
Discovering Identities in Web Contexts with Unsupervised Clustering

Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA
tpederse@d.umn.edu

Anagha Kulkarni
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA
anaghak@cs.cmu.edu

Abstract

We describe the application of unsupervised clus-
tering methodologies to the problem of discrimi-
nating among ambiguous names found in short pas-
sages of text that appear on Web pages. We show
how to tailor these methods to handle the very noisy
data that we typically find on the Web. We exper-
iment with several variations in feature selection,
two methods that automatically determine the num-
ber of clusters in the data, two different representa-
tions of the contexts to be discriminated, and with
dimensionality reduction. Our evaluation is carried
out using Web contexts for five different ambiguous
names that were manually disambiguated to use as
a gold standard.

1 Introduction
In this paper we evaluate the effectiveness of unsupervised
methodologies that cluster short contexts of text based on
their similarity. We apply these techniques to the problem of
discriminating among named entities as found in Web pages.
As the Web increases in coverage, there is a growing problem
of ambiguity on Web pages, since different people or organi-
zations can share the same name.

These techniques are based on the Distributional Hypoth-
esis (e.g., [Harris, 1968], [Miller and Charles, 1991]) which
holds that words that occur in similar contexts will tend to
have similar meanings. Our approach is to cluster Web con-
texts that contain an ambiguous name such that each resulting
cluster represents a particular entity. These contexts are ap-
proximately 100 word–long passages of text taken from Web
pages, where an ambiguous name is located in the middle of
the context.

These methods have previously been applied to discrimi-
nating among the meanings of ambiguous names or words,
or grouping short contexts based on their topic. Specific ex-
amples of where these methods have already been applied in-
clude word sense discrimination (e.g., [Schütze, 1998],[Pu-
randare and Pedersen, 2004]), email clustering (e.g., [Kulka-
rni and Pedersen, 2005]), and named entity discrimination
(e.g.,[Pedersen et al., 2005]).

These techniques are language independent (c.f., [Peder-
sen et al., 2006]) and as such only rely on lexical features that

can be identified in text. They do not incorporate any syntac-
tic or linguistic information, nor do they utilize any manually
created or maintained knowledge sources. As such they are
ideal for Web contexts, which are often not well formed and
include many strings that are not typically a part of knowl-
edge bases or dictionaries. While our evaluation is done with
English language texts, these methods can be applied to Web
contexts in any other language.

The specific approaches we take are first order methods
based on [Pedersen and Bruce, 1997], and second order meth-
ods that follow [Schütze, 1998]). These have been been im-
plemented and extended in the freely available SenseClus-
ters1 system. In general, first order methods create vectors
that represent the features that occur in the contexts to be
clustered. Second order methods create word co-occurrence
vectors that are used to represent the words in the contexts to
be clustered, where each context is represented by the average
of all of its word vectors.

While there are existing approaches that carry out word
sense discrimination (e.g., [Schütze, 1998], [Purandare and
Pedersen, 2004], [Levin et al., 2006]), these have required
that the user specify in advance the number of clusters to be
discovered. This is a significant limitation, since in general
a user will not know this number, and in fact discovering it
might be a goal of the experiment in the first place. [Pedersen
and Kulkarni, 2006] present a number of methods for auto-
matically determining the number of clusters in short con-
texts. We explore the use of the Gap Statistic [Tibshirani et
al., 2001] and the PK2 measure for determining the number
of clusters in Web contexts. Both of these measures are in-
cluded in the SenseClusters system.

While we are using Web contexts as the basis of our ex-
periments, our intent is that this serve as an example of very
noisy data. Thus, our focus is on reducing the effect of such
noise on an unsupervised discrimination process in any kind
of text, and not specifically or exclusively on Web data. As
such we do not take advantage of information that is unique to
Web data, such as domain names, click–through behavior by
users, or iteratively refined searches. There are approaches to
carrying out name discrimination on the Web that do utilize
such information to good effect (e.g., [Mann and Yarowsky,
2003]).

1http://senseclusters.sourceforge.net



This paper continues with an overview of the lexical fea-
tures that we utilize to represent the Web contexts. We then
describe the first and second order representations of context,
and how dimensionality reduction may be employed. We go
on to discuss how those contexts are clustered and evaluated.
We introduce a corpus of Web contexts that have been manu-
ally disambiguated in order to evaluate our method, and then
we describe the results of our experiments.

