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fi and �i be the frequency and probability of ob-serving the ith feature vector, respectively. Then(f1; : : : ; fq) has a multinomial distribution with pa-rameters (N; �1; : : : ; �q). The � parameters, i.e., thejoint parameters, de�ne the joint probability distri-bution of the feature variables. These are the pa-rameters of the fully saturated model, the model inwhich the value of each variable directly a�ects thevalues of all the other variables. These parameterscan be estimated as maximum likelihood estimates(MLEs), such that the estimate of �i, b�i, is fiN .For these estimates to be reliable, each of the qpossible combinations of feature values must occurin the training sample. This is unlikely for NLP datasamples, which are often sparse and highly skewed(c.f., e.g. (Pedersen et al., 1996) and (Zipf, 1935)).However, if the data sample can be adequatelycharacterized by a less complex model, i.e., a modelin which there are fewer interactions between vari-ables, then more reliable parameter estimates can beobtained: In the case of decomposable models (Dar-roch et al., 1980; see below), the parameters of a lesscomplex model are parameters of marginal distribu-tions, so the MLEs involve frequencies of combina-tions of values of only subsets of the variables in themodel. How well a model characterizes the train-ing sample is determined by measuring the �t of themodel to the sample, i.e., how well the distributionde�ned by the model matches the distribution ob-served in the training sample.A good strategy for developing probabilistic clas-si�ers is to perform an explicit model search to se-lect the model to use in classi�cation. This pa-per presents the results of a comparative study ofsearch strategies and evaluation criteria for measur-ing model �t. We restrict the selection process to theclass of decomposable models (Darroch et al., 1980),since restricting model search to this class has manycomputational advantages.We begin with a short description of decompos-able models (in section 2). Search strategies (in sec-tion 3) and model evaluation (in section 4) are de-scribed next, followed by the results of an extensivedisambiguation experiment involving 12 ambiguous



words (in sections 5 and 6). We discuss related work(in section 7) and close with recommendations forsearch strategy and evaluation criterion when select-ing models for word{sense disambiguation.2 Decomposable ModelsDecomposable models are a subset of the classof graphical models (Whittaker, 1990) which arein turn a subset of the class of log-linear models(Bishop et al., 1975). Familiar examples of decom-posable models are Naive Bayes and n-gram models.They are characterized by the following properties(Bruce and Wiebe, 1994b):1. In a graphical model, variables are either inter-dependent or conditionally independent of oneanother.1 All graphical models have a graphi-cal representation such that each variable in themodel is mapped to a node in the graph, andthere is an undirected edge between each pairof nodes corresponding to interdependent vari-ables. The sets of completely connected nodes(i.e., cliques) correspond to sets of interdepen-dent variables. Any two nodes that are not di-rectly connected by an edge are conditionallyindependent given the values of the nodes onthe path that connects them.2. Decomposable models are those graphical mod-els that express the joint distribution as theproduct of the marginal distributions of thevariables in the maximal cliques of the graphicalrepresentation, scaled by the marginal distribu-tions of variables common to two or more ofthese maximal sets. Because their joint distri-butions have such closed-form expressions, theparameters can be estimated directly from thetraining data without the need for an iterative�tting procedure (as is required, for example, toestimate the parameters of maximum entropymodels; (Berger et al., 1996)).3. Although there are far fewer decomposablemodels than log-linear models for a given set offeature variables, it has been shown that theyhave substantially the same expressive power(Whittaker, 1990).The joint parameter estimate b�F1 ;F2;F3;Sf1 ;f2;f3;si is theprobability that the feature vector (f1; f2; f3; si) willbe observed in a training sample where each ob-servation is represented by the feature variables(F1; F2; F3; S). Suppose that the graphical represen-tation of a decomposable model is de�ned by the twocliques (i.e., marginals) (F1; S) and (F2; F3; S). Thefrequencies of these marginals, f(F1 = f1; S = si)and f(F2 = f2; F3 = f3; S = si), are su�cientstatistics in that they provide enough information1F2 and F5 are conditionally independent given S ifp(F2jF5; S) = p(F2jS).

