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Abstract. We have applied five supervised learning approaches to word
sense disambiguation in the medical domain. Our objective is to evaluate
Support Vector Machines (SVMs) in comparison with other well known
supervised learning algorithms including the näıve Bayes classifier, C4.5
decision trees, decision lists and boosting approaches. Based on these
results we introduce further refinements of these approaches. We have
made use of unigram and bigram features selected using different fre-
quency cut-off values and window sizes along with the statistical signif-
icance test of the log likelihood measure for bigrams. Our results show
that overall, the best SVM model was most accurate in 27 of 60 cases,
compared to 22, 14, 10 and 14 for the näıve Bayes, C4.5 decision trees,
decision list and boosting methods respectively.

1 Introduction

English has many words that have multiple meanings or multiple senses. For
example, the word switch in the sentence Turn off the main switch refers to an
electrical instrument whereas in the sentence The hansom driver whipped the
horse using a switch it refers to a flexible twig or rod1. As can be observed
in these examples, the correct sense of the word switch is made clear by the
context in which the word has been used. Specifically, in the first sentence, the
words turn, off and main combined with some world knowledge of the person
interpreting the sentence such as the fact that usually there is a main switch
for electrical connections inside a house, help in disambiguating the word (i.e.,
assigning the correct sense to the word). Similarly, in the second sentence the
words hansom, driver, whipped and horse provide the appropriate context which
helps in understanding the correct sense of the word switch for that sentence.

Word sense disambiguation (WSD) is the problem of automatically assigning
the appropriate meaning to a word having multiple senses. As noted earlier, this
process relies to a great extent on the surrounding context of the word and
analyzing the properties exhibited by that context.

1 According to the Merriam-Webster Dictionary online: http://www.m-w.com/cgi-
bin/dictionary?book=Dictionary&va=switch
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It is sometimes theorized that ambiguity is less of a problem in more spe-
cialized domains. However, we have observed that ambiguity remains a problem
even in the specialized domain of medicine. For example, radiation could be used
to mean the property of electromagnetic radiation, or as a synonym for Radia-
tion therapy for treatment of a disease. While both of these senses are somewhat
related (the therapy relies on the radioactive property) there are also cases such
as cold, which can mean the temperature of a room, or an illness. Thus, even
more specialized domains exhibit a full range of ambiguities.

As noted by Weeber et al. [15], linguistic interest in medical domain arises out
of the need for better natural language processing (NLP) systems used for deci-
sion support or document indexing for information retrieval. Such NLP systems
will perform better if they are capable of resolving ambiguities among terms.
For example, with the ability to disambiguate senses, an information retrieval
query for radiation therapy would focus on those documents that contain the
word radiation in the “medical treatment” sense.

Most work in word sense disambiguation has focused only on general English.
Here we propose to study word sense disambiguation in the medical domain and
evaluate how well existing techniques perform, and introduce refinements of our
own based on this experience. The intuition behind experimenting with existing
approaches is the following – although the ambiguity in the medical domain
might tend to focus around domain specific terminology, the basic problems it
poses for sense distinction may not be strikingly different from those encountered
in general English sense distinction.

The most popular approaches in word sense disambiguation have been those
that rely on supervised learning. These methods initially train a machine learning
algorithm using various instances of the word which are manually tagged with
the appropriate sense. The result of this training is a classifier that can be applied
to future instances of the ambiguous word. Support Vector Machines [14] are one
such class of machine learning algorithms. While SVMs have become popular for
use in general English word sense disambiguation, they have not been explored
in the domain of medical text. Our objective is to see if the good performance of
SVMs in general English will translate into this new domain and also to compare
SVM performance with some other well known machine learning algorithms.

This paper continues with a description of related work in Section 2 and a
brief background on machine learning methods in Section 3. Section 4 outlines
our experimental setup and feature selection while Section 5 explains our eval-
uation methodology. Section 6 focuses on discussion of our results. We discuss
the future work for this ongoing research in Section 7. Section 8 summarizes our
work so far.

2 Related Work

In the last several years, a number of researchers have explored the use of Support
Vector Machines in general English word sense disambiguation.
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Cabezas et al. [3] present a supervised word sense tagger using Support Vector
Machines. Their system was designed for performing word sense disambiguation
independent of the language of lexical samples provided for the Senseval-2

task. A lexical sample for an ambiguous word is a corpus containing several
instances of that word, having multiple senses. Their system identified two types
of features – (a) unigrams in a wider context of the ambiguous word and (b)
up to three words on either side of the ambiguous word with their orientation
and distance with respect to the ambiguous word. The second feature captures
the collocations containing the ambiguous word, in a narrow context around
the word. Cabezas et al. use the term collocations to mean word co-occurrences
unlike the more conventional linguistic sense which defines collocations as two
or more words that occur together more often than by chance. These features
were weighed according to their relevance for each ambiguous word, using the
concept of Inverse Category Frequency (ICF) where the ICF score of a feature
is higher when it is more representative of any particular sense. For multi-class
classification of words having more than two senses, they employed the technique
of building a “one against all” classifier for each of the senses. In this method,
the classifier for a given sense categorizes all the instances into two classes –
one that represents the given sense and the other that represents anything that
does not belong to the given sense. For any ambiguous word, the sense that is
assigned is the one whose classifier voted for that sense with highest confidence.
Their results show a convincing improvement over baseline performance.

Lee et al. [8] use Support Vector Machines to perform Word Sense Disam-
biguation for general English and for translating an ambiguous English word into
its Hindi equivalent. They have made use of all the features available from the
following knowledge sources: (a) Parts Of Speech (POS) of up to three words
around the ambiguous word and POS of the ambiguous word itself, (b) mor-
phological root forms of unigrams in the entire context, with function words,
numbers and punctuations removed, (c) collocations, that is word co-occurrences
consisting of up to three words around the ambiguity and (d) various syntactic
relations depending upon the POS of the ambiguous word. They make use of
all the extracted features and do not perform any kind of feature selection, that
is they do not use any statistical or information gain measures to refine their
feature set. Additionally, they have also used (e) the English sense of ambigu-
ous words as a feature for the translation task, which improved their system’s
performance. They have made use of the SVM implementation available in the
Weka data mining suite [16], with the linear kernel and default parameter val-
ues. This is the exact configuration that we have used for our experiments. The
results that they obtained for the general English corpus were better than those
obtained for the translation task.