2 Lexical Features
At the heart of language–independent unsupervised ap-
proaches are lexical features. We identify our features from
the Web contexts that are to be clustered. We also make use
of stop–lists to exclude certain words from serving as fea-
tures. In general a stop–word is a low–content word that oc-
curs very frequently in the contexts, to the point where it does
not provide any useful information in discriminating between
the different identities.

The features we employ are either unigrams or bigrams.
Unigrams are single words that occur more than a given num-
ber of times in the Web contexts, and are not present in the
stop–list. Bigrams are ordered pairs of words that occur ad-
jacent to each other in the Web contexts, where neither word
may be a stop–word. Bigrams are selected by using measures
of association that identify when these pairs of words have
occurred more than would be expected by chance. In this
paper we describe both Pointwise Mutual Information (PMI)
and the Log-Likelihood Ratio[Dunning, 1993].

2.1 Pointwise Mutual Information
Pointwise Mutual Information is defined in Equation 1.

PMI = log
n11

m11

(1)

n11 is the count of the number of times a candidate bigram
occurs in the Web context data, and m11 is the expected count
for this bigram, based on the assumption that the two words
are independent of each other (meaning that they will only
occur together by chance). The expected value m11 can be
estimated by taking the product of the count of the number
of bigrams in the Web contexts that start with the first word
(and are followed by any other word), and the count of the
bigrams that finish with the second word in the candidate.
This product is divided by the total number of bigrams in the
sample.

If the observed value is much greater than the expected
value, this means that the bigram has occurred more often
than would be expected by chance, and that the pair of words
is strongly associated and should be considered a feature.
PMI suffers from a well known bias towards bigrams that are
made up of words that only occur with each other, and in fact
gives this highest score to any bigram that only occurs 1 time
or to bigrams where the words that make it up only occur in
that bigram.

While this is not desirable behavior in general, when deal-
ing with noisy data this can actually be a positive characteris-
tic. In many cases the distribution of identities in ambiguous
Web names is very skewed, and the features associated with

one name may dominate to the point where the features of the
other name can not even be recognized. However, if there is
very distinct bigram that occurs with a low frequency name,
it can still be identified by PMI since it will rise to the top
even with relatively low frequency (assuming that the words
in the bigram only occur with each other, or nearly so).

In selecting features with PMI, we require that the bigram
occur at least 5 times or 10 times in the Web contexts, and that
the PMI score be at least 5 or above, meaning (intuitively) that
the bigram has occurred at a rate 5 times expected by chance.

2.2 Log-likelihood Ratio
The Log–Likelihood Ratio (G2) is defined as shown in Equa-
tion 2. G2 is a score assigned to each candidate bigram that
indicates the degree to which the occurrence of that bigram
deviates from what would be expected by chance, that is if the
words that make up the candidate bigram are independent.

G2 = 2
∑

i,j

nij log
nij

mij

(2)

nij is the observed count of bigrams, where i and j can
have values 1 and 2. n11 is the count of the candidate bigram,
and n12 is the count of bigrams where the first word is the
same as the candidate but the second is different. Similarity,
n21 is the count of bigrams where the second word is the same
as the candidate, but the first is different. n22 represents the
count of bigrams where both the first and second word are
different than the candidate bigram.

Note that PMI is in fact one term in this equation (when
i and j are both equal to 1). However, rather than focusing
on just the count and expected value of the candidate bigram,
G2 considers the counts of the other bigrams in the sample as
well. This allows for a formal test of statistical significance,
which answers the question of how likely it would be for the
candidate bigram to be drawn from the given sample, if the
words in the candidate bigram are truly independent.

Thus, the larger the G2 value the greater the deviation from
the expected values, and the more likely that the words in the
bigram are not independent. For selecting features we use
3.84 as our threshold, which is the value associated with a
95% probability that the words in the bigram are not indepen-
dent. This values comes from the Chi–squared distribution,
which approximates the distribution of the Log–Likelihood
Ratio and can therefore be used as a source of critical values.

2.3 Stop–Lists
A stop–list is made up of words that are not likely to be of
use in discriminating among the Web contexts, and which are
likely to add further noise to the data if they are used as fea-
tures. Stop–lists are most often made up of lists of function
words (prepositions, conjunctions, etc.) that do not contain a
great deal of topical information.

In normal text processing applications, a manually con-
structed stop list is often utilized, for English this can consist
of between 100 and 400 words. We have used one such list
in our preliminary experiments which consists of approximi-
nately 200 words and is based on the SMART stop list with
some minor modifications.