to calculate maximum likelihood estimates of themodel parameters. MLEs of the model parametersare simply the marginal frequencies normalized bythe sample size N . The joint parameter estimate isformulated as a normalized product:b�F1 ;F2;F3;Sf1 ;f2;f3;si = f(F1=f1 ;S=si)N � f(F2=f2 ;F3=f3 ;S=si)Nf(S=si)N (1)Rather than having to observe the complete fea-ture vector (f1; f2; f3; si) in the training sample toestimate the joint parameter, it is only necessary toobserve the marginals (f1; si) and (f2; f3; si).3 Model Search StrategiesThe search strategies presented in this paper arebackward sequential search (BSS) and forward se-quential search (FSS). Sequential searches evaluatemodels of increasing (FSS) or decreasing (BSS) lev-els of complexity, where complexity is de�ned by thenumber of interactions among the feature variables(i.e., the number of edges in the graphical represen-tation of the model).A backward sequential search (BSS) begins bydesignating the saturated model as the currentmodel. A saturated model has complexity leveli = n(n�1)2 , where n is the number of feature vari-ables. At each stage in BSS we generate the set ofdecomposable models of complexity level i � 1 thatcan be created by removing an edge from the cur-rent model of complexity level i. Each member ofthis set is a hypothesized model and is judged bythe evaluation criterion to determine which modelresults in the least degradation in �t from the cur-rent model|that model becomes the current modeland the search continues. The search stops when ei-ther (1) every hypothesized model results in an un-acceptably high degradation in �t or (2) the currentmodel has a complexity level of zero.A forward sequential search (FSS) begins by des-ignating the model of independence as the currentmodel. The model of independence has complexitylevel i = 0 since there are no interactions among thefeature variables. At each stage in FSS we generatethe set of decomposable models of complexity leveli + 1 that can be created by adding an edge to thecurrent model of complexity level i. Each member ofthis set is a hypothesized model and is judged by theevaluation criterion to determine which model re-sults in the greatest improvement in �t from the cur-rent model|that model becomes the current modeland the search continues. The search stops wheneither (1) every hypothesized model results in anunacceptably small increase in �t or (2) the currentmodel is saturated.For sparse samples FSS is a natural choice sinceearly in the search the models are of low complexity.



The number of model parameters is small and theyhave more reliable estimated values. On the otherhand, BSS begins with a saturated model whose pa-rameter estimates are known to be unreliable.During both BSS and FSS, model selection alsoperforms feature selection. If a model is selectedwhere there is no edge connecting a feature variableto the classi�cation variable then that feature is notrelevant to the classi�cation being performed.4 Model Evaluation CriteriaEvaluation criteria fall into two broad classes, signi�-cance tests and information criteria. This paper con-siders two signi�cance tests, the exact conditionaltest (Kreiner, 1987) and the Log{likelihood ratiostatistic G2 (Bishop et al., 1975), and two informa-tion criteria, Akaike's Information Criterion (AIC)(Akaike, 1974) and the Bayesian Information Crite-rion (BIC) (Schwarz, 1978).4.1 Signi�cance testsThe Log-likelihood ratio statistic G2 is de�ned as:G2 = 2� qXi=1 fi � log fiei (2)where fi and ei are the observed and expected countsof the ith feature vector, respectively. The observedcount fi is simply the frequency in the training sam-ple. The expected count ei is calculated from thefrequencies in the training data assuming that thehypothesized model, i.e., the model generated in thesearch, adequately �ts the sample. The smaller thevalue of G2 the better the �t of the hypothesizedmodel.The distribution of G2 is asymptotically approx-imated by the �2 distribution (G2 � �2) with ad-justed degrees of freedom (dof) equal to the numberof model parameters that have non-zero estimatesgiven the training sample. The signi�cance of amodel is equal to the probability of observing itsreference G2 in the �2 distribution with appropriatedof. A hypothesized model is accepted if the signif-icance (i.e., probability) of its reference G2 value isgreater than, in the case of FSS, or less than, in thecase of BSS, some pre{determined cuto�, �.An alternative to using a �2 approximation is tode�ne the exact conditional distribution of G2. Theexact conditional distribution of G2 is the distribu-tion of G2 values that would be observed for com-parable data samples randomly generated from themodel being tested. The signi�cance of G2 based onthe exact conditional distribution does not rely on anasymptotic approximation and is accurate for sparseand skewed data samples (Pedersen et al., 1996).