Ngai et al. [11] propose a supervised approach to semantic role labeling. The
FrameNet corpus [1] is an ontologically structured lexical database that consists
of semantic frames, lexical units that activate these frames, and a large corpus
of annotated sentences belonging to the various semantic frames. A semantic
frame is an abstract structure relating to some event or concept and includes
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the participant objects of the event or concept. These participant objects are
known as frame elements. Frame elements are assigned semantic types wherever
appropriate. A lexical unit is any word in a sentence (often the verb, but not
necessarily so) that determines the semantic frame the sentence belongs to. For
example, FrameNet consists of a semantic frame titled Education teaching, two
of its frame elements being Teacher and Student which have the semantic type
Sentient. Some of the lexical units which activate this frame are coach, educate,
education, teach and instruct. Ngai et al. propose to solve the problem of seman-
tic role labeling of sentence parse constituents by posing it as a classification
task of assigning the parse constituents to the appropriate frame element from
the FrameNet corpus. This is in principle similar to our task where we aim at
classifying words into different concepts as defined in the Unified Medical Lan-
guage System (UMLS) repository, which is to some extent more “coarse” than
word sense disambiguation in the conventional sense. They make use of the fol-
lowing types of features: (a) lexical and syntactic features available from the
FrameNet ontology – such as the lexical identity of the target word, its POS
tag, syntactic category and (b) extracted features such as the transitivity and
voice of verbs, and head word of the parse constituent. They have tested different
machine learning methods including boosting, SVMs, maximum entropy, Sparse
Network of Winnows (SNOW) and decision lists – individually as well as their
ensembles (i.e., additive learning methods). Their best results from SVMs were
obtained with polynomial kernel with degree four. For multi-class classification,
they too have used the “one against all” approach. Although SVMs were not the
best individually due to their comparatively lower recall scores, they obtained
very high precision values and were part of the classifier ensemble that gave the
best results.

Recently Gliozzo et al. [6] have presented domain kernels for word sense
disambiguation. The key notion is to make use of domain knowledge while per-
forming word sense disambiguation. An example they discuss is the ambiguity
of the word virus. A virus can mean “a malicious computer program” in the do-
main of computers or “an infectious agent which spreads diseases” if we switch
to the domain of medicine. Gliozzo et al. propose a domain matrix (with words
along the rows and domains along the columns) that consists of soft clusters of
words in different domains. A word can belong to multiple domains with dif-
ferent probabilities – thus representing word ambiguity, whereas a domain can
contain multiple words – thus representing its variability. They make use of the
fully unsupervised approach of Latent Semantic Analysis (LSA) to automati-
cally induce a domain matrix from raw text corpus. This domain matrix is used
in transforming the conventional term by document vector space model into a
term by domain vector space model, where the domains are the ones induced
by LSA. This is called the domain vector space model. They define a domain
kernel function which evaluates distances among two words by operating upon
the corresponding word vectors obtained from this domain vector space model.
Traditionally these vectors are created using Bag Of Words (BOW) or POS
features of words in surrounding context. The kernels using these traditional
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vectors are referred as the BOW kernel and the POS kernel respectively. Using
the domain kernels, Gliozzo et al. have demonstrated significant improvement
over BOW and POS kernels. By augmenting the traditional approaches with
domain kernels, their results show that only 50 percent of the training data is
required in order to attain the accuracy offered by purely traditional approaches,
thus reducing the knowledge acquisition bottleneck to a great extent.

The National Library of Medicine (NLM) WSD collection is a set of 50 am-
biguous medical terms collected from medical journal abstracts. It is a fairly new
dataset and has not been explored much. Following is related work which makes
use of this collection.

Liu et al. [10] evaluate the performance of various classifiers on two medical
domain datasets and one general English dataset. The classifiers that they have
considered included the traditional decision lists, their adaptation of the deci-
sion lists, the näıve Bayes classifier and a mixed learning approach that they
have developed. Their features included combinations of (a) unigrams in various
window sizes around the ambiguous word with their orientation and distance
information and (b) two-word collocations (word co-occurrences) in a window
size of two on either side of the ambiguous word, and not including the ambigu-
ous word. The general biomedical term dataset that they used is a sub-set of the
NLMWSD data collection that we have used for our experiments. They achieved
best results for the medical abbreviation dataset using their mixed learning ap-
proach and the näıve Bayes classifier. No particular combination of features,
window size and classifiers provided stable performance for all the ambiguous
terms. They therefore concluded that the various approaches and feature rep-
resentations were complimentary in nature and as a result their mixed learning
approach was relatively stable and obtained better results in most of the cases.

Leroy and Rindflesch [9] explore the use of symbolic knowledge from the
UMLS ontology for disambiguation of a subset of the NLM WSD collection.
The basic features of the ambiguous word that they use are (a) status of the
ambiguous word in the phrase – whether it is the main word or not, and (b)
its part of speech. Unlike many BOW approaches which use the actual words in
context as features, they make use of (c) semantic types of words in the context as
features. Additionally they use (d) semantic relations among the semantic types
of non-ambiguous words. Finally, they also make use of the (e) semantic relations
of the ambiguous type with its surrounding types. The semantic types and their
relations are derived from the UMLS ontology. Using the näıve Bayes classifier
from the Weka data mining suite [16], their experiments were performed with
incremental feature sets, thus evaluating the contribution of new features over
the previous ones. They achieved convincing improvements over the majority
sense baseline in some cases, but observed degradation of performance in others.
In general it was not the case that a maximum set of featurs yielded the best
results. However, semantic types of words in context and their relationship with
the various senses of the ambiguous word were useful features along with the
information whether the ambiguous word was the main word or not. Therefore
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this approach can possibly be used in combination with the conventional BOW
approaches to improve the results.

