent acceptable performance. 



 Table 2: Comparison of Pakhomov et al. (9) 
with one of our methods (SVM with all features) 
 

Acr. Pakhomov SVM 
AC 96.7 95.5 
ACA 97.0 97.6 
APC 95.9 92.3 
CF 95.8 97.3 
HA 95.8 96.1 
LA 94.6 96.7 
NSR 99.0 99.0 
PE 93.3 92.7 

Conclusions 

We have developed a corpus of 16 acronyms 
manually annotated with their expansions, and 
established baseline disambiguation performance 
with three machine learning schemes – the naïve 
Bayes classifier, decision tree learner and Support 
Vector Machine. This work significantly extends 
our previous efforts by creating a validated set of 
benchmark measurements of the accuracy of fully 
supervised approaches. This provides a foundation 
for future work with semi-supervised and unsuper-
vised approaches to acronym disambiguation. We 
demonstrate a significant improvement in accuracy 
by using a flexible window for lexical features. We 
have also further validated our previous findings 
that a relatively small amount of manually anno-
tated clinical text data can result in very high accu-
racy of acronym disambiguation. This is 
encouraging as it may provide a methodology for 
applications to prospective identification of patients 
with specific conditions where high accuracy on a 
limited number of acronyms is required. 
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