4.2 Information criteriaThe family of model evaluation criteria known asinformation criteria have the following expression:IC� = G2 � �� dof (3)where G2 and dof are de�ned above. Members ofthis family are distinguished by their di�erent valuesof �. AIC corresponds to � = 2. BIC correspondsto � = log(N ), where N is the sample size.The various information criteria are an alterna-tive to using a pre-de�ned signi�cance level (�) tojudge the acceptability of a model. AIC and BIC re-ward good model �t and penalize models with largenumbers of parameters. The parameter penalty isexpressed as � � dof , where the size of the penaltyis the adjusted degrees of freedom, and the weightof the penalty is controlled by �.During BSS the hypothesized model with thelargest negative IC� value is selected as the cur-rent model of complexity level i � 1, while duringFSS the hypothesized model with the largest pos-itive IC� value is selected as the current model ofcomplexity level i + 1. The search stops when theIC� values for all hypothesized models are greaterthan zero in the case of BSS, or less than zero in thecase of FSS.5 Experimental DataThe sense{tagged text and feature set used inthese experiments are the same as in (Bruce et al.,1996). The text consists of every sentence from theACL/DCI Wall Street Journal corpus that containsany of the nouns interest, bill, concern, and drug,any of the verbs close, help, agree, and include, orany of the adjectives chief, public, last, and common.The extracted sentences have been hand{taggedwith senses de�ned in the Longman Dictionary ofContemporary English (LDOCE). There are be-tween 800 and 3,000 sense{tagged sentences for eachof the 12 words. This data was randomly dividedinto training and test samples at a 10:1 ratio.A sentence with an ambiguous word is representedby a feature set with three types of contextual fea-ture variables:2 (1) The morphological feature (E)indicates if an ambiguous noun is plural or not. Forverbs it indicates the tense of the verb. This featureis not used for adjectives. (2) The POS featureshave one of 25 possible POS tags, derived from the�rst letter of the tags in the ACL/DCI WSJ cor-pus. There are four POS feature variables repre-senting the POS of the two words immediately pre-ceding (L1; L2) and following (R1; R2) the ambigu-ous word. (3) The three binary collocation-speci�cfeatures (C1; C2; C3) indicate if a particular word oc-curs in a sentence with an ambiguous word.2An alternative feature set for this data is utilizedwith an exemplar{based learning algorithm in (Ng andLee, 1996).



The sparse nature of our data can be illustratedby interest. There are 6 possible values for the sensevariable. Combined with the other feature variablesthis results in 37,500,000 possible feature vectors (orjoint parameters). However, we have a training sam-ple of only 2,100 instances.6 Experimental ResultsIn total, eight di�erent decomposable models wereselected via a model search for each of the 12 words.Each of the eight models is due to a di�erent com-bination of search strategy and evaluation criterion.Two additional classi�ers were evaluated to serve asbenchmarks. The default classi�er assigns every in-stance of an ambiguous word with its most frequentsense in the training sample. The Naive Bayes clas-si�er uses a model that assumes that each contex-tual feature variable is conditionally independent ofall other contextual variables given the value of thesense variable.6.1 Accuracy comparisonThe accuracy3 of each of these classi�ers for eachof the 12 words is shown in Figure 1. The highestaccuracy for each word is in bold type while any ac-curacies less than the default classi�er are italicized.The complexity of the model selected is shown inparenthesis. For convenience, we refer to model se-lection using, for example, a search strategy of FSSand the evaluation criterion AIC as FSS AIC.Overall AIC selects the most accurate models dur-ing both BSS and FSS. BSS AIC �nds the most ac-curate model for 6 of 12 words while FSS AIC �ndsthe most accurate for 4 of 12 words. BSS BIC andthe Naive Bayes �nd the most accurate model for 3of 12 words. Each of the other combinations �ndsthe most most accurate model for 2 of 12 words ex-cept for FSS exact conditional which never �nds themost accurate model.Neither AIC nor BIC ever selects a model thatresults in accuracy less than the default classi�er.However, FSS exact conditional has accuracy lessthan the default for 6 of 12 words and BSS exactconditional has accuracy less than the default for 3of 12 words. BSS G2 � �2 and FSS G2 � �2 haveless than default accuracy for 2 of 12 and 1 of 12words, respectively.The accuracy of the signi�cance tests vary greatlydepending on the choice of �. Of the various � valuesthat were tested, .01, .05, .001, and .0001, the valueof .0001 was found to produce the most accuratemodels. Other values of � will certainly led to otherresults. The information criteria do not require thesetting of any such cut-o� values.A low complexity model that results in high accu-racy disambiguation is the ultimate goal. Figure 13The percentage of ambiguous words in a held outtest sample that are disambiguated correctly.