However, our hypothesis is that Web data may have rather
different characteristics than standard written English text,
so we have automatically created stop–lists from the Web
contexts using Inverse Document Frequency (IDF). This is
a widely used measure in Information Retrieval that assigns
a score to each word based on the number of documents in
a collection, divided by the number of those documents in
which the word occurs. Here we consider each Web context
to be a document. So, if there are 500 contexts and a word
occurs in 100 of them, the IDF score of that word would be 5.

We created a stoplist by grouping together all the contexts
for all the names and using that as a single corpus for which
we computed IDF scores. We also created stoplists specific
to each word by only using the the contexts for that name.

The intuition behind combining the contexts from multi-
ple names is that for very skewed names (where most of the
contexts are associated with a single identity) the IDF derived
from just the contexts for that name might include words that
are very characteristic of the underlying identity. So, by tak-
ing the IDF from a more general collection of contexts (and
yet still specific to Web data) we hope to identify true stop
words and not eliminate genuine content words. We created
stoplists by selecting any word with an IDF value equal to or
greater than 2, 5, or 10, meaning that the word must occur in
at least 50%, 20%, or 10% of the contexts to be considered a
stop word.

The IDF-5 stoplist was created from all the contexts for all
five names, and by selecting all words with an IDF value of 5
or greater. This resulted in a stoplist made up of the following
22 words (listed in order of IDF score):

the, of, and, in, a, to, for, on, is, by, with, that, was,
he, as, this, from, his, at, it, new, an

While we could have simply used a standard stoplist and
gotten much the same effect, this list shows that automatic
creation is a viable option, which could be employed when
manually created lists are not available.

3 Clustering Contexts
We take an approach to clustering Web contexts that is based
on the use of shallow lexical features, so as to allow the ap-
proach to be language independent and unsupervised. We
start with some number of contexts to cluster, each of which
contains a particular ambiguous name. We represent these
contexts using first or second order context vectors. A first–
order vector represents a context based on the features that
occur in that context. A second–order vector represents a con-
text by taking an average of word co–occurrence vectors that
represent each of the words in a context.

Whether we are using first or second order contexts, our
first step is to identify features from the Web contexts to be
clustered. These features can be unigrams or bigrams, as was
previously described.

In the case of first order features, the process is relatively
simple. The features are selected, then each context to be
clustered is checked to see if it contains an occurrence of
that feature. If it does this is indicated in a feature vector
that represents the context, either via a binary value that sim-
ply shows the feature occurs, or via a count that indicates

the number of times the feature occurs in the context. For
first order features we use unigram features selected based
on their frequency. We exclude any unigram that appears in
our stoplist or is a single character or a digit. The resulting
context vectors may optionally be reduced by Singular Value
Decomposition (SVD), which is set to reduce the columns in
the matrix to 10% of their original number.

For second order features we must use bigrams features.
After the bigrams are selected, we construct a word co–
occurrence matrix, where the rows correspond to the first
word in the bigram, and the columns to the second. The cells
in the matrix contain the Pointwise Mutual Information score
for that pair of words. In effect, each word is represented by
a vector that shows all the words with which it occurs as a
bigram. The word matrix may optionally be reduced by Sin-
gular Value Decomposition (SVD), again set to reduce the
columns down to 10% of their original number.

Then, each word in a Web context is replaced by its vec-
tor from the co-occurrence matrix described above. These
vectors are then averaged together to create a representation
of the context. The averaging operation carried out on these
vectors to represent a context is similar to what is done in
Latent Semantic Analysis [Landauer et al., 1998], although
there the vectors that are averaged together indicate the con-
texts in which a word has occurred.

Once each context is represented by either a first or sec-
ond order vector, then clustering can proceed. We employ
a hybrid clustering algorithm known as Repeated Bisections,
which divides the contexts into partitions, and then clusters
each partition using agglomerative techniques.

4 Cluster Stopping
We use an adaption of the Gap Statistic [Tibshirani et al.,
2001] and the PK2 measure, both of which were devel-
oped by [Pedersen and Kulkarni, 2006] and are a part of the
SenseClusters package. These will predict the optimal num-
ber of clusters for the Web contexts associated with a given
name (a process we refer to as Cluster Stopping). As such we
do not need to specify ahead of time the number of clusters
that we expect to find, this is determined automatically.