3 Machine Learning Methods

Support Vector Machines (SVM) [14] represent data instances in an N dimen-
sional hyperspace where N represents the number of features identified for each
instance. The goal of an SVM learner is to find a hyperplane that separates the in-
stances into two distinct classes, with the maximum possible separation between
the hyperplane and the nearest instance on both sides. The maximum separa-
tion helps to achieve better generalization on unknown input data. The nearest
correctly classified data point(s) on either side of the hyperplane are known as
support vectors to indicate that they are the crucial points which determine the
position of the hyperplane. In the event that a clear distinction between data
points is not possible, a penalty measure known as a slack variable is intro-
duced to account for each instance that is classified incorrectly. Mathematically,
SVM classification poses an optimization problem in which an equation is to
be minimized, subject to a set of linear constraints. Due to this, the training
time for SVMs is often high. As a result, various approaches have been devel-
oped to enhance the performance of SVMs. One such algorithm that effectively
works around the time consuming step of numerical quadratic programming is
the Sequential Minimal Optimization (SMO) [12] algorithm. We use the Weka
[16] implementation of the SMO algorithm for our experiments. This implemen-
tation uses the “pairwise coupling” [7] technique for multi-class classification
problems. In this method, one classifier is created for each pair of the target
classes, ignoring instances that belong to other classes. For example, with three
classes C1, C2, and C3, three classifiers for the pairs {C1, C2}, {C2, C3} and {C3,
C1} are trained using data instances that belong to the two respective classes.
The output of each pairwise classifier is a probability estimate for its two target
classes. The pairwise probability estimates from all the classifiers are combined
together to come up with an absolute probability estimate for each class.

The näıve Bayes classifier is based on a probabilistic model of conditional in-
dependence. It calculates the posterior probability that an instance belongs to a
particular class given the prior probabilities of the class and the feature set that
is identified for each of the instances. The “näıve” part of the classifier is that it
assumes that each of the features for an instance are conditionally independent –
meaning that given a particular class, the presence of one feature does not affect
the likelihood of occurrence of other features for that class. Given the features
F1 and F2, the equality in Equation 1 gives the posterior probability of class
Ci according to the Bayes rule. The näıve Bayes classifier makes the subsequent
approximation of assuming that the features are conditionally independent. Af-
ter calculating the posterior probabilities for each of the classes, it assigns the
instance to the class with the highest posterior probability.

P (Ci|F1, F2) = argmax
i

P (F1, F2|Ci)

P (F1, F2)
≈ argmax

i

P (F1|Ci).P (F2|Ci) (1)

2nd Indian International Conference on Artificial Intelligence (IICAI-05)

3454



The C4.5 decision tree [16] learning approach is based on the “Divide and Con-
quer” strategy. The classifier constructs a decision tree where each node is a test
of some feature, progressing from the top to the bottom, that is from the root
to the leaves. Therefore, the higher the node is in the hierarchy the more crucial
is the feature that is evaluated at that node while deciding the target class. The
nodes of the tree are selected in such a way that the one which presents the
maximum gain of information for classification is higher in the hierarchy. Addi-
tionally, the C4.5 algorithm includes handling of numerical attributes, missing
values and pruning techniques to reduce the size and complexity of a decision
tree.

Decision list learning is a rule-based approach, essentially consisting of a set
of conditional statements like “if-then” or “switch-case” conditions for classifying
data. These rules are applied in sequence until a condition is found to be true
and the corresponding class is returned as the output. In case of failure of all
rules, these classifiers return the class with the most frequent occurrence, in the
case of WSD – the majority sense. Frank and Witten [4] discuss an approach
of repeatedly building partial decision trees to generate a decision list. Their
algorithm avoids the conventional two-step procedure of initially building a list
of rules and then processing them in a second step for pruning and optimization.

The Boosting approach to machine learning [13] is to combine a set of weaker
classifiers obtained by repeatedly running an elementary base classifier on dif-
ferent sub-sets of training data. The idea is that obtaining elementary classifiers
that give reasonable performance is simpler than trying to find one complex clas-
sifier that fits all of the data points. Combining these weak classifiers into one
single prediction strategy often achieves significantly better performance than
any of the weak classifiers can individually achieve. We use the Weka implemen-
tation of the AdaBoost.M1 algorithm, which is a multi-class extension of the
AdaBoost algorithm proposed by Freund and Schapire [5]. The base classifier in
our experiments is the DecisionStump classifier, which is a single node decision
tree classifier that tests just one feature and predicts the output class.

We use off-the-shelf implementations of all of the above algorithms, which
are available in the Weka data mining suite [16]. We retain the default settings
for all the classifiers and carry out ten-fold cross-validation.

4 Experimental Setup

4.1 Data

We have made use of the biomedical word sense disambiguation test collection
developed by Weeber et al. [15]. This WSD test collection is available from the
National Library of Medicine (NLM).2 The Unified Medical Language System
(UMLS) 3 consists of three knowledge sources related to biomedicine and health:
(1) the metathesaurus of biomedical and health related concepts such as names

2 http://wsd.nlm.nih.gov/
3 http://www.nlm.nih.gov/research/umls/about umls.html
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1|9337195.ab.7|M2
The relation between birth weight and flow-mediated dilation was not affected by adjustment for childhood body 
build, parity, cardiovascular risk factors, social class, or ethnicity.
adjustment|adjustment|78|90|81|90|by adjustment|
PMID- 9337195
TI  - Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors.
AB  - BACKGROUND: Early life factors, particularly size at birth, may influence later risk of cardiovascular disease,  
but a mechanism for this influence has not been established. We have examined the relation between birth weight 
and endothelial function (a key event in atherosclerosis) in a population-based study of children, taking into account 
classic cardiovascular risk factors in childhood. METHODS AND RESULTS: We studied 333 British children aged 9 to 11 
years in whom information on birth weight, maternal factors, and risk factors (including blood pressure, lipid fractions, 
preload and postload glucose levels, smoking exposure, and socioeconomic status) was available. A noninvasive 
ultrasound technique was used to assess the ability of the brachial artery to dilate in response to increased blood 
flow (induced by forearm cuff occlusion and release), an endothelium-dependent response. Birth weight showed a 
significant, graded,positive association with flow-mediated dilation (0.027 mm/kg; 95% CI, 0.003 to 0.051 mm/kg; 
P=.02). Childhood cardiovascular risk factors (blood pressure, total and LDL cholesterol, and salivary cotinine level) 
showed no relation with flow-mediated dilation, but HDL cholesterol level was inversely related (-0.067 mm/mmol; 
95% CI, -0.021 to -0.113 mm/mmol; P=.005). The relation between birth weight and flow-mediated dilation was not 
affected by adjustment for childhood body build, parity, cardiovascular risk factors, social class, or ethnicity. 
CONCLUSIONS: Low birth weight is associated with impaired endothelial function in childhood, a key early event in 
atherogenesis. Growth in utero may be associated with long-term changes in vascular function that are manifest by 
the first decade of life and that may influence the long-term risk of cardiovascular disease.
adjustment|adjustment|1521|1533|1524|1533|by adjustment|