shows that BIC and G2 � �2 select lower complexitymodels than either AIC or the exact conditional test.However, both appear to sacri�ce accuracy whencompared to AIC. BIC assesses a greater parame-ter penalty (� = log(N )) than does AIC (� = 2),causing BSS BIC to remove more interactions thanBSS AIC. Likewise, FSS BIC adds fewer interactionsthan FSS AIC. In both cases BIC selects modelswhose complexity is too low and adversely a�ectsaccuracy when compared to AIC.The Naive Bayes classi�er achieves a high levelof accuracy using a model of low complexity. Infact, while the Naive Bayes classi�er is most accu-rate for only 3 of the 12 words, the average accu-racy of the Naive Bayes classi�ers for all 12 wordsis higher than the average classi�cation accuracy re-sulting from any combination of the search strategiesand evaluation criteria. The average complexity ofthe Naive Bayes models is also lower than the av-erage complexity of the models resulting from anycombination of the search strategies and evaluationcriteria except BSS BIC and FSS BIC.6.2 Search strategy and accuracyAn evaluation criterion that �nds models of simi-lar accuracy using either BSS or FSS is to be pre-ferred over one that does not. Overall the infor-mation criteria are not greatly a�ected by a changein the search strategy, as illustrated in Figure 3.Each point on this plot represents the accuracy ofthe models selected for a word by the same evalua-tion criterion using BSS and FSS. If this point fallsclose to the line BSS = FSS then there is littleor no di�erence between the accuracy of the modelsselected during FSS and BSS.AIC exhibits only minor deviation from BSS =FSS. This is also illustrated by the fact that theaverage accuracy between BSS AIC and FSS AIConly di�ers by .0013. The signi�cance tests, espe-cially the exact conditional, are more a�ected bythe search strategy. It is clear that BSS exact condi-tional is much more accurate than FSS exact condi-tional. FSS G2 � �2 is slightly more accurate thanBSS G2 � �2.6.3 Feature selection: interestFigure 2 shows the models selected by the variouscombinations of search strategy and evaluation cri-terion for interest.During BSS, AIC removed feature L2 from themodel, BIC removed L1; L2; R1 and R2, G2 � �2removed no features, and the exact conditional testremoved C2. During FSS, AIC never added R2, BICnever added C1; C3; L1; L2 and R2, and G2 � �2 andthe exact conditional test added all the features.G2 � �2 is the most consistent of the evaluationcriteria in feature selection. During both BSS andFSS it found that all the features were relevant toclassi�cation.
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Figure 3: E�ect of Search StrategyAIC found seven features to be relevant in bothBSS and FSS. When using AIC, the only di�erencein the feature set selected during FSS as comparedto that selected during BSS is the part of speechfeature that is found to be irrelevant: during BSS L2is removed and during FSS R2 is never added. Allother criteria exhibit more variation between FSSand BSS in feature set selection.6.4 Model selection: interestHere we consider the results of each stage of thesequential model selection for interest. Figures 4through 7 show the accuracy and recall4 for thebest �tting model at each level of complexity in thesearch. The rightmost point on each plot for eachevaluation criterion is the measure associated withthe model ultimately selected.These plots illustrate that BSS BIC selects mod-els of too low complexity. In Figure 4 BSS BIC has\gone past" much more accurate models than theone it selected. We observe the related problem forFSS BIC. In Figure 6 FSS BIC adds too few in-teractions and does not select as accurate a modelas FSS AIC. The exact conditional test su�ers fromthe reverse problem of BIC. BSS exact conditionalremoves only a few interactions while FSS exact con-ditional adds many interactions, and in both casesthe resulting models have poor accuracy.The di�erence between BSS and FSS is clearly il-4The percentage of ambiguous words in a held out testsample that are disambiguated, correctly or not. A wordis not disambiguated if the model parameters needed toassign a sense tag cannot be estimated from the trainingsample.