In these experiments we have used an internal criterion
function (I2) for both techniques, which is a measure of
within–cluster (intra) similarity. This is measured by finding
the distance of all the contexts in that cluster to the centroid.
The goal is to have a cluster that is as tight as possible, that is
where the within cluster similarity is maximized.

To perform cluster stopping we carry out clustering where
we find solutions with 1 cluster, then 2 clusters, and so forth,
up to some number of clusters where there is no further im-
provement in the quality of the solution. Then, we examine
the tend of criterion function scores (I2) for these successive
solutions, and seek the point at which adding to the number
of clusters does not significantly improve upon the quality of
the solution.

The PK2 measure simply compares the value of the cri-
terion function for successive pairs of clusters k and k − 1.
When this ratio approaches 1, then the creation of additional
clusters is not improving the quality of the solution, and



should be stopped. We select the value of k that is closest
to but still greater than one standard deviation in the value of
the PK2 scores. Note that this measure is unable to predict the
case where there is simply one cluster in that data, which can
prove to be a significant limitation since noise or very skewed
data may make it impossible to identify any more than one
cluster.

The Gap Statistic relies upon comparing the observed value
of the criterion function with the value of the criterion func-
tion that is estimated from a data set that is essentially ran-
dom. To do this, a matrix is randomly generated such that
the marginal totals are the same as the observed data, but
where the internal cell counts are randomly (subject to the
constraints imposed by the given marginal totals). Thus, this
matrix represents the same population as that of the observed
data, except that the data is made up of noise. As such when
this data is clustered the criterion function should exhibit a
relatively consistent score which will quantify the amount
of noise present in the data. Then selecting the number of
clusters reducing to finding the point where the difference
between the observed and randomly generated data criterion
function score is greatest. This is the point at which the ob-
served data is least like noise, and the point where the optimal
number of clusters exists.

5 Evaluation
In these experiments we have manually created a gold stan-
dard, where ambiguous names have been categorized into
their true underlying identity. After some number of clusters
have been discovered, they are aligned with the human gold
standard such that the agreement between the two is maxi-
mized. Each discovered cluster is aligned to a single gold
standard cluster, and it is possible that the number of dis-
covered clusters will be more or less than the gold standard
amount.

We measure the quality of the resulting clustering using
the F–measure, which is the harmonic mean of precision and
recall. We define precision to be the number of contexts that
are assigned to their correct class, divided by the number of
contexts that are assigned a class. Recall is defined as the
number of contexts assigned to their correct class, divided
by the total number of contexts. Precision and recall differ
because the clustering algorithm may decide not to cluster a
context, and if the clustering algorithm creates more clusters
than there are in the human gold standard, the extra clusters
that remain after alignment with the human gold standard are
discarded.

Thus, the F-measure provides an indication of how well the
clustering is being carried out both in terms of discovering
the number of clusters, and then in terms of the quality of the
resulting clusters.

6 Experimental Data
We have manually disambiguated Web contexts obtained
from the Google Search Engine API for five different am-
biguous names:

Richard Alston, Sarah Connor, George Miller, Ted
Pedersen, Michael Collins

Web contexts for each of these names was collected in May
2006 using the Google API, as supported by the CPAN mod-
ule WebService-GoogleHack-0.15. The top 50 html (or htm)
pages found when searching for each of these names were re-
trieved, and any links from those pages to pages in the same
domain were followed and those pages retrieved. However,
the links on the second level pages were not traversed.

All the pages retrieved were formatted and cleaned as fol-
lows. First, all HTML tags were stripped away using the
CPAN module HTML-Format-2.04. This data was divided
into contexts using the freely available NameConflate pro-
gram (version 0.16)2. Each context contains a single am-
biguous name. Note that contexts may contain variants of the
names listed above, such as M. Collins or Ted A. Pedersen.

Each Web context consists of approximately 100 total
words, where the ambiguous name is located in the center
of the context. To illustrate the nature of the data, here we
show a randomly selected instance from the Richard Alston
data, where the target word is in bold face:

dancers crew musicians permanent members of
staff artistic director richard alston administrative
director chris may marketing manager sarah lowry
production manager helen cain current dancers luke
baio annelie binder amie brown jonathan god-
dard martin lawrance maria nikoloulea sonja peedo
francesca romo silvestre sanchez strattner dam van
huynh contact details richard alston dance com-
pany the place duke’s road london wc h ab tel fax
email radc theplace org uk www theplace org uk
exclusive overseas representation david lieberman
artists representative s inc po box newport beach
california usa info dlartists com www dlartists
com photograph hugo glendinning dancers martin
lawrance

Table 1 shows the number of contexts associated with each
name, and the distribution of identities associated with the
contexts:

Note that in clustering if all of the Web contexts for a given
name are assigned to the same cluster, the F–Measure will be
equal to the percentage of the majority identity in the data.
Thus, this serves as a baseline measure to which we can com-
pare.

