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Abstract. Ambiguous person names are a problem in many forms of
written text, including that which is found on the Web. In this paper
we explore the use of unsupervised clustering techniques to discriminate
among entities named in Web pages. We examine three main issues via
an extensive experimental study. First, the effect of using a held–out set
of training data for feature selection versus using the data in which the
ambiguous names occur. Second, the impact of using different measures
of association for identifying lexical features. Third, the success of differ-
ent cluster stopping measures that automatically determine the number
of clusters in the data.

1 Introduction

As the Web increases in coverage, there is a growing problem of ambiguity,
since different people or organizations can share the same name. In this paper
we evaluate the effectiveness of unsupervised methodologies that cluster short
contexts based on their similarity. We apply these techniques to the problem of
discriminating among named entities as found in Web pages.

These techniques are based on the Distributional Hypothesis (e.g., [3], [6])
which holds that words that occur in similar contexts will tend to have similar
meanings. Our approach is to cluster Web contexts that contain an ambiguous
name such that each resulting cluster represents a particular entity. These con-
texts are approximately 100 word–long passages of text taken from Web pages,
where an ambiguous name is located in the middle of the context.

These methods have previously been applied to discriminating among the
meanings of ambiguous names and words, or grouping short contexts based on
their topic. Specific examples where these methods have been applied include
word sense discrimination (e.g., [11], [12]), email clustering (e.g., [4]), and named
entity discrimination (e.g., [10]).

The techniques we will describe are language independent (c.f., [9]) and as
such only rely on lexical features that can be identified in raw corpora or Web
pages. They do not incorporate any syntactic or linguistic information, nor do
they utilize any manually created or maintained knowledge sources. As such they
are ideal for Web contexts, which are often not well formed and include many
strings that are not typically a part of knowledge bases or dictionaries. While our
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evaluation is done with English language texts, these methods can be applied to
Web contexts in any other language.

This paper reviews our methods of feature selection, paying particular atten-
tion to several different measures of association we evaluate. It then outlines the
cluster stopping methods we use to predict the number of clusters automati-
cally, and then describes how these clusters can be evaluated. We then discuss
our experimental data and the results we obtained.

2 Lexical Features

A corpus of feature selection data is used to identify the bigram features that
will represent the Web contexts to be clustered (i.e., the evaluation or test data).
The feature selection data may be the evaluation data itself, or a separate corpus
of held out training data that will not be clustered.

Bigrams are ordered pairs of words that occur next to each other. These are
selected by identifying which of these pairs occur together more often than we
would expect by chance. We compare Fisher’s Exact Test[7], the Log-Likelihood
Ratio[1], the Odds Ratio, and Pointwise Mutual Information (PMI).

All of these measures are based on word and bigram counts obtained from the
feature selection data. Figure 1 summarizes the notation that we use to represent
the bigram counts, which are stored in a 2 × 2 contingency table. Each bigram

cat ¬cat totals
big n11= 10 n12= 20 n1+= 30

¬big n21= 40 n22= 930 n2+= 970
totals n+1=50 n+2=950 n++=1000

Fig. 1. Representation of Bigram Counts

observed in the feature selection data is considered a candidate bigram and has a
table associated with it. In Figure 1 the candidate bigram is big cat. The value of
n11 shows how many times big cat occurs in the corpus. The value of n12 shows
how often bigrams occur where big is the first word and cat is not the second.
Likewise, n21 indicates how many bigrams occur where big is not the first word
but cat is the second Finally, n22 is the count of bigrams where neither the first
word is big nor is the second word cat. The counts in n1+ and n+1 indicate how
often big and cat occur as the first and second words of any bigram in the corpus.
The total number of bigrams in the corpus is represented by n++, which is the
sum of all the interior cell counts.

We make use of a stop–list to exclude bigrams made up of non-content words.
We create our stop list automatically by computing the Inverse Document Fre-
quency (IDF) for each word that occurs in the feature selection data. This is
equal to the number of Web contexts in the feature selection data divided by
the number of Web contexts in which the given word occurs. Any word with
an IDF greater than or equal to 10 is considered a stop word since this means
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that the word occurs in 10% or more of the contexts, and may be of limited
value in discrimination since it occurs so widely. Any bigram consisting of one
or two stop words or that does not exceed a given frequency cutoff is not used as
a feature. Below we describe each of the measures that we used for identifying
lexical features.