Fig. 1. A typical instance of an ambiguous term in the NLM WSD data collection.
The example above shows an instance of the term adjustment.

of diseases or agents causing them, for example Chronic Obstructive Airway Dis-
ease and Virus. (2) The semantic network which provides a classification of these
concepts and relationships among them. The relationships can be hierarchical as
in Acquired Abnormality “IsA” Anatomical Abnormality or associative as in Ac-
quired Abnormality “affects” Cell Function. (3) The SPECIALIST lexicon con-
taining biomedical terms with their syntactic, morphological, and orthographic
information. MEDLINE (Medical Literature Analysis and Retrieval System On-
line) 4 is a bibliographic database containing references to several journals related
to life science. The NLM WSD collection consists of 50 frequently encountered
ambiguous words in the MEDLINE 1998 collection in the UMLS. While most
of the words appear predominantly in noun form, there are also cases where
they appear as adjectives or verbs. For example, the word Japanese occurs as a
noun meaning the Japanese language or the Japanese people, but more often as
an adjective to describe people as in the Japanese researchers or the Japanese
patients. Some words appear as verbs in their morphological variations, for ex-
ample discharge appears as discharged and determination as determined. Each
of the words has 100 randomly selected instances from the abstracts of 409,337
MEDLINE citations. Each instance provides two contexts for the ambiguous
word – the sentence that contains the ambiguous word and the entire abstract
that contains the sentence. The average size of the sentence context is 26 words
and that of the abstract context is 220 words. The data is available in plain text
format and follows some pre-defined formatting rules. Figure 1 shows a typical
instance of an ambiguous term in the NLM WSD data collection. As noted ear-
lier, one of the datasets used by Liu et al. [10] and the dataset used by Leroy
and Rindflesch [9] were subsets of this collection.

Tables 1 and 2 show the distribution of different senses for each word in the
collection.M1 throughM5 are different senses for a word as defined in the UMLS

4 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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Table 1. Sense distribution for the ambiguous terms in the NLM WSD Collection, the
sense frequencies are out of 100.

Word Senses Sense tag frequency
M1 M2 M3 M4 M5 None

adjustment 4 18 62 13 - - 7
association 3 0 0 - - - 100
blood pressure 4 54 2 44 - - 0
cold 6 86 6 1 0 2 5
condition 3 90 2 - - - 8
culture 3 11 89 - - - 0
degree 3 63 2 - - - 35
depression 3 85 0 - - - 15
determination 3 0 79 - - - 21
discharge 3 1 74 - - - 25
energy 3 1 99 - - - 0
evaluation 3 50 50 - - - 0
extraction 3 82 5 - - - 13
failure 3 4 25 - - - 71
fat 3 2 71 - - - 27
fit 3 0 18 - - - 82
fluid 3 100 0 - - - 0
frequency 3 94 0 - - - 6
ganglion 3 7 93 - - - 0
glucose 3 91 9 - - - 0
growth 3 37 63 - - - 0
immunosuppression 3 59 41 - - - 0
implantation 3 17 81 - - - 2
inhibition 3 1 98 - - - 1
japanese 3 6 73 - - - 21

repository. Note that not every word has five senses defined in UMLS. Most of
them have just two. The last column with the sense None stands for any sense
other than M1 thorough M5. The number of senses in the second column counts
None as one of the senses. A few salient features that can be observed from the
distribution are as follows. Every word has None as one of the possible senses –
which means that while manually tagging the data instances, an instance which
cannot be categorized into any of the known concepts as defined in UMLS can
be assigned this default sense. Although the machine learning methods will see
these instances as having the same sense, the features present in such instances
will often be an entirely random mixture representing multiple other unknown
senses. This effect will be more pronounced in the cases where the None sense
covers almost 50 percent of the instances or greater. These instances introduce
significant noise into the data. Therefore, for such words the performance of
machine learning methods might degrade. Half of the words in the dataset have
a majority sense that covers 80 percent of the instances, making their sense
distribution highly skewed. Finally, a note regarding the word mosaic: two of its
senses are very closely related – M2 (Mosaicism) and M3 (Embryonic Mosaic).
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Table 2. Sense distribution for the ambiguous terms in the NLM WSD Collection
(continued from Table 1). The word mosaic has two senses that are very closely related
and were assigned the same label M2.

Word Senses Sense tag frequency
M1 M2 M3 M4 M5 None

lead 3 27 2 - - - 71
man 4 58 1 33 - - 8
mole 4 83 1 0 - - 16
mosaic 4 45 52 * 0 - 3
nutrition 4 45 16 28 - - 11
pathology 3 14 85 - - - 1
pressure 4 96 0 0 - - 4
radiation 3 61 37 - - - 2
reduction 3 2 9 - - - 89
repair 3 52 16 - - - 32
resistance 3 3 0 - - - 97
scale 4 0 65 0 - - 35
secretion 3 1 99 - - - 0
sensitivity 4 49 1 1 - - 49
sex 4 15 5 80 - - 0
single 3 1 99 - - - 0
strains 3 1 92 - - - 7
support 3 8 2 - - - 90
surgery 3 2 98 - - - 0
transient 3 99 1 - - - 0
transport 3 93 1 - - - 6
ultrasound 3 84 16 - - - 0
variation 3 20 80 - - - 0
weight 3 24 29 - - - 47
white 3 41 49 - - - 10

They were therefore assigned the same label M2 during manual sense tagging.
This sense covers 52 instances, which are listed in the column M2.