7 Experimental Results
The goal of our experiments was to compare the effect of var-
ious parameter settings that were made in the unsupervised
clustering process. We conducted an extensive series of pre-
liminary experiments that are not reported on in detail here,
but that led to the following findings.

• We observed that Pointwise Mutual Information nearly
always resulted in better performance than the Log–
Likelihood Ratio when selecting bigram features. We
believe this is because PMI is biased towards pairs
of words that only occur with each other, while Log–
Likelihood has a bias towards higher frequency words.

2http://www.umn.edu/home/tpederse/tools.html



Table 1: Name Data
Name: Identity Count %
Richard Alston: 247

Choreographer 176 71.3
Senator (Aus.) 71 28.7

Sarah Connor: 150
German Singer 109 72.7
Terminator Character 41 27.3

George Miller: 286
Congressman (USA) 217 75.9
Film Director (Aus.) 57 19.9
Princeton Professor 12 4.2

Michael Collins: 359
Irish Leader 269 74.9
MIT Professor 41 11.4
Wisc. Professor 32 8.9
NASA Astronaut 17 4.7

Ted Pedersen: 333
Minn. Professor 255 76.6
Children’s Author 43 12.9
Son of Sea Captain 25 7.5
TV Writer 10 3.00

Thus, it is easier for Log–Likelihood to be overwhelmed
by features from a dominant majority identity, whereas
PMI is able to pick out a few relatively low frequency
features for the minority class.

• Frequency cutoffs of 2 for unigrams and bigrams sig-
nificantly degrade performance for cluster stopping and
F-Measures. We believe that at this level too much noise
is introduced into the feature set.

• Stoplists created using IDF values of 2 and 10 resulted in
significantly lower F-measures than those created with
5. The IDF of 2 resulted in an extremely small stop list,
with only a few very frequent words like the and an be-
ing present. A value of 10 resulted in the elimination of
many content words.

• Stoplists created per name were significantly less effec-
tive than those created from all the named contexts. Our
data is rather skewed in terms of the underlying identi-
ties, and the creation of name specific stoplists led to the
removal of a many content words related to that domi-
nant identity.

Thus, we settled on the use of PMI for bigram feature se-
lection, and frequency cutoffs of 5 and 10 for unigrams and
bigrams. We elected to use a single stoplist created from all
the contexts using an IDF value of 5, which we refer to as
IDF-5. In our final round of experiments, we focused on the
following questions:

• How effective is the Gap Statistic versus PK2 for pre-
dicting the number of clusters given very noisy data?

• Does a stoplist help when dealing with noisy data, or is
no stoplist better?

• Does Singular Value Decomposition help to reduce the

impact of noise in data, as reflected in both cluster stop-
ping and F-Measure scores?

• Are first or second order representations of context more
effective given noisy data?

• Is there any impact on performance in using a frequency
cutoff of 5 versus a frequency cutoff of 10?

For each of the five names in our data set, we ran 32 exper-
iments, where each of the five parameters mentioned above
was varied between two values. The results of these experi-
ments are shown in Tables 2 through 6. Each of these tables
is formatted such that F–Measures are shown in descending
order. The column labels are numbers associated with the
parameters mentioned above (in order). To summarize, the
possible parameter settings represented by each column are:
(1) Gap Statistic or PK2 for cluster stopping, (2) IDF-5 or
no stoplist during feature selection, (3) SVD prior to cluster-
ing (or not), (4) first order unigram or second order bigram
features, (5) frequency cutoff of 5 or 10 for feature selection.

A horizontal line is drawn through the table to indicate all
those experiments were the F-Measure is equal to or greater
than the majority identity in the gold standard data.

For the Richard Alston results shown in Table 2, the high-
est F–Measure obtained was 99.6%, which means that all of
the contexts except one were clustered correctly. This level
of performance was attained by one setting, where the Gap
statistic was used to determine there were 2 clusters, and with
unigram features selected with a frequency cutoff of 10, using
an IDF-5 stoplist, and no SVD. We can see that using bigram
features results in nearly the same level of performance.