Pointwise Mutual Information is defined as shown in Equation 1.

PMI = log
n11

m11
= log

n11 ∗ n++

n1+ ∗ n+1
(1)

PMI is simply the ratio of the observed number of times the candidate bigram
occurs (n11), divided by the number of times this bigram would be expected to
occur if the words in the bigram were truly independent (m11). The expected
value is calculated by taking the the product of the marginal totals n1+ and n+1
and dividing by the sample size n++.

If the observed value is much greater than the expected value, this means
that the bigram has occurred more often than would be expected by chance,
and the pair of words is strongly associated and should be selected as a fea-
ture. A bigram is used as a feature if it has a PMI score of 5 or above, which
means intuitively that the bigram has occurred at a rate 5 times expected by
chance.

PMI suffers from a well known bias towards bigrams that are made up of
words that only occur with each other, and in fact gives the highest score to any
bigram that only occurs 1 time, and where the words that make up the bigram
only occur in that bigram. While this is not desirable behavior in general, when
identifying significant bigrams this can actually be a positive characteristic. In
many cases the distribution of identities in ambiguous Web names is very skewed,
and the features associated with one name may dominate to the point where
the features of the other name can not even be recognized. However, if there
is very distinct bigram that occurs with a low frequency name, it can still be
identified by PMI since it will rise to the top even with relatively low frequency.

The Log–Likelihood Ratio (G2) is defined as shown in Equation 2.

G2 = 2 ∗
∑

i,j

nij ∗ log ∗ nij

mij
(2)

where nij is the observed count of bigrams, where i and j are 1 or 2 and are
defined as shown in Figure 1. The value of G2 indicates the degree to which
the occurrence of that bigram deviates from what would be expected by chance.
Thus, the larger the G2 value the more likely that the words in the bigram are
not independent. Any bigram with a G2 value greater than or equal to 3.84 is
considered a feature. This is the value associated with a 95% probability that
the words in the bigram are not independent. This value comes from the Chi–
squared distribution, which approximates the distribution of the Log–Likelihood
Ratio and can therefore be used as a source of critical values.
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Note that PMI is in fact one term in the G2 equation (when i and j are
both equal to 1). However, rather than focusing on just the count and expected
value of the candidate bigram, G2 considers the counts of the other bigrams
in the sample as well. This allows for a formal test of statistical significance,
which answers the question of how likely it would be for the candidate bigram
to be drawn from the given sample, if the words in the candidate bigram are
truly independent.

Fisher’s Exact Test([2], [7]) computes the probability that an observed bi-
gram is statistically significant by exhaustively computing the probability of
every possible contingency table that would lead to the marginal totals that are
in the observed table.

When performing Fisher’s Exact Test on a 2×2 contingency table the marginal
totals n1+ and n+1 and the sample size n++ must be fixed at their observed
values. Given this, the value of n11 determines the value of n12, n21 and n22. All of
the possible 2×2 tables that adhere to the fixed marginal totals are generated and
the probability of each table is computed using the hyper-geometric distribution
as is shown in Equation 3.

P =
1

n11!n12!n21!n22!
∗ n1+!n2+!n+1!n+2!

n++!
(3)

A left sided test will tell how likely it is for a bigram to occur less frequently
than the one we have observed with the given marginal totals. Thus, a high
value of P means that the bigram is statistical significant, since it is much
more likely that bigrams would occur less frequently that we observed if they
were independent. We can calculate P by adding the probabilities of all the
possible 2 × 2 contingency tables where n11 is less than the observed value.
Any candidate bigram with a total probability greater than or equal to 0.95
is considered a feature, which is equivalent to the threshold used in the log–
likelihood ratio.