4.2 Feature Selection

Before performing feature selection, we convert the NLM formatted data into
Senseval-2 format. Senseval-2 format for WSD is an XML format with cer-
tain pre-defined markup tags. Figure 2 shows the partial contents of the gen-
erated Senseval-2 files. For every word, two files are created, one containing
the abstract context and other containing the sentence context for all of its in-
stances. The feature selection programs that we use operate upon the lexical
sample created out of combining the contexts (either abstract or sentence) for
all of the instances of a given word. This lexical sample is then processed to re-
move punctuations and functional words or stop words. In addition to removing
common pre-defined functional words, we also remove any word that is entirely
in upper case letters. This is done because many of the citations include head-
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ings like BACKGROUND, METHODS, RESULTS and CONCLUSIONS which
introduce noise into the feature set by getting identified as significant features
for many or all senses. Apart from this, we also eliminate any XML markup
tags from the context data. Once this pre-processing is complete, we identify the
following two types of features using the Ngram Statistics Package (NSP) [2].

(a) Unigrams : We identify the significant words occurring in the lexical
sample for a word and use them as binary features. So a unigram feature vector
for a given instance of an ambiguous word will consist of a sequence of ones
and zeroes depending upon whether the corresponding unigram is present in the
context of that instance or not. Currently, the only significance criteria that we
apply for selecting the unigram features is a frequency cut-off value ranging from
two to five. A frequency cut-off value of five means a unigram is discarded if it
appears less than five times in the lexical sample.

(b) Bigrams : We select significant two-word collocations in the lexical sam-
ple and use them as binary features, similar to the unigrams. Bigrams can be
separated by one or more other words in between them. We limit the number
of words between the two words of a bigram using a widow size parameter that

Abstract context in SENSEVAL2 format.

<corpus lang='en'>
  <lexelt item="adjustment">
    <instance id="9337195.ab.7" pmid="9337195" alias="adjustment">
      <answer instance="9337195.ab.7" senseid="M2"/>
      <context>
        <title>Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors.  
</title> BACKGROUND: Early life factors, particularly size at birth, may influence later risk of cardiovascular disease, 
but a mechanism for this influence has not been established. We have examined the relation between birth weight 
and endothelial function (a key event in atherosclerosis) in a population-based study of children, taking into account 
classic cardiovascular risk factors in childhood. METHODS AND RESULTS: We studied 333 British children aged 9 to 11 
years in whom information on birth weight, maternal factors, and risk factors (including blood pressure, lipid 
fractions, preload and postload glucose levels, smoking exposure, and socioeconomic status) was available. A
noninvasive ultrasound technique was used to assess the ability of the brachial artery to dilate in response to 
increased blood flow (induced by forearm cuff occlusion and release), an endothelium-dependent response. Birth 
weight showed a significant, graded, positive association with flow-mediated dilation (0.027 mm/kg; 95% CI, 0.003 
to 0.051 mm/kg; P=.02). Childhood cardiovascular risk factors (blood pressure, total and LDL cholesterol, and 
salivary cotinine level) showed no relation with flow-mediated dilation, but HDL cholesterol level was inversely 
related (-0.067 mm/mmol; 95% CI, -0.021 to -0.113 mm/mmol; P=.005). The relation between birth weight and 
flow-mediated dilation was not affected <local>by <head>adjustment</head></local> for childhood body build, 
parity, cardiovascular risk factors, social class, or ethnicity. CONCLUSIONS: Low birth weight is associated with 
impaired endothelial function in childhood, a key early event in atherogenesis. Growth in utero may be associated 
with long-term changes in vascular function that are manifest by the first decade of life and that may influence the 
long-term risk of cardiovascular disease.
      </context>
    </instance>
    . . . . . . .
    . . . . . . .
  </lexelt>
</corpus>

Sentence context in SENSEVAL2 format.

<corpus lang='en'>
  <lexelt item="adjustment">
    <instance id="9337195.ab.7" pmid="9337195" alias="adjustment">
      <answer instance="9337195.ab.7" senseid="M2"/>
      <context>
        The relation between birth weight and flow-mediated dilation was not affected <local>by <head>adjustment

</head></local> for childhood body build, parity, cardiovascular risk factors, social class, or ethnicity.
      </context>
    </instance>
    . . . . . . .
    . . . . . . .
  </lexelt>
</corpus>

Fig. 2. Senseval-2 formatted abstract and sentence contexts for the word adjustment.
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ranges from two to five. A window size of two means that the words in the bigram
have to be adjacent, without any other words in between them and a window
size of five means that there can be up to three other words in between the two
words of the bigram. Our stop list of pre-defined functional words operates as a
disjunctive stop list when filtering out bigrams – even if one of the words in the
bigram is a stop word, the bigram is discarded. We then apply the frequency
cut-off criteria ranging from two to five as in the case of unigrams. Additionally,
we use the log likelihood measure to identify bigrams that occur together more
often than by chance. The two acceptance criteria that we use are log likelihood
scores of 3.841 and 6.684. These score values indicate that the bigrams are sig-
nificant (and not random independent co-occurrences) with 95 percent and 99
percent confidence respectively.

5 Evaluation

Our evaluation of SVMs is based on their comparative performance with respect
to the other machine learning algorithms. We report our results in terms of
the standard measure of accuracy, which is the percentage of correctly classified
instances. The baseline performance for our evaluation is provided by the ZeroR
majority classifier in Weka. A majority classifier is based on the simple rule of
assigning the most frequent sense to all the instances. With reference to Table
1, a majority classifier for the word adjustment will assign the sense M2 to
all the instances, yielding an accuracy of 62 percent. These majority classifier
accuracy values for each of the words serve as the baseline performance for our
experiments.