In general most of the different combinations stop–
lists, feature type, and context representation resulted in F-
Measures significantly higher than the majority identity dis-
tribution of 71.26%, which suggests that the Alston data was
relatively easy to discriminate. The dominant identity is that
of a British choreographer, while the minority identify is an
Australian Senator. Both the difference in geography and pro-
fessions resulted in distinct features for each, making it pos-
sible to discriminate these identities with nearly perfect accu-
racy.

We can make a few other observations about the Alston
results. First, SVD seems often to degrade performance, so
that does not appear to be helping with this data. Second, the
Gap Statistic is more often successful at finding the 2 clusters,
while PK2 only seems to do that when contexts are repre-
sented using second order bigram features. The top 12 results
all have 2 predicted clusters so in general this data seems to
have been clearly separable in that number of clusters.

For the Michael Collins results shown in Table 3, the high-
est F–Measure attained was 93.04%. This was reached us-
ing a very simple combination of methods, PK2 for cluster
stopping, no stoplist, no SVD, and unigram features with a
frequency cutoff of 5. For the Collins data there is a strong
majority identity associated with the Irish political leader, and
both the geography and profession of this identity was quite
distinct from the other identities. As such simply using the
unigram features

This provides a stark example of where performing SVD
hurts considerably, when only this is changed the cluster stop-



Table 2: Richard Alston Results (2 identities)
(1) (2) (3) (4) (5) # F

gap idf5 no uni 10 2 99.60
gap idf5 no bi 10 2 97.73
gap idf5 yes bi 10 2 97.73
gap idf5 no uni 5 2 90.69
gap none no bi 5 2 89.47
pk2 none no bi 5 2 89.47
gap none no bi 10 2 88.66
pk2 none no bi 10 2 88.66
pk2 none yes bi 5 2 88.66
pk2 none yes bi 10 2 88.66
gap none no uni 5 2 88.26
gap none no uni 10 2 88.26
pk2 none no uni 10 2 88.26
pk2 idf5 no bi 10 3 83.76
pk2 idf5 yes bi 10 3 83.76
pk2 idf5 yes bi 5 4 78.45
pk2 idf5 yes uni 5 4 77.67
gap idf5 no bi 5 3 76.51
pk2 idf5 no bi 5 3 76.51
pk2 idf5 no uni 10 4 76.00
pk2 idf5 no uni 5 4 73.79
pk2 none yes uni 5 3 73.39
pk2 none yes uni 10 3 73.39
gap none yes bi 5 1 71.26
gap none yes bi 10 1 71.26
gap none yes uni 5 1 71.26
gap idf5 yes bi 5 1 71.26
gap idf5 yes uni 5 1 71.26
pk2 idf5 yes uni 10 4 69.74
pk2 none no uni 5 3 68.42
gap none yes uni 10 28 27.18
gap idf5 yes uni 10 36 21.01

ping method finds 41 clusters and the F-measure is 23.15%,
so the results go from best to next to last. It should be noted
that in most cases a number of clusters was predicted that
differed from what was in our gold standard. PK2 was able
to identify 3 clusters in three different experiments, whereas
Gap never did. This combined with the fact that the Gap
statistic often found 1 cluster suggests that there may not have
been many clear patterns in the data beyond those provided by
unigrams with a frequency cutoff of 5. There is a curious note
on that point, which is that the best results were found when
not using a stoplist. When the stoplist IDF-5 was used for the
top ranked combination, the F-Measure score fell almost 30
points and the number of clusters was predicted as 6.

The Sara Connor results are shown in Table 4. The dom-
inant identity (German Pop singer) is quite easy to identify
in the features, but the minority identity is not (a character
in the film The Terminator). As such the unigram features
performed quite well here, in that they were able to clearly
identify the dominant class using a few features like German
and music. As a result 4 of the 5 most accurate methods used
unigram features and attained an F-Measure score of 90.0%.

