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Abstract
This paper explores the use of Concept Unique Iden-
tifiers (CUIs) as assigned by MetaMap as features for
a supervised learning approach to word sense disam-
biguation of biomedical text. We compare the use of
CUIs that occur in abstracts containing an instance
of the target word with using the CUIs that occur in
sentences containing an instance of the target word.
We also experiment with frequency cutoffs for deter-
mining which CUIs should be included as features. We
find that a Naive Bayesian classifier where the features
represent CUIs that occur two or more times in ab-
stracts containing the target word attains accuracy 9%
greater than Leroy and Rindflesch’s approach, which
includes features based on semantic types assigned by
MetaMap. Our results are comparable to those of
Joshi, et. al. and Liu, et. al., who use feature sets
that do not contain biomedical information.

Introduction
Some words have multiple senses, for example, the
word culture could mean an anthropological culture,
such as the culture of a Mayan civilization, or a lab-
oratory culture, such as a cell culture. The different
senses of a word are often obtained from a sense in-
ventory such as a dictionary or other resource. The
Unified Medical Language System (UMLS) is one
such sense inventory for the biomedical and clinical
domain. In the UMLS, senses (or concepts) associ-
ated with words and terms are enumerated via Con-
cept Unique Identifiers (CUIs). For example, the two
senses ofculture are “C0010453: Anthropological
Culture” and “C0430400: Laboratory Culture” in the
UMLS release 2007AB.
The UMLS is more than just a dictionary of different
word senses but also a framework encoded with dif-
ferent semantic and syntactic structures. Some such
information includes related concepts, semantic types
and semantic relations. A semantic type is a broad
subject categorization assigned to a CUI. A seman-
tic relation is the relationship between two semantic
types. For example, the semantic type of “C0010453:

Anthropological Culture” is “Idea or Concept” while
the semantic type for “C0430400: Laboratory Cul-
ture” is “Laboratory Procedure”. The semantic rela-
tions between “Idea or Concept” and “Laboratory Pro-
cedure” with the semantic type “Mental Process” are
“result of” and “assesseseffect of”, respectively.
MetaMap1 maps terms in biomedical text to senses
(i.e. concepts) in the UMLS by identifying the CUIs
of the content words in the text. MetaMap can be
thought of as an all-words disambiguation system,
while our approach is focused on particular target
words. MetaMap assigns a CUI (sense) to every word
or term that it can in a running text using rules and pat-
terns. Our approach is based on supervised learning,
where we collect some number of manually disam-
biguated examples of a given word, and learn a model
from that data that only assigns senses to that target
word. Thus, MetaMap is a broad coverage tool while
our approach is more fine-grained and specific to a few
words.
There has been previous work on supervised learn-
ing approaches to word sense disambiguation in the
biomedical domain. However, some of that work has
simply used features that are known to work in gen-
eral English, and do not take advantage of biomedical
information (e.g.,2,3).
On the other hand, Leroy and Rindflesch4 include the
use of biomedical information generated by MetaMap.
They analyze combinations of the following features:
i) whether the target word is a head word, ii) the
part-of-speech (POS) of the target word, iii) the
semantic relations between the words surrounding the
target word and between surrounding words and the
target word itself, and iv) the semantic types of the
words or terms surrounding the target word. Leroy
and Rindflesch’s best reported feature set contains
whether the target word is a head word, the POS of
the target word and the semantic types of the words
in the same sentence as the target word. They use the
Naive Bayes algorithm from the WEKA5 data-mining
package and report their results using 10-fold cross
validation.



Leroy and Rindflesch’s use of features generated from
MetaMap lead us the question ofwhether CUIs gener-
ated by MetaMap would be an improvement over se-
mantic types?

Joshi, et. al.3 employ features that have been used
in supervised learning of word sense disambiguation
for general English, and apply them to the biomedi-
cal domain. Their approach utilizes features based on
the unigrams and bigrams of the words in the same
window of context as the target word. A unigram is
a content word that frequently occurs in a window of
context around the target word. A bigram is an or-
dered pair of content words that frequently occur in
a window of context around the target word. Joshi
et. al. report highly accurate results, especially when
their features are unigrams where the window is the
same sentence as the target word and unigrams where
the window of context is the same abstract as the tar-
get word. They compare the Naive Bayesian classifier
and Support Vector Machine from the WEKA data-
mining package and report their results using 10-fold
cross validation.