The Odds Ratio is defined as shown in Equation 4.

odds =
n11
n21
n12
n22

=
n11 ∗ n22

n21 ∗ n12
(4)

The numerator is the odds of big cat occurring versus X cat, where X can
be any word other than big. The denominator is the odds of big Y occurring,
where Y can be any word other than cat, versus any bigram that does not
include big as the first word and cat as the second word. This ratio can also be
expressed as the cross product of the counts in the contingency table, as shown
in Equation 4. The higher this ratio, the greater the odds that the candidate
bigram is significant. We use a value of 1,000 as our threshold for the odds ratio.



Unsupervised Discrimination of Person Names in Web Contexts 303

3 Second Order Context Representation

We represent the Web contexts to be clustered using a second order representa-
tion that follows from [12] and is based directly on [11].

We create a matrix from the bigrams identified as features, where the rows
represent the first word in a bigram, and the columns represent the second.
The cell values are the scores found for the bigrams by whichever of the mea-
sures above were used. Each row of this matrix forms a vector that represents
the words that follow that particular word in the bigrams identified as fea-
tures.

Each context to be clustered is represented such that each word in the context
for which a row vector exists is replaced by that vector. Recall that in our fea-
ture selection process we removed any bigrams that contained one or two stop
words, so the words in the contexts that will be represented are content words.
After the vectors are substituted for the words, any words for which there are
no corresponding vectors are removed, and the vectors are averaged together to
represent the context. Each context is represented by such a vector, and these
become the input to the clustering algorithm.

4 Cluster Stopping

We use the method of Repeated Bisections for clustering. This is a hybrid method
that repeatedly bisects the contexts so as to maximize a given criterion function.
We have used the I2 internal criterion function, which is a measure of within–
cluster (intra) similarity. This measures the distance of all the contexts in that
cluster to the centroid, and the goal is to find clusters where that distance is
minimized.

While there are existing approaches that carry out word sense discrimination
(e.g., [5], [11], [12]), these have required that the user specify in advance the
number of clusters to be discovered. This is a significant limitation, since in gen-
eral a user will not know this number, and in fact discovering it might be a goal
of the experiment in the first place.

Instead, we rely on three cluster stopping measures introduced in [8] to de-
termine the number of clusters automatically. These include the Adapted Gap
Statistic [13], the PK2 measure, and the PK3 measure. As such we do not need
to specify ahead of time the number of clusters that we expect to find, this is
determined automatically. We find a solution with 1 cluster, then 2 clusters, and
so forth, up to a number of clusters where there is no further improvement in
the quality of the solution. Then, we examine the trend of criterion function
scores (I2) for these successive solutions, and identify the point at which adding
to the number of clusters does not significantly improve upon the quality of the
solution.

The PK2 measure compares the value of the criterion function for successive
pairs of clusters k and k − 1. When this ratio approaches 1, then the creation of
additional clusters is not improving the quality of the solution, and should be
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stopped. The PK3 measure takes the ratio of the criterion function value at k
with the sum of the criterion functions at k − 1 and k + 1. PK3 will be close
to 1 if these three values form a line, meaning that the criterion function is still
improving, since the line will break at the point where a plateau exists and the
scores no longer improve. When using PK2 or PK3, we select the value of k that
is closest to but still greater than one standard deviation in the value of the PK2
or PK3 score.

The Gap Statistic compares the observed and expected values of the criterion
function. The expected values are estimated from a randomly generated data
set that maintins the same marginal totals as the observed data. Thus, this
data represents the same population as that of the observed data, except that
it is made up of noise. When random data is clustered the criterion function
should exhibit a relatively consistent score as k increases, which will quantify
the amount of noise present in the data. Selecting the number of clusters reduces
to finding the point where the difference between criterion function score of the
observed and expected values is greatest. This is the point at which the observed
data is least like noise, and the point where the optimal number of clusters
exists.

5 Experimental Data

We have manually disambiguated Web contexts obtained from the Google Search
Engine API to create gold standard data for five different ambiguous names:

Richard Alston, Sarah Connor, George Miller, Ted Pedersen, Michael
Collins

Web contexts for each of these names was collected in May 2006 using the
Google API, as supported by the CPAN module WebService-GoogleHack-0.15.
The top 50 html (or htm) pages found when searching for each of these names
were retrieved, and any links from those pages to pages in the same domain were
followed and those pages retrieved. However, the links on the second level pages
were not traversed.