Table 3: Michael Collins Results (3 identities)
(1) (2) (3) (4) (5) # F

pk2 none no uni 5 3 93.04
pk2 none yes bi 5 2 76.60
pk2 none yes bi 10 2 75.21
gap idf5 yes uni 5 1 74.93
gap idf5 yes uni 10 1 74.93
gap idf5 yes bi 10 1 74.93
gap none no bi 5 1 74.93
gap none no bi 10 1 74.93
gap none no uni 5 1 74.93
gap none no uni 10 1 74.93
gap none yes bi 5 1 74.93
gap none yes bi 10 1 74.93
gap none yes uni 5 1 74.93
gap none yes uni 10 1 74.93
gap idf5 no bi 10 1 74.93
gap idf5 yes bi 5 1 74.93
gap idf5 no bi 5 5 72.45
pk2 idf5 no bi 5 5 72.45
pk2 none no bi 5 2 71.31
pk2 none no bi 10 2 70.19
gap idf5 no uni 5 6 64.59
pk2 idf5 no uni 5 6 64.59
gap idf5 no uni 10 4 60.72
pk2 idf5 no uni 10 7 59.43
pk2 none no uni 10 4 58.50
pk2 idf5 yes bi 5 5 57.81
pk2 idf5 yes uni 5 7 57.73
pk2 idf5 yes bi 10 3 53.48
pk2 idf5 no bi 10 4 47.46
pk2 none yes uni 10 41 23.96
pk2 none yes uni 5 41 23.15
pk2 idf5 yes uni 10 49 19.95

One striking characteristic of these results is that of the top
12 methods, none of them used a stop list. This is perhaps
reasonable for bigram features, where having a bigram with
one function word and one content word could still be useful.
However, the top 4 methods all use unigram features, and the
difference in their performance when using a stoplist and not
is quite start. For example, the Gap statistic with no stoplist,
no SVD, and unigram features that occur more than 5 times
reaches 90.00% F-measure, and when the IDF-5 stoplist is
used that score drops by 23 points to 67.20%. Clearly some
of the function words must be strongly associated with one of
the identities, so this might suggest that not using a stoplist
would be preferred.

One of the surprises of these experiments was the com-
parative difficulty of the George Miller and Ted Pedersen, as
shown in results Tables 5 and 6. In neither case was any
method able to improve upon the majority identity value.
This initially surprised us since both of these names have
fairly distinct senses.

However, upon examining the features we found that the
contexts for the majority identities were extremely rich in
text, while the minority sense were somewhat impoverished.



Table 4: Sara Connor Results (2 identities)
(1) (2) (3) (4) (5) # F

gap none no uni 5 2 90.00
gap none no uni 10 2 90.00
pk2 none no uni 5 2 90.00
pk2 none no uni 10 2 90.00
pk2 none yes bi 5 2 90.00
pk2 none yes uni 10 2 86.00
pk2 none yes uni 5 2 84.00
gap none no bi 5 2 83.33
gap none no bi 10 2 83.33
pk2 none no bi 5 2 83.33
pk2 none no bi 10 2 83.33
pk2 none yes bi 10 2 82.00
pk2 idf5 yes uni 10 4 76.81
gap none yes uni 5 1 72.67
gap none yes uni 10 1 72.67
gap idf5 yes bi 5 1 72.67
gap idf5 yes uni 5 1 72.67
gap idf5 yes uni 10 1 72.67
gap idf5 no bi 10 1 72.67
gap idf5 yes bi 10 1 72.67
pk2 idf5 no uni 10 4 69.83
gap none yes bi 10 5 67.24
pk2 idf5 no uni 5 4 67.20
gap none yes bi 5 5 63.72
gap idf5 no uni 5 8 62.10
pk2 idf5 no bi 5 4 59.74
gap idf5 no uni 10 8 59.53
pk2 idf5 yes uni 5 4 59.29
gap idf5 no bi 5 7 52.68
pk2 idf5 yes bi 5 4 50.19
pk2 idf5 no bi 10 4 46.36
pk2 idf5 yes bi 10 4 46.36

Thus, no matter what kind of feature identification techniques
were employed, it was simply not possible to identify features
for any of the minority classes.

The Gap Statistic actually proved to be quite valuable in
the case of the Pedersen and Miller data, in that it was able to
determine that only 1 cluster should be identified. Other mea-
sures that we used in preliminary experiments were unable
to recognize the situation where no meaningful distinctions
could be made, so they would tend to split the data up into
clusters fairly arbitrarily, which led to rather bad F–Measure
scores (in the 40% to 50% range). However, because it specif-
ically accounts for noise in the data, the Gap Statistic was
able to recognize that it could not distinguish the observed
data from noise, and it therefore did not attempt to further di-
vide the data into additional clusters, which at least led to an
F–Measure accuracy at the level of the majority identity. This
suggests to us that the Gap Statistic is a particularly appropri-
ate choice when working with very noisy data.