lustrated by these plots. AIC and BIC eliminate in-teractions that have high dof's (and thus have largenumbers of parameters) much earlier in BSS thanthe signi�cance tests. This rapid reduction in thenumber of parameters results in a rapid increasesin accuracy (Figure 4) and recall for AIC and BIC(Figure 5) relative to the signi�cance tests as theyproduce models with smaller numbers of parametersthat can be estimated more reliably.However, during the early stages of FSS the num-ber of parameters in the models is very small and thedi�erences between the information criteria and thesigni�cance tests are minimized. The major di�er-ence among the criteria in Figures 6 and 7 is that theexact conditional test adds many more interactions.7 Related WorkStatistical analysis of NLP data has often been lim-ited to the application of standard models, suchas n-gram (Markov chain) models and the NaiveBayes model. While n-grams perform well in part{of{speech tagging and speech processing, they re-quire a �xed interdependency structure that is inap-propriate for the broad class of contextual featuresused in word{sense disambiguation. However, theNaive Bayes classi�er has been found to performwell for word{sense disambiguation both here andin a variety of other works (e.g., (Bruce and Wiebe,1994a), (Gale et al., 1992), (Leacock et al., 1993),and (Mooney, 1996)).In order to utilize models with more complicatedinteractions among feature variables, (Bruce andWiebe, 1994b) introduce the use of sequential modelselection and decomposable models for word{sensedisambiguation.5Alternative probabilistic approaches have involvedusing a single contextual feature to perform disam-biguation (e.g., (Brown et al., 1991), (Dagan et al.,1991), and (Yarowsky, 1993) present techniques foridentifying the optimal feature to use in disambigua-tion). Maximum Entropy models have been used toexpress the interactions amongmultiple feature vari-ables (e.g., (Berger et al., 1996)), but within thisframework no systematic study of interactions hasbeen proposed. Decision tree induction has beenapplied to word-sense disambiguation (e.g. (Black,1988) and (Mooney, 1996)) but, while it is a type ofmodel selection, the models are not parametric.5They recommended a model selection procedure us-ing BSS and the exact conditional test in combinationwith a test for model predictive power. In their proce-dure, the exact conditional test was used to guide thegeneration of new models and the test of model predic-tive power was used to select the �nal model from amongthose generated during the search.



8 ConclusionSequential model selection is a viable means ofchoosing a probabilistic model to perform word{sense disambiguation. We recommend AIC as theevaluation criterion during model selection due tothe following:1. It is di�cult to set an appropriate cuto� value(�) for a signi�cance test.2. The information criteria AIC and BIC are morerobust to changes in search strategy.3. BIC removes too many interactions and resultsin models of too low complexity.The choice of search strategy when using AIC isless critical than when using signi�cance tests. How-ever, we recommend FSS for sparse data (NLP datais typically sparse) since it reduces the impact of veryhigh degrees of freedom and the resultant unreliableparameter estimates on model selection.The Naive Bayes classi�er is based on a low com-plexity model that is shown to lead to high accuracy.If feature selection is not in doubt (i.e., it is fairlycertain that all of the features are somehow relevantto classi�cation) then this is a reasonable approach.However, if some features are of questionable valuethe Naive Bayes model will continue to utilize themwhile sequential model selection will disregard them.All of the search strategies and evaluation crite-ria discussed are implemented in the public domainprogram CoCo (Badsberg, 1995).ReferencesH. Akaike. 