All the pages retrieved were formatted and cleaned as follows. First, all HTML
tags were stripped away using the CPAN module HTML-Format-2.04. This data
was divided into contexts using the freely available NameConflate program (ver-
sion 0.16)1. Each context contains a single ambiguous name. Note that contexts
may contain variants of the names listed above, such as M. Collins or Ted A.
Pedersen.

Each Web context consists of approximately 100 total words, where the am-
biguous name is located in the center of the context. Table 1 shows the number of
contexts associated with each name, and the distribution of identities associated
with the contexts:

1 http://www.umn.edu/home/tpederse/tools.html
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Table 1. Name Data

Name: Identity Count % Name: Identity Count %
Richard Alston: 247 Michael Collins: 359

Choreographer 176 71.3 Irish Leader 269 74.9
Senator (Australia) 71 28.7 MIT Professor 41 11.4

Sarah Connor: 150 Wisconsin Professor 32 8.9
German Singer 109 72.7 NASA Astronaut 17 4.7
Terminator Character 41 27.3 Ted Pedersen: 333

George Miller: 286 Minnesota Professor 255 76.6
Congressman (USA) 217 75.9 Children’s Author 43 12.9
Film Director (Australia) 57 19.9 Son of Sea Captain 25 7.5
Princeton Professor 12 4.2 TV Writer 10 3.00

6 Evaluation

After the clusters have been discovered, they are aligned with the gold standard
data such that the agreement between the two is maximized. Each discovered
cluster is aligned to a single gold standard cluster, and it is possible that the
number of discovered clusters will be more or less than the gold standard amount.

The quality of the clustering is scored using the F–measure, which is the
harmonic mean of precision and recall. We define precision to be the number
of contexts that are assigned to their correct class, divided by the number of
contexts that are assigned a class. Recall is defined as the number of contexts
assigned to their correct class, divided by the total number of contexts. Precision
and recall differ because the clustering algorithm may decide not to cluster a
context, and if the clustering algorithm creates more clusters than there are in
the human gold standard, the extra clusters that remain after alignment with
the human gold standard are discarded.

Thus, the F-measure provides an indication of how well the clustering is being
carried out both in terms of discovering the number of clusters, and then in terms
of the quality of the resulting clusters.

Note that in clustering if all of the Web contexts for a given name are assigned
to the same cluster, the F–Measure will be equal to the percentage of the majority
identity in the data. Thus, this serves as a baseline measure to which we can
compare.

7 Experimental Results

For each of the five names in the evaluation data, we carried out a number of
experimental variations. The feature selection data was either the contexts to be
clustered themselves, or contexts (articles) from the New York Times portion of
the English GigaWord Corpus. We used the first 25,000 and 75,000 contexts as
our two sets of feature selection data. We also experimented with four different
measures of association for feature selection, and three different methods of
cluster stopping.
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Table 2. ALSTON results : 2 identities, majority 71.26