For a given word, we consider a trained model of a classifier significant in
performance only if its accuracy is at least five percentage points better than the
accuracy of the majority classifier for that word. Given a best classifier for some
word, we consider any other significant classifier within three percentage points
accuracy of the top classifier to be among the best classifiers. For example if the
best classifier for the word adjustment yields 75 percent accuracy, then any other
classifier having accuracy between 72 to 75 percent will also be counted as a top
classifier for adjustment. This is intended to account for the improvements that
may seen in the various classifiers by tuning their parameters. We plan to refine
this threshold based on our future work.

Our data is not separated into training and test instances. We therefore use
the cross-validation mechanism available in Weka for testing the performance
of various methods. For all of our experiments we have used ten-fold cross-
validation.

6 Results

Table 3 shows high level results for the entire dataset in terms of the number of
words for which a particular classifier achieved the highest accuracy. The second
column shows the numbers for abstract context and the third column for the
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Table 3. High level results for the entire dataset: For each of the evaluated classifiers
we have the number of words (out of 50) for which they were the best.

Classifier Number of words for which it is best

Abstract Context Sentence Context

SMO 31 33

NB 27 25

ABM1 19 19

DT 17 17

PART 14 16

ZeroR 11 11

sentence context. In all of our result tables, SMO refers to the SVM classifier
that we use, NB to the näıve Bayes classifier, DT to the decision tree classifier,
ABM1 to the boosting algorithm classifier, PART to the decision list classifier
and ZeroR to the majority classifier in Weka.

For all of our following results, we exclude 20 words from the collection where
none of the classifiers could achieve at least five percentage point accuracy im-
provement over the majority classifier, in abstract context. The excluded words
are - association, cold, condition, energy, extraction, failure, fluid, frequency,
ganglion, glucose, inhibition, pathology, pressure, reduction, resistance, secre-
tion, single, surgery, transient and transport. We believe that in these cases the
other classifiers could not achieve considerable improvement over the majority
classifier since most of these words have a majority sense that exceeds 80 percent
and therefore have a very skewed distribution which provides significantly fewer
instances of senses other than the majority sense. Although the word failure does
not have an overly skewed distribution, it has a very high number of instances
belonging to the sense None, which might have degraded the performance of
classifiers as discussed earlier.

The best classifiers for every word are selected based on the criteria mentioned
in the evaluation section. Table 4 shows the classifiers and the words for which
they were the best classifiers in abstract and sentence context. The numbers
shown in the third column count the total number of words that a classifier was
best for, whereas the number of different models that performed equally well
for a given word are shown in parenthesis after each word. For example, in the
table the number of words for which SVMs were the best classifiers is 20, and 4
different SVM models performed the best for the word adjustment.

Excluding the 20 words skipped for result analysis, there were 60 sets of
ambiguous instances of the 30 significant words – two sets per word, one set
consisting of sentence contexts and the second consisting of abstract contexts.
Table 5 lists the top three models for every classifier, their significant features
and the number of sets (out of 60) for which they performed the best. ‘U’ in the
feature column indicates unigram features and the cut-off column specifies the
frequency cut-off applied during feature selection. As seen in the table, all the
models that proved best are those trained on unigram features. This emphasizes
the conventional wisdom that more features can help train a better classifier,
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Table 4. Overall Results: A list of all the evaluated classifiers and the significant words
for which they were the best. The number inside parenthesis after every word is the
count of distinct classifier models that performed equally well for the given word.

Abstract

Classifier Words Word count

SMO adjustment(4) culture(2) degree(3) determination(2)
discharge(3) fat(3) immunosuppression(2) implanta-
tion(3) lead(3) man(4) mole(3) mosaic(3) nutrition(4)
radiation(3) repair(3) scale(2) sex(3) ultrasound(2)
weight(3) white(3)

20

NB adjustment(4) blood pressure(3) depression(2) dis-
charge(3) evaluation(2) fat(3) fit(2) growth(2) immuno-
suppression(2) implantation(3) japanese(3) lead(3) mo-
saic(3) radiation(3) repair(3) scale(2) sensitivity(4) vari-
ation(2) white(3)

19

DT adjustment(4) culture(2) degree(3) immunosuppres-
sion(2) man(4) mole(3) radiation(3) scale(2) sex(3)
strains(3) support(3) ultrasound(2)

12

ABM1 culture(2) degree(3) fit(2) implantation(3) man(4)
mole(3) nutrition(4) scale(2) ultrasound(2) variation(2)

10

PART blood pressure(3) culture(2) degree(3) mole(3) nutri-
tion(4) radiation(3) scale(2) sex(3) strains(3) ultra-
sound(2)

10

Sentence

Classifier Words Word count

SMO adjustment(4) culture(2) degree(3) discharge(3)
fat(3) fit(2) immunosuppression(2) implantation(3)
japanese(3) lead(3) man(4) mole(3) mosaic(3) nutri-
tion(4) repair(3) scale(2) sensitivity(4) sex(3) weight(3)
white(3)

20

NB blood pressure(3) culture(2) degree(3) discharge(3) eval-
uation(2) fat(3) fit(2) growth(2) immunosuppression(2)
implantation(3) japanese(3) lead(3) man(4) mole(3) mo-
saic(3) radiation(3) scale(2) sensitivity(4) white(3)

19

PART blood pressure(3) culture(2) discharge(3) evaluation(2)
fat(3) fit(2) lead(3) man(4) mole(3) nutrition(4) scale(2)
white(3)

12

DT blood pressure(3) culture(2) discharge(3) fat(3) fit(2)
lead(3) man(4) mole(3) nutrition(4) radiation(3)
scale(2)

11

ABM1 culture(2) degree(3) fat(3) fit(2) scale(2) 5

which was specially true in the case of näıve Bayes and SVM classifiers. In the
case of other classifiers, the performance was unfavorably affected due to a large
number of features, reducing the number of sets for which they performed best.