8 Conclusions
These experiments illustrate some of the challenges of work-
ing with very noisy data, such as we find on the Web. We

Table 5: George Miller Results (3 identities)
(1) (2) (3) (4) (5) # F

gap none no bi 10 1 75.87
gap none no uni 5 1 75.87
gap none no uni 10 1 75.87
gap none yes bi 10 1 75.87
gap idf5 no bi 10 1 75.87
gap idf5 yes bi 5 1 75.87
gap idf5 yes bi 10 1 75.87
gap idf5 yes uni 5 1 75.87
gap idf5 yes uni 10 1 75.87
gap none yes bi 5 1 75.87
gap none yes uni 10 1 75.87
gap none yes uni 5 1 75.87
gap idf5 no bi 5 3 56.64
pk2 idf5 no bi 5 3 56.64
pk2 idf5 no bi 10 3 55.94
gap idf5 no uni 5 3 53.50
gap idf5 no uni 10 3 53.15
pk2 none yes bi 5 2 52.80
pk2 none yes bi 10 2 52.45
pk2 idf5 no uni 5 6 51.44
gap none no bi 5 2 51.40
pk2 none no bi 10 2 51.40
pk2 none no bi 5 2 51.40
pk2 idf5 yes bi 10 2 50.70
pk2 idf5 no uni 10 6 50.21
pk2 idf5 yes bi 5 3 48.60
pk2 none no uni 5 5 45.15
pk2 none no uni 10 5 44.49
pk2 idf5 yes uni 5 7 37.19
pk2 none yes uni 10 32 24.56
pk2 none yes uni 5 37 20.25
pk2 idf5 yes uni 10 41 18.96

described an unsupervised method of context discrimination
and applied that to the problem of discriminating among
named entities. We explored the settings of the parameters
for this data, and drew a number of conclusions.

Pointwise Mutual Information is particularly well suited
for identifying bigram features in Web data since it focuses on
those pairs that only occur with each other, and are somewhat
noise resistant as a result.

We found that both the Gap Statistic and the PK2 measure
performed well at cluster stopping, although the Gap Statis-
tic offers the significant advantage of identifying when there
is just one cluster present, which can be somewhat common
given very noisy data.

Somewhat to our surprise, many of our results are often
better when not using a stoplist. We are uncertain as to why
this would be the case, and it is certainly not universal. How-
ever, in general a majority of the experiments that achieved
F-Measures above the majority identity did not use a stoplist.

The results for Singular Value Decomposition are some-
what mixed. It clearly helped with the Collins and Pedersen
results, but hurt the Alston, Connor, and Miller results.

First order unigrams performed better with the Alston,



Table 6: Ted Pedersen Results (4 identities)
(1) (2) (3) (4) (5) # F

gap none yes bi 5 1 76.58
gap none yes bi 10 1 76.58
gap none yes uni 5 1 76.58
gap none yes uni 10 1 76.58
gap idf5 yes bi 5 1 76.58
gap idf5 yes bi 10 1 76.58
gap idf5 yes uni 10 1 76.58
pk2 idf5 yes uni 10 5 69.85
pk2 idf5 yes uni 5 5 60.72
pk2 none yes uni 5 5 59.87
pk2 idf5 no uni 5 6 58.27
gap idf5 no uni 10 3 57.96
pk2 none yes uni 10 5 55.68
pk2 idf5 no uni 10 6 54.25
pk2 none no uni 5 3 53.15
pk2 none no uni 10 3 53.15
pk2 idf5 yes bi 10 2 53.15
gap none no uni 5 2 52.55
gap none no uni 10 2 52.55
pk2 none yes bi 5 2 51.05
pk2 none yes bi 10 2 51.05
gap idf5 no bi 5 3 50.75
gap none no bi 5 2 49.85
pk2 none no bi 5 2 49.85
pk2 none no bi 10 2 49.55
gap none no bi 10 2 49.55
pk2 idf5 no bi 5 6 46.29
gap idf5 no bi 10 5 46.10
pk2 idf5 no bi 10 5 46.10
gap idf5 no uni 5 8 45.79
pk2 idf5 yes bi 5 5 45.37
gap idf5 yes uni 5 48 22.40

Connor, and Collins data, where the results were well above
the majority identity. Second order bigrams performed better
with the Miller and Pedersen and data, which did not exceed
the majority identity percentage. This may suggest that sec-
ond order bigrams should be used when the data is harder to
seperate, and that unigrams fare perfectly well in somewhat
less challenging circumstances.
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