1974. A new look at the statistical modelidenti�cation. IEEE Transactions on AutomaticControl, AC-19(6):716{723.J. Badsberg. 1995. An Environment for GraphicalModels. Ph.D. thesis, Aalborg University.A. Berger, S. Della Pietra, and V. Della Pietra.1996. A maximum entropy approach to naturallanguage processing. Computational Linguistics,22(1):39{71.Y. Bishop, S. Fienberg, and P. Holland. 1975.Discrete Multivariate Analysis. The MIT Press,Cambridge, MA.E. Black. 1988. An experiment in computationaldiscrimination of English word senses. IBM Jour-nal of Research and Development, 32(2):185{194.P. Brown, S. Della Pietra, and R. Mercer. 1991.Word sense disambiguation using statistical meth-ods. In Proceedings of the 29th Annual Meetingof the Association for Computational Linguistics,pages 264{304.R. Bruce and J. Wiebe. 1994a. A new approachto word sense disambiguation. In Proceedings of
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Default Naive Search G2 � �2 exact AIC BICBayes � = .0001 � = .0001agree .7660 .9362 (8) BSS .8936 (8) .9149 (10) .9220 (15) .9433 (9)FSS .9291 (12) .9007 (15) .9362 (13) .9433 (7)bill .7090 .8657 (8) BSS .6567 (22) .6194 (25) .8507 (26) .8806 (7)FSS .7985 (20) .6866 (28) .8582 (20) .8433 (11)chief .8750 .9643 (7) BSS .9464 (6) .9196 (17) .9643 (14) .9554 (6)FSS .9464 (6) .9196 (18) .9643 (14) .9643 (7)close .6815 .8344 (8) BSS .7580 (12) .7516 (13) .8408 (13) .7580 (3)FSS .7898 (13) .7006 (19) .8408 (10) .7580 (3)common .8696 .9130 (7) BSS .9217 (4) .8696 (10) .8957 (7) .8783 (2)FSS .9217 (4) .7391 (16) .8957 (7) .8783 (2)concern .6510 .8725 (8) BSS .8255 (5) .7651 (15) .8389 (16) .7181 (6)FSS .8255 (17) .7047 (24) .8255 (13) .8389 (9)drug .6721 .8279 (8) BSS .8115 (10) .8443 (7) .8443 (14) .7787 (9)FSS .8115 (10) .5164 (19) .8115 (12) .7787 (9)help .7266 .7698 (8) BSS .7410 (7) .7698 (6) .7914 (6) .7554 (4)FSS .7554 (3) .7770 (9) .7914 (4) .7554 (4)include .9325 .9448 (8) BSS .9571 (6) .9571 (3) .9387 (16) .9387 (8)FSS .9571 (6) .7423 (22) .9448 (9) .9325 (9)interest .5205 .7336 (8) BSS .6885 (24) .4959 (24) .7418 (21) .6311 (6)FSS .7172 (22) .4590 (32) .7336 (15) .6926 (4)last .9387 .9264 (7) BSS .9080 (8) .8865 (9) .9417 (14) .9417 (9)FSS .8804 (15) .8466 (18) .9417 (14) .9387 (2)public .5056 .5843 (7) BSS .5393 (7) .5393 (9) .5169 (8) .5506 (3)FSS .5281 (6) .5506 (11) .5281 (6) .5506 (3)average .7373 .8477 (8) BSS .8039 (10) .7778 (12) .8406 (14) .8108 (6)FSS .8217 (11) .7119 (19) .8393 (11) .8229 (6)Figure 1: Accuracy comparisonCriterion Search ModelG2 � �2 BSS (C1EL1L2S)(C1C2C3L1L2S)(C1C2C3R1S)FSS (C2EL1L2S)(C1R1R2S)(C2C3L1L2S)(C3R1R2S)Exact BSS (C1EL1L2S)(C1L1L2R1R2S)(C3L1L2R1R2S)FSS (C1EL1L2R1R2S)(C3L1L2R1R2S)(C2EL1L2R1R2S)AIC BSS (C1C2C3EL1S)(C1C3R1S)(C1C3R2S)FSS (EL1L2S)(C2EL2S)(C1R1S)(C3L1S)(C3R1S)BIC BSS (C2ES)(C1C3S)FSS (C2ES)(R1S)Naive Bayes none (C1S)(C2S)(C3S)(ES)(L1S)(L2S)(R1S)(R2S)Figure 2: Models selected: interest
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