Table 6 shows the best classifiers and their accuracy for each significant word
in the abstract and sentence contexts. We also show the average accuracy value
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Table 5. Individual Classifier Results: The top three classifier models in each category,
their significant feature selection criteria and results out of 60 instances.

Classifier Feature Cut-off Best for # (out of 60)

SMO-1 U 4 27

SMO-2 U 5 26

SMO-3 U 3 25

NB-1 U 3 22

NB-2 U 4 21

NB-3 U 5 21

DT-1 U 5 14

DT-2 U 4 14

DT-3 U 3 13

ABM1-1 U 5 14

ABM1-2 U 3 14

ABM1-3 U 4 14

PART-1 U 2 10

PART-2 U 4 10

PART-3 U 5 9

and standard deviation of all classifiers for each word in both contexts, in the
fifth and eighth columns. The second column lists the accuracy values of the
majority classifier for each word. We can observe that SVMs performed well for
both sentence and abstract contexts. In most cases where SVMs were the best
for the abstract as well as the sentence context (immunosuppression, implan-
tation, lead, sex, ultrasound and weight), their performance was better in the
abstract context. Exceptions to this were the words man and mole where SVMs
performed better in the smaller sentence context. This suggests that SVMs can
perform well not only when more features are present but also in the presence of
lesser but indicative features. In particular, a comparison of best SVM classifier
results for all the words reveals that in 12 cases out of 50, the results in sentence
context outperformed those in abstract context. Table 7 lists these words and
the accuracy of SVMs in abstract versus sentence contexts. The performance in
sentence context is strikingly high for nutrition and blood pressure with improve-
ments of 11 and 9 percentage points respectively. For other words like degree, fit,
japanese, man, mole and pathology the improvement is 3 or 4 percentage points
which is still significant.

Table 8 shows the comparison of our results with that of Liu et al. [10] and
Leroy and Rindflesch [9]. Note that the set of words evaluated by Liu et al. and
Leroy and Rindflesch is different from the 30 words that we have analyzed. The
table however includes comparison with the exact set of words used by both of
them. Even with a limited feature set of unigrams or bigrams in context, the
SVM classifier was able to outperform results from Liu et al. in 11 cases out
of 22 – 5 times in abstract context, 4 times in sentence context and 2 times
in both contexts. SVM accuracy was better than the best results by Leroy and
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Table 6. Results for significant words: Shown are the best classifiers, their accuracy
for each word in the abstract and sentence contexts and the average accuracy of all
classifiers for every word, with standard deviation.

Abstract Sentence

Word Maj. Classifier Pr. Avg. Classifier Pr. Avg.

adjustment 62 DT,NB 72 65.86±3.61 SMO 70 64.54±2.44
blood pressure 54 NB 61 52.18±5.10 NB 66 55.22±3.93
culture 89 DT,ABM1, 99 89.51±2.92 SMO 97 89.26±2.04

PART
degree 63 ABM1 92 63.77±9.42 SMO,NB 92 65.97±8.62

ABM1
depression 85 NB 90 84.23±1.57 SMO 87 84.90±1.28
determination 79 SMO 85 77.22±2.40 ABM1 80 78.58±1.34
discharge 74 SMO,NB 95 76.09±4.84 DT 83 74.45±1.79
evaluation 50 NB 75 54.71±5.91 PART 67 50.80±3.65
fat 71 NB 87 80.06±3.59 NB 82 79.13±2.08
fit 82 ABM1,NB 90 82.41±1.81 NB 91 82.87±2.34
growth 63 NB 75 64.22±4.57 NB 70 61.74±1.97
immunosuppression 59 SMO 80 64.70±7.11 NB,SMO 72 59.42±3.13
implantation 81 SMO 94 87.52±1.94 SMO,NB 86 81.97±1.29
japanese 73 NB 78 73.22±2.10 SMO 81 74.39±1.96
lead 71 SMO 89 82.87±3.52 SMO,NB 83 72.28±2.48
man 58 SMO 89 77.86±5.44 SMO 92 81.45±3.21
mole 83 SMO 95 87.66±3.17 SMO 98 91.60±2.23
mosaic 52 SMO 87 66.05±7.39 NB 79 61.12±5.48
nutrition 45 ABM1 55 43.34±3.95 DT 65 48.83±4.61
radiation 61 SMO,NB 82 74.72±4.70 NB 74 62.26±2.60
repair 52 NB 88 71.70±8.74 SMO 72 56.88±4.62
scale 65 NB,ABM1 82 79.46±3.39 SMO 80 73.43±6.19
sensitivity 48 NB 92 65.36±11.88 NB 78 54.81±5.63
sex 80 SMO 88 84.02±2.01 SMO 85 80.34±1.47
strains 92 PART,DT 97 91.79±1.29 PART 92 91.51±0.79
support 90 DT 95 91.39±1.80 ABM1 93 89.98±0.56
ultrasound 84 SMO 92 87.20±1.84 SMO 85 83.41±1.35
variation 80 ABM1 92 84.17±3.18 NB 83 79.71±1.24
weight 47 SMO 83 57.85±10.11 SMO 80 49.29±9.29
white 49 NB 80 66.85±8.64 NB,SMO 72 58.25±7.24

Rindflesch in all cases except for the word scale. It is interesting that without
making use of BOW features they achieved better performance in this case. This
suggests that augmenting BOW features with their feature set might enhance
performance further.

Table 9 shows the average accuracy of the all the classifier models that we
evaluated for the 30 significant words, along with the standard deviation values.
Except for the ZeroR majority classifier, 180 test cases (36 per classifier) were
run for each of the 30 significant words. A total of 1080 (36 x 30) tests were
run for each classifier. Out of the 1080 tests, 174 test cases in sentence context
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Table 7. Comparison of SVM classifier accuracy where results in sentence context
outperformed those in abstract context.