Joshi, et. al.’s use of unigrams led us to the question
whether the biomedical specific feature CUIs would
be an improvement over the more general feature uni-
grams?

Joshi, et. al. also compare using unigrams in the same
sentence as the target word versus the same abstract.
This lead us to the question ofwhether increasing the
size of the context window in which surrounding CUIs
are found improve the results, as seen with unigrams?

Liu, et. al.2 utilize combinations of the following fea-
tures: i) surrounding words, ii) orientation, iii) dis-
tance, iv) collocations and v) unigrams. Orientation is
whether the surrounding word is to the left or the right
of the target word. Distance is how far the surround-
ing word is from the target word and collocation is a
unit of words that represent a single idea, for example,
“White House”. Their best reported feature set con-
tains all word within a window size of three, their ori-
entation, and the three nearest two word collocations.
They compare the Naive Bayes, a modified Decision
List and a combination Naive Bayes/exemplar-based
algorithm. They report their results using 10-fold cross
validation and record the best per word accuracy over
all feature sets and algorithms.

We address the above questions by evaluating the fol-
lowing feature sets: the CUIs of the words in the same
sentence as the target word and the CUIs of the words
in the same abstract as the target word; each with fre-
quency cutoff of one and two. We compare our ap-
proach to the previous approaches described above.

Methods
Dataset : We use the National Library of Medicine’s
Word Sense Disambiguation (NLM-WSD) dataset6.
This data contains 100 randomly selected instances of
50 frequent and highly ambiguous words from 1998
MEDLINE abstracts. Each instance of a target word
was manually disambiguated by 11 human evaluators
who assigned the word a CUI or “None” if none of the
CUIs described the concept.
Joshi, et. al. evaluated their approach using 28 out of
the 50 target words in the dataset; referred to here as
Joshi subset. Leroy and Rindflesch evaluated their ap-
proach using 15 out of the 28 words used by Joshi, et.
al.; referred to as Leroy subset. Liu, et. al. evaluated
their approach using 22 out of the 28 words; referred
to as Liu subset. There are nine words that all three
authors use to evaluated their approach; referred to as
Common subset. There are 22 words that were not
used by any of the authors; referred to as the Excluded
subset. These words were not used because a large
majority of their instances have the same concept. We
report our results for all 50 words.

WSD Approach : We explore the use of CUIs as
features in a supervised learning approach to word
sense disambiguation. For a CUI to serve as a fea-
ture, it must occur in the appropriate window of con-
text around the target word more than a specified num-
ber of times. Our windows of context include the sen-
tence in which a given target word occurs, or the entire
abstract; this would automatically include the sentence
that contains the target word as well.
The CUIs of the terms in the same window of context
as the target word were obtained from MetaMap and
are encoded in the NLM-WSD dataset. The CUIs of
the target words were manually assigned.
The frequency cutoffs are implemented by counting
the number of times in which a CUI occurs surround-
ing the target word in the window of contexts. A cutoff
of one indicates that we include only those CUIs that
occur two or more times surrounding the target word,
and a cutoff of two indicates that the CUI should occur
three or more times surrounding the target word to be
a feature.
So overall, we have four different feature sets: i) the
CUIs in the same sentence as the target word with a
frequency cutoff of one, ii) the CUIs in the same sen-
tence as the target word with a frequency cutoff of two,
iii) the CUIs in the same abstract as the target word
with a frequency cutoff of one, iv) the CUIs in the same
abstract as the target word with a frequency cutoff of
two.
We use the Naive Bayes algorithm from the WEKA
data-mining package as our learning algorithm and re-