nyt-25 nyt-75 nyt-25 nyt-75 nyt-25 nyt-75 test test
5 5 10 10 20 20 2 5

Fisher
gap 3 68.32 2 88.66 3 77.64 3 73.33 3 80.19 3 72.68 1 71.26 1 70.99
pk2 3 68.32 2 88.66 3 77.64 3 73.33 3 80.19 3 72.68 41 16.36 25 17.58
pk3 3 68.32 2 88.66 3 77.64 3 73.33 3 80.19 3 72.68 21 27.27 10 35.18
man 2 90.28 2 88.66 2 99.19 2 88.66 2 99.10 2 88.66 2 81.38 2 60.45
ll
gap 4 73.60 3 91.97 4 71.83 3 85.71 4 70.83 5 67.18 1 71.26 1 70.99
pk2 3 90.83 5 72.02 4 71.83 5 67.72 4 70.83 5 67.18 8 60.06 5 47.59
pk3 4 73.60 3 91.97 4 71.83 2 95.14 4 70.83 2 93.12 4 71.17 7 47.59
man 2 92.31 2 88.26 2 92.71 2 95.14 2 91.90 2 93.12 2 79.76 2 53.55
odds
gap 1 71.26 1 71.26 1 71.26 1 71.26 1 71.26 1 71.26 6 58.33 1 72.08
pk2 5 60.10 5 59.38 5 58.45 4 70.16 5 57.67 4 66.15 5 55.64 5 44.25
pk3 3 50.66 3 65.48 5 58.45 4 70.16 6 55.43 4 66.15 6 58.33 7 46.30
man 2 58.70 2 60.32 2 90.28 2 83.00 2 68.42 2 85.02 2 72.06 2 58.33
pmi
gap 3 72.49 3 69.47 3 77.83 3 72.16 3 78.73 3 71.35 1 71.26 1 70.99
pk2 3 72.49 3 69.47 3 77.83 3 72.16 3 78.73 3 71.35 48 13.58 32 18.91
pk3 3 72.49 3 69.47 3 77.83 2 89.47 3 78.73 2 89.47 5 64.48 31 8.91
man 2 91.90 2 89.07 2 99.19 2 89.47 2 99.19 2 89.47 2 88.66 2 83.98

Table 3. CONNOR results : 2 identities, majority 72.67

nyt-25 nyt-75 nyt-25 nyt-75 nyt-25 nyt-75 test test
5 5 10 10 20 20 2 5

Fisher
gap 1 72.67 2 57.33 2 66.00 2 62.00 1 72.67 3 72.22 3 58.91 1 69.57
pk2 3 79.20 2 57.33 4 75.21 4 70.16 4 76.73 3 72.22 4 58.91 4 43.97
pk3 3 79.20 2 57.33 4 75.21 4 70.16 4 76.73 2 62.00 6 55.90 4 43.97
man 2 66.00 2 57.33 2 66.00 2 62.00 2 64.00 2 62.00 2 52.38 2 49.28
ll
gap 2 50.00 2 50.00 28 40.43 7 52.94 13 48.48 2 50.00 1 70.07 1 69.57
pk2 3 52.55 2 50.00 3 52.01 2 50.00 3 66.92 2 50.00 4 61.72 4 37.07
pk3 2 50.00 2 50.00 2 50.00 2 50.00 2 50.00 2 50.00 9 50.73 2 49.28
man 2 50.00 2 50.00 2 50.00 2 50.00 2 50.00 2 50.00 2 51.02 2 49.28
odds
gap 1 72.67 1 72.67 1 72.67 1 72.67 1 72.67 6 80.74 1 70.07 1 69.82
pk2 4 56.59 9 54.98 4 48.63 9 73.56 4 53.28 14 73.23 4 61.72 4 37.07
pk3 2 63.33 2 67.33 5 59.65 3 77.24 3 47.79 2 90.00 3 61.72 2 48.73
man 2 63.33 2 67.33 2 67.33 2 78.67 2 61.33 2 90.00 2 51.02 2 48.73
pmi
gap 1 72.67 1 72.67 4 66.11 1 72.67 2 68.67 1 72.67 2 63.95 1 69.82
pk2 3 80.16 2 65.33 4 66.11 2 65.33 4 62.98 3 78.71 4 66.39 4 45.30
pk3 2 59.33 2 65.33 4 66.11 2 65.33 4 62.98 3 78.71 4 66.39 4 45.30
man 2 59.33 2 65.33 2 66.67 2 65.33 2 68.67 2 65.33 2 63.95 2 50.91