Word Majority Abstract Sentence

blood pressure 54 53 62
condition 90 90 91
culture 89 96 97
degree 63 89 92
depression 85 86 87
fit 82 86 90
japanese 73 77 81
man 58 89 92
mole 83 95 98
nutrition 45 52 63
pathology 85 85 88
reduction 89 91 93

using bigram features could not identify even a single significant bigram, given
the small size of the sentence context. As a result, the input to the classifiers
in these cases did not have any features. While all other classifiers defaulted to
the majority sense in these test cases, the boosting classifier failed because of
the way it is implementated in Weka. Therefore for such tests we assumed that
the boosting classifier would also ideally revert to the majority sense and then
calculated the average accuracy value for it. On average, all of the classifiers we
evaluated performed better in the abstract context. SVMs showed an average
improvement of 6 percentage points over the majority classifier and proved to
be the best among all the classifiers that we evaluated.

7 Future Work

The experiments that we have performed so far can be fine tuned to achieve
better results. We organize the future work into two categories.

(a) Feature engineering : This involves identifying a better set of features
from the data. Incorporating stemming approach to remove morphological vari-
ations of the ambiguous words as well as the features is one of the first steps. We
hope to achieve a more concise and richer feature set via this approach, which
we believe will improve SVM performance. POS tags of words in a small window
size around the ambiguous words are very useful features, as demonstrated in [8]
and [11]. We would like to make use of such POS features along with syntactic
relationships wherever possible. Unlike Liu et al. [10] we have not considered
the orientation and distance information of unigrams. Including this informa-
tion as features should boost the performance of SVMs and also other classifiers
in general. Although the existing methods using conventional word sense dis-
ambiguation features have performed well, it will be interesting to explore any
domain specific features that apply to the medical text. Finally, the data that
we have used is a fairly small test collection. With large amounts of data be-
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Table 8. Comparison with results of Liu et al. [10] and Leroy and Rindflesch [9].
The table shows the comparative performance of SMO with the best results from Liu
et al. and Leroy and Rindflesch and also shows in the last column the best results
obtained in our experiments and the classifiers that obtained them. For the last two
columns anything to the left of the separator “/” is for abstract context and anything
to the right of it is for sentence context. Numbers in bold highlight cases where SMO
outperformed best results from Liu et al.

Word Majority Best Result
Liu Leroy SMO Overall (for our experiments)

adjustment 62 - 62 71/70 72/70 (NB/SMO)
blood pressure 54 - 56 53/62 61/66 (NB/NB)
cold 86 90.9 - 90/88 90/89 (SMO/ABM1)
degree 63 98.2 70 89/92 92/92 (ABM1/NB,SMO,ABM1)
depression 85 88.8 - 86/87 90/87 (NB/NB,SMO)
discharge 74 90.8 - 95/82 95/83 (NB,SMO/DT)
evaluation 50 - 57 69/62 75/67 (NB/PART)
extraction 82 89.7 - 84/84 84/85 (NB,SMO/DT)
fat 71 85.9 - 84/80 87/82 (NB/NB)
growth 63 72.2 63 71/63 75/70 (NB/NB)
immunosuppression 59 - 67 80/72 80/72 (SMO/NB,SMO)
implantation 81 90.0 - 94/86 94/86 (SMO/NB,SMO)
japanese 73 79.8 - 77/81 78/81 (NB/SMO)
lead 71 91.0 - 89/83 89/83 (SMO/NB,SMO)
man 58 91.0 80 89/92 89/92 (SMO/SMO)
mole 83 91.1 - 95/98 95/98 (SMO/SMO)
mosaic 52 87.8 69 87/77 87/79 (SMO/NB)
nutrition 45 58.1 53 52/63 55/65 (ABM1/DT)
pathology 85 88.2 - 85/88 86/88 (ABM1/SMO,ABM1)
radiation 61 - 72 82/69 82/74 (SMO/NB)
reduction 89 91.0 - 91/93 91/93 (SMO,ABM1/SMO,PART)
repair 52 76.1 81 87/72 88/72 (NB/SMO)
scale 65 90.9 84 81/80 82/80 (NB,ABM1/SMO)
sensitivity 48 - 70 88/76 92/78 (NB/NB)
sex 80 89.9 - 88/85 88/85 (SMO/SMO)
ultrasound 84 87.8 - 92/85 92/85 (SMO/SMO)
weight 47 78.0 71 83/80 83/80 (SMO/SMO)
white 49 75.6 62 79/72 80/72 (NB/NB,SMO)

ing produced in different medical institutions, a larger data collection could be
used for identifying better features. However, such large data collections may
not include manually sense-tagged instances, which introduces the possibility of
employing semi-supervised approaches where in unsupervised methods are used
for automatic training data generation and then supervised methods are trained
using this data.

(b) SVM tuning : One of the possibilities under this category is to tune the
parameters of the SMO classifier. We have only experimented with the default
linear kernel. Testing polynomial kernels and Radial Basis Function kernels for
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Table 9. Average accuracy (with standard deviation) for all the classifiers that that
we evaluated, over all the 30 significant words.

Context Classifier Accuracy (%) # Tests

Abstract SMO 76.26±12.93 1080
NB 75.03±11.53 1080
DT 74.62±13.12 1080
PART 73.71±13.69 1080
ABM1 71.72±15.26 1080
ZeroR 68.07±14.64 30

Sentence SMO 71.90±13.65 1080
NB 71.56±13.17 1080
PART 71.12±13.93 1080
DT 71.06±14.14 1080
ABM1 70.47±14.53 1080
ZeroR 68.07±14.64 30

Overall SMO 74.08±13.47 2160
NB 73.29±12.50 2160
DT 72.84±13.75 2160
PART 72.42±13.87 2160
ABM1 71.09±14.93 2160
ZeroR 68.07±14.51 60

SVMs can significantly improve the accuracy of our results. Additionally, the
idea of domain kernels for word sense disambiguation [6] can be explored as a
part of our future experiments.

8 Conclusion

The results from our experiments so far indicate that Support Vector Machines
are promising candidates for further research in supervised word sense disam-
biguation in the medical domain. They outperformed other classifiers in most of
our experiments and gave their best performance with unigram features selected
using a frequency cut-off of four. When SVMs were not the best classifiers for a
word, they were at least close to the best classifiers within a small margin of two
to three percentage point accuracy – suggesting that after tuning the feature set
and classifier options, they can perform better.
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