Table 1:Accuracy of Approaches Based on 10-fold Cross Validation
Our approaches Previous approaches

target word baseline s-01-cui s-2-cui a-1-cui a-2-cui s-4-Joshi a-4-Joshi s-0-Leroy s-0-Liu
adjustment 62.0 74.0 68.0 70.0 67.0 70.0 71.0 57.0
blood pressure 54.0 57.0 56.0 46.0 45.0 62.0 53.0 46.0
evaluation 50.0 58.0 59.0 73.0 73.0 62.0 69.0 57.0
immunosuppression 59.0 74.0 74.0 75.0 74.0 72.0 80.0 63.0
radiation 61.0 78.0 72.0 81.0 81.0 69.0 82.0 72.0
sensitivity 49.0 81.0 81.0 92.0 92.0 76.0 88.0 70.0
cold 86.0 85.0 85.0 89.0 89.0 88.0 90.0 90.9
depression 85.0 79.0 76.0 81.0 82.0 87.0 86.0 88.8
discharge 74.0 91.0 90.0 96.0 96.0 82.0 95.0 90.8
extraction 82.0 84.0 83.0 86.0 85.0 84.0 84.0 89.7
fat 71.0 73.0 74.0 77.0 76.0 80.0 84.0 85.9
implantation 81.0 91.0 91.0 92.0 93.0 86.0 94.0 90.0
japanese 73.0 81.0 79.0 76.0 77.0 81.0 77.0 79.8
lead 71.0 92.0 92.0 90.0 91.0 83.0 89.0 91.0
mole 83.0 89.0 87.0 87.0 88.0 98.0 95.0 91.1
pathology 85.0 82.0 79.0 84.0 83.0 88.0 85.0 88.2
reduction 89.0 92.0 92.0 92.0 93.0 93.0 91.0 91.0
sex 80.0 85.0 83.0 87.0 88.0 85.0 88.0 89.9
ultrasound 84.0 87.0 87.0 85.0 87.0 85.0 92.0 87.8
degree 63.0 73.0 73.0 79.0 80.0 92.0 89.0 68.0 98.0
growth 63.0 62.0 60.0 69.0 66.0 63.0 71.0 62.0 72.2
man 58.0 84.0 85.0 80.0 81.0 92.0 89.0 80.0 91.0
mosaic 52.0 73.0 71.0 75.0 75.0 77.0 87.0 66.0 87.8
nutrition 45.0 46.0 43.0 49.0 48.0 63.0 52.0 48.0 58.1
repair 52.0 84.0 81.0 93.0 92.0 72.0 87.0 81.0 76.1
scale 65.0 80.0 78.0 83.0 82.0 80.0 81.0 84.0 90.9
weight 47.0 68.0 69.0 79.0 80.0 80.0 83.0 68.0 78.0
white 49.0 74.0 73.0 74.0 74.0 72.0 79.0 62.0 75.6
Joshi subset 66.8 77.7 76.4 80.0 79.9 79.3 82.5
Leroy subset 55.2 71.0 69.5 74.5 74.0 73.4 77.4 65.6
Liu subset 69.9 79.7 78.6 81.9 82.0 82.3 84.9 85.5
Common subset 54.8 71.5 70.3 75.6 75.3 76.7 79.7 68.7 80.8

port the accuracy of our approach using 10-fold cross
validation. In 10-fold cross validation, the features
come from the entire set of instances in the NLM-
WSD dataset. To test our algorithm, the instances are
then divided into ten blocks where each block contains
an equal number of instances. Then nine blocks are
used as a training data and the remaining block is used
as test data. The classifier is built using the nine blocks
as training data and tested using the remaining block.
This is repeated ten times such that each block has
been used as test data exactly once with the other nine
as training data. The accuracy reported is the average
over all ten runs.

Results
Table 1 and Table 2 show the accuracy (%) of using
the CUIs of the words surrounding the target word as
features into a Naive Bayes algorithm. The label “s-
x-cui” refers to the feature set containing the CUIs in
the sentences that occur more thanx times with the
target word. The label “a-x-cui” refers to the feature
set containing the CUIs in the abstracts that occur more
thanx times with the target word. The tables also show
the ”majority sense” baseline. This is the accuracy that
would be achieved by assigning every instance of the
target word with the most frequent sense as assigned

by the human evaluators.

Table 1 shows the results of previous supervised WSD
approaches introduced by Joshi, et. al. (s-4-Joshi and
a-4-Joshi), Leroy and Rindflesch (s-0-Leroy), and Liu,
et. al. (Liu) for their respective subsets. The labels
“s-4-Joshi” and “a-4-Joshi” refers to Joshi, et. al.’s
feature set containing the unigrams that occur in the
window of context around the target word (sentence
and abstract respectively) in more than four training
examples. The label “s-0-Leroy” refers to Leroy and
Rindflesch’s feature set containing semantic types in
the sentences that contain the target word; they do not
employ a cutoff. The label “Liu” for Liu, et. al.’s fea-
ture set refers to the best reported results over all fea-
ture combinations and algorithms used by the authors.