Unsupervised Discrimination of Person Names in Web Contexts 307

Table 4. MILLER results : 3 identities, majority 75.87

nyt-25 nyt-75 nyt-25 nyt-75 nyt-25 nyt-75 test test
5 5 10 10 20 20 2 5

Fisher
gap 2 63.99 1 75.87 2 72.88 1 75.87 2 60.49 1 75.87 6 46.25 2 60.84
pk2 4 61.79 26 27.41 4 49.90 4 49.62 5 54.12 5 47.71 6 46.25 5 43.51
pk3 5 53.23 3 62.94 3 56.99 2 59.09 2 60.49 2 57.34 6 46.25 3 60.14
man 3 67.83 3 62.94 3 56.99 3 61.54 3 62.24 3 59.79 3 62.59 3 60.14
ll
gap 3 43.36 3 43.01 2 51.05 3 41.96 2 55.94 3 46.50 6 52.44 6 38.03
pk2 4 51.17 4 42.03 4 46.63 4 38.72 5 42.54 4 40.15 6 57.37 6 38.03
pk3 3 43.36 3 43.01 3 50.35 6 38.31 3 39.86 6 39.45 4 54.34 4 44.07
man 3 43.36 3 43.01 3 50.35 3 41.96 3 39.86 3 46.50 3 65.03 3 55.24
odds
gap 1 75.87 10 38.71 1 75.87 1 75.87 1 75.87 1 75.87 7 42.57 1 75.87
pk2 6 44.30 5 37.69 5 48.18 6 40.92 4 50.39 5 49.61 5 43.12 4 41.78
pk3 4 45.60 7 38.57 3 44.41 6 40.92 4 50.39 5 49.61 7 42.57 4 41.78
man 3 48.60 3 46.85 3 44.41 3 44.06 3 44.41 3 45.80 3 39.51 3 43.01
pmi
gap 2 58.74 2 58.04 1 75.87 2 62.24 2 63.99 1 75.87 7 50.44 1 75.87
pk2 4 50.58 5 48.57 5 52.71 7 51.76 5 54.47 5 49.04 6 50.44 5 50.51
pk3 10 36.36 2 58.04 2 63.29 7 51.76 6 55.62 6 49.48 7 50.44 4 48.58
man 3 62.59 3 60.84 3 66.43 3 47.55 3 66.43 3 61.54 3 46.50 3 59.09

Table 5. COLLINS results : 4 identities, majority 74.93

nyt-25 nyt-75 nyt-25 nyt-75 nyt-25 nyt-75 test test
5 5 10 10 20 20 2 5

Fisher
gap 5 48.40 2 73.54 5 41.82 2 71.59 3 80.19 2 72.42 1 74.93 1 74.93
pk2 4 61.28 3 44.85 5 41.82 4 64.62 3 80.19 5 60.45 3 90.25 5 71.02
pk3 2 62.40 2 73.54 2 59.05 2 71.59 3 80.19 2 72.42 3 90.25 5 71.02
man 4 61.28 4 52.92 4 54.60 4 64.62 4 42.90 4 55.99 4 65.18 4 62.12
ll
gap 6 47.86 9 46.61 5 57.96 6 48.59 5 41.92 7 48.58 7 54.10 1 74.93
pk2 5 46.94 6 46.25 5 57.96 5 49.77 5 41.92 5 51.07 6 51.24 6 63.53
pk3 6 47.86 3 52.09 7 48.21 6 48.59 4 52.92 5 51.07 2 69.92 4 46.24
man 4 48.19 4 40.95 4 49.58 4 37.88 4 52.92 4 39.28 4 52.09 4 46.24
odds
gap 1 74.93 1 74.93 32 27.90 1 74.93 1 74.93 1 74.93 6 49.21 1 74.93
pk2 5 45.20 6 57.92 6 45.16 6 47.78 6 40.87 5 47.27 6 49.21 5 55.89
pk3 4 55.99 8 52.01 4 42.62 4 44.29 9 43.69 6 35.16 6 49.21 5 55.89
man 4 55.99 4 45.40 4 42.62 4 44.29 4 49.30 4 44.57 4 36.49 4 51.53
pmi
gap 3 71.03 3 45.13 3 64.35 3 43.73 5 50.38 4 52.92 1 74.93 1 74.93
pk2 5 42.94 5 53.89 5 50.84 5 57.01 5 50.38 4 52.92 5 55.95 5 59.41
pk3 3 71.03 5 53.89 5 50.84 5 57.01 5 50.38 9 57.20 4 75.21 4 55.99
man 4 57.38 4 52.09 4 64.35 4 50.70 4 45.96 4 52.92 4 75.21 4 55.99
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Table 6. PEDERSEN results : 4 identities, majority 76.58