Table 2 shows the results of the words that were
not evaluated by the previous authors (Excluded sub-
set) and our overall results for the entire NLM-WSD
dataset.

In this section, we first compare our feature sets (s-x-
cui and a-x-cui) to the baseline and then to each other
to determine which window of context and frequency
cutoff performed best. Second, we compare the re-
sults of our best performing feature set to the best per-
forming feature set of each of the three previous ap-
proaches. Thep-values reported are calculated using



the one-sided pairwise t-test.

Impact of Different Feature Sets : In this section,
we first compare our four different features sets to the
majority sense baseline and then analyze the impact
the different window of contexts and frequency cutoffs
used in our approach. We report the overall accuracy
of the feature sets using the entire NLM-WSD dataset;
the results of which can be seen in Table 2.
We show that our four feature sets, s-1-cui, s-2-cui,
a-1-cui and a-2-cui, increased the accuracy over the
baseline by 5.82% (p ≤ .00007), 4.24% (p ≤ .0037),
7.56% (p ≤ .00002) and 7.48% (p ≤ .00002) respec-
tively.

Table 2:Accuracy of Our Approaches Based on 10-
fold Cross Validation
target word baselines-1-cui s-2-cui a-1-cui a-2-cui
association 100 100 100 97 97
condition 90 90 86 89 89
culture 89 86 85 94 95
determination 79 76 74 81 80
energy 99 98 98 99 99
failure 71 63 58 73 73
fit 82 88 86 87 86
fluid 100 95 95 99 99
frequency 94 90 89 94 94
ganglion 93 94 93 94 95
glucose 91 83 84 90 90
inhibition 98 98 98 98 98
pressure 96 88 88 93 92
resistance 97 96 95 96 97
secretion 99 93 92 99 99
strains 92 91 92 92 93
support 90 91 90 91 90
surgery 98 94 93 94 93
transient 99 99 99 98 98
transport 93 94 95 93 93
variation 80 83 84 91 90
Excluded subset 92.2 90.4 89.6 92.7 92.6
NLM-WSD dataset 78.0 83.3 82.2 85.6 85.5

When comparing the window of context in which the
CUIs are extracted, the results show that increasing the
context window from sentences to abstracts improves
the accuracy. a-1-cui returns a 2.28% (p ≤ .0006)
increase over s-1-cui, and a-2-cui returns a 3.24% (p ≤

.00000) increase over s-2-cui.
We show that using a frequency cutoff of one returns a
significantly higher overall accuracy than a frequency
cutoff of two using sentences as the window of context.
This is not the case though when using abstracts as the
window of context. s-1-cui results show an increase in
overall accuracy of 1.04% (p ≤ .00004) over s-2-cui
while a-1-cui results show a non-significant increase in
overall accuracy of 0.08% (p ≤ .2871) over a-2-cui.
Overall, the results show that a-1-cui, which incorpo-
rates a frequency cutoff of one and includes the entire
abstract as the window of context, returns the highest
overall accuracy.

Comparison with Previous Approaches : Table 1
shows a comparison between our WSD approach and
the previous supervised approaches by Joshi, et. al. (s-
4-Joshi and a-4-Joshi), Liu, et. al. (Liu), and Leroy
and Rindflesch (s-0-Leroy). We make a direct com-
parison by calculating the overall average of the words
from the NLM-WSD dataset that were used by the re-
spective authors for their evaluation.
We compare Joshi, et. al.’s feature sets, s-4-Joshi and
a-4-Joshi, with our feature sets, s-1-cui and a-1-cui,
respectively. The results using the Joshi subset show
that s-1-cui performs equivalently to s-4-Joshi but a-4-
Joshi performs slightly better than a-1-cui. The overall
accuracy of s-1-cui shows a non-significant decrease
of 1.68% (p ≤ .135) compared to s-4-Joshi whereas
the overall accuracy of a-1-cui shows a significant de-
crease of 2.36% (p ≤ .003) compared to a-4-Joshi.
We compare Liu, et. al.’s best performing feature set,
Liu, with a-1-cui. The results reported by Liu, et. al.
are the best per-word accuracies over all algorithms
and feature sets examined. The results using the Liu
subset show that a-1-cui returns a significant decrease
in overall accuracy of 3.62% (p ≤ .01) compared to
Liu.
We compare Leroy and Rindflesch’s best performing
feature set, s-0-Leroy, with our s-1-cui and a-1-cui fea-
ture sets. The results using the Leroy subset show
that s-1-cui significantly improves the accuracy of s-
0-Leroy by 5.47% (p ≤ .001) and a-1-cui significantly
improves the accuracy by 8.93% (p ≤ .00005).