nyt-25 nyt-75 nyt-25 nyt-75 nyt-25 nyt-75 test test
5 5 10 10 20 20 2 5

Fisher
gap 3 47.75 2 47.15 2 63.66 2 55.56 3 60.96 3 42.94 1 76.58 1 76.58
pk2 5 43.69 3 42.34 5 48.15 4 35.74 3 60.96 4 35.74 5 56.12 7 53.83
pk3 5 43.69 2 47.15 2 63.66 2 55.56 3 60.96 3 42.94 3 43.84 9 51.05
man 4 40.54 4 41.44 4 45.05 4 35.74 4 38.74 4 35.74 4 43.24 4 37.84
ll
gap 2 69.97 8 41.78 2 54.65 3 45.95 2 49.25 3 51.05 1 76.58 1 76.58
pk2 5 45.98 6 35.19 5 52.97 6 46.45 5 48.61 6 42.88 5 50.99 6 46.84
pk3 2 69.97 6 35.19 2 54.65 6 46.45 2 49.25 3 51.05 7 62.97 8 47.45
man 4 52.85 4 42.04 4 60.66 4 40.24 4 55.86 4 51.05 4 46.55 4 49.25
odds
gap 1 76.58 1 76.58 1 76.58 1 76.58 1 76.58 1 76.58 1 76.58 1 76.58
pk2 5 32.01 5 50.00 5 32.00 5 40.20 5 40.89 5 32.41 5 45.44 5 48.40
pk3 4 43.54 5 50.00 3 58.26 3 39.94 5 40.89 5 32.41 7 45.44 5 48.40
man 4 43.54 4 44.74 4 42.34 4 39.94 4 38.44 4 41.74 4 42.64 4 42.34
pmi
gap 3 46.55 3 45.05 2 46.85 2 45.35 2 63.36 2 45.95 1 76.58 1 76.58
pk2 4 42.04 4 40.84 4 49.55 4 41.14 4 38.14 3 43.54 6 62.41 6 47.54
pk3 3 46.55 2 45.05 3 49.55 4 41.14 2 63.36 4 42.94 2 64.86 5 46.05
man 4 42.04 4 40.84 4 49.55 4 41.14 4 38.14 4 42.94 4 45.05 4 55.26

The results of our experiments are shown in Tables 2, 3, 4, 5, and 6. Each table is
organized as follows. The feature selection data is indicated in the columns: nyt-
25 and nyt-75 refer to the 25,000 and 75,000 context collections from the New
York Times, and test refers to the use of the evaluation data as feature selection
data. The numbers below the feature selection data are the frequency cutoffs used.
Remember that these indicate that the words that make up a bigram feature must
have occurred at least that many times in the feature selection data.

The measures of association and the cluster stopping techniques are shown in
the rows. Note that man refers to when we set the number of clusters manually
to the value that we know to be correct. The integer values in the table are the
number of clusters predicted by the cluster stopping method, and the F-Measure
obtained with the given combination of settings.

8 Discussion and Conclusions

For each measure of association in our tables of results, we indicate the highest
F–Measure attained by the cluster stopping measures (gap, pk2, pk3) and the
manually set number of clusters (man). These values are shown in bold face. It
would seem that the manual setting of the same number of clusters as is found
in the gold standard data should be the best case scenario. However, we can see
a number of cases where the discovered number of clusters results in a better
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F–Measure even if the number of clusters discovered does not agree with the
evaluation data. This can occur because the evaluation data is rather skewed
and some of the very small classes are difficult to discover and overall results
may improve simply by ignoring those classes.

Across all of the names, we observe that the results based on using the held–
out set of training data tend to be somewhat better than those based on using
the evaluation data for feature selection. It may be that the evaluation data
is simply not large enough to provide a reasonable set of features to perform
discrimination.