Discussion
We pose three questions in this paper: i) whether CUIs
are a more effective feature for word sense disam-
biguation than semantic types ii) whether the biomed-
ical specific feature CUIs are more effective than uni-
grams in biomedical text, and iii) whether disambigua-
tion accuracy with CUIs improves as the window of
context is increased.
We found that CUIs result in more accurate disam-
biguation than semantic types, and are comparable
with unigrams. Thus our answers to i) and ii) are
”yes” and ”no”. We believe CUI’s performed better
than semantic types because they give a more specific
description of the surrounding context.
We hypothesized that CUIs would also perform better
than unigrams, however, we found that this was not
the case. We believe that this might reflect the fact
that the CUIs we used as features were assigned by
MetaMap, which is a broad-coverage rule-based tool,
and may at times lack sufficient contextual informa-
tion to assign CUIs correctly. Thus, there is a cer-
tain amount of noise in the CUI features, and when
used as features they may have mislead the supervised



learning algorithm. While unigrams are potentially
ambiguous, the supervised learning algorithm may de-
tect patterns among individually ambiguous unigrams
that essentially disambiguate each other, and result in a
high level of performance. We find it very encouraging
though that CUIs assigned by a rule based approach re-
sult in a high level of disambiguation accuracy, which
suggests that even minor improvements to MetaMap
could significantly enhance the power of CUIs as fea-
tures in approaches such as these.
We also found that a wider window of context results
in higher disambiguation accuracy, so our answer to
iii) is ”yes”. Joshi, et. al. also reported that using the
entire abstract as a source of features improved upon
just using the sentence in which the target word oc-
curs, so our findings are in agreement. However, it
should be noted that the text from MedLine abstracts
is very focused and carefully crafted, so that this find-
ing may well be different for more general biomedical
texts. This remains an important issue for future work.

Conclusion
This papers introduces a supervised approach to word
sense disambiguation of biomedical text that is based
on using CUIs as assigned by MetaMap as features.
We compare our approach to previous work by Leroy
and Rindflesch, which uses semantic types as assigned
by MetaMap as features, and to previous work by
Joshi, et. al. and Liu, et. al. that relies on features
that are also employed when disambiguating general
English text.
Since MetaMap assigns CUIs (and other information)
to all terms in running text, we believe that it can serve
a very useful role as a generator of features for other
systems such as ours. In effect, MetaMap makes a
first pass through the data, identifies the terms in the
data, and assigns senses (CUIs) to those terms with
reasonable accuracy. We have shown that these CUIs
can be used as input to a supervised word sense dis-
ambiguation systems that is focused on obtaining very
high accuracy for a smaller number of words. Over
the longer term, we would like our results to feed back
into and enhance MetaMap, thus resulting in an itera-
tive approach that combines rule based on supervised
learning.
Finally, we remain interested in exploring whether
biomedical features such as CUIs and semantic types
can result in higher disambiguation accuracy than fea-
tures that are also used in general English text. We
believe that the UMLS and similar resources present
a great opportunity for obtaining features that are spe-
cific to the biomedical domain and will ultimately en-
hance the performance of word sense disambiguation
and other natural language processing tasks.

In conclusion, the results of this paper make three
points. First, incorporating more surrounding context
improves results. Second, using the CUIs extracted
from MetaMap perform better than semantic types also
extracted from MetaMap. And third, using CUIs are
comparable to the more general English unigram fea-
ture.
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