We can see that for the Alston, Connor, and Collins results there are combina-
tions of settings that result in F–Measures significantly higher than the majority
class. However, for the Miller and Pedersen results no combination of settings
exceeds that majority class. This initially surprised us since both of these names
have fairly distinct senses. However, upon examining the features we found that
the contexts for the majority classes were extremely rich in text, while the mi-
nority sense were somewhat impoverished. Thus, no matter what kind of feature
identification techniques were employed, it was simply not possible to identify
features for any of the minority classes.

In general there is not a clearly superior measure of association for all five
of the names. In the Alston data the log–likelihood ratio achieved the highest
results, in the Connor data it was Pointwise Mutual Information, and in the
Collins data it was Fisher’s Exact Test. For the Miller and Pedersen data none
of the measures of association fared particularly well.

Among the cluster stopping methods, the Adapted Gap Statistic did some-
what better with the more difficult Pedersen and Miller data since it often pre-
dicted just one cluster, which results in an F–Measure equal to the majority
class. In the case of a hard discrimination decision, this is actually not a bad
option, since in effect the cluster stopping algorithm is saying it is unable to
make any distinctions so it leaves all the contexts in the same cluster. With the
Alston, Connor, and Miller data in general PK2 and PK3 performed slightly
better than the Adapted Gap Statistic.

Acknowledgments

This work was supported by a National Science Foundation Faculty Early CA-
REER Development Award (#0092784).

All of the experiments in this paper were carried out with version 0.95 of the
SenseClusters package, freely available from http://senseclusters.sourceforge.net.

References

1. T. Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1):61–74, 1993.

2. R. Fisher. The Design of Experiments. Oliver and Boyd, London, 1935.
3. Z. Harris. Mathematical Structures of Language. Wiley, New York, 1968.



310 T. Pedersen and A. Kulkarni

4. A. Kulkarni and T. Pedersen. Name discrimination and email clustering using
unsupervised clustering and labeling of similar contexts. In Proceedings of the
Second Indian International Conference on Artificial Intelligence, pages 703–722,
Pune, India, December 2005.

5. E. Levin, M. Sharifi, and J. Ball. Evaluation of utility of LSA for word sense dis-
crimination. In Proceedings of the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers, pages 77–80, New York City, June 2006.

6. G.A. Miller and W.G. Charles. Contextual correlates of semantic similarity. Lan-
guage and Cognitive Processes, 6(1):1–28, 1991.

7. T. Pedersen. Fishing for exactness. In Proceedings of the South Central SAS User’s
Group (SCSUG-96) Conference, pages 188–200, Austin, TX, October 1996.

8. T. Pedersen and A. Kulkarni. Selecting the right number of senses based on clus-
tering criterion functions. In Proceedings of the Posters and Demo Program of the
Eleventh Conference of the European Chapter of the Association for Computational
Linguistics, pages 111–114, Trento, Italy, April 2006.

9. T. Pedersen, A. Kulkarni, R. Angheluta, Z. Kozareva, and T. Solorio. An unsu-
pervised language independent method of name discrimination using second order
co-occurrence features. In Proceedings of the Seventh International Conference on
Intelligent Text Processing and Computational Linguistics, pages 208–222, Mexico
City, February 2006.

10. T. Pedersen, A. Purandare, and A. Kulkarni. Name discrimination by clustering
similar contexts. In Proceedings of the Sixth International Conference on Intelli-
gent Text Processing and Computational Linguistics, pages 220–231, Mexico City,
February 2005.

11. A. Purandare and T. Pedersen. Word sense discrimination by clustering contexts
in vector and similarity spaces. In Proceedings of the Conference on Computational
Natural Language Learning, pages 41–48, Boston, MA, 2004.

12. H. Schütze. Automatic word sense discrimination. Computational Linguistics,
24(1):97–123, 1998.

13. R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a
dataset via the Gap statistic. Journal of the Royal Statistics Society (Series B),
pages 411–423, 2001.


	Introduction
	Lexical Features
	Second Order Context Representation
	Cluster Stopping
	Experimental Data
	Evaluation
	Experimental Results
	Discussion and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


