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Our objective is to develop a framework for creating reference standards for functional testing of comput-
erized measures of semantic relatedness. Currently, research on computerized approaches to semantic
relatedness between biomedical concepts relies on reference standards created for specific purposes
using a variety of methods for their analysis. In most cases, these reference standards are not publicly
available and the published information provided in manuscripts that evaluate computerized semantic
relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework
is based on the experiences of medical informatics and computational linguistics communities and
addresses practical and theoretical issues with creating reference standards for semantic relatedness.
We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic
relatedness by 13 medical coding experts. While the reliability of this particular reference standard is
in the ‘‘moderate’’ range; we show that using clustering and factor analyses offers a data-driven approach
to finding systematic differences among raters and identifying groups of potential outliers. We test two
ontology-based measures of relatedness and provide both the reference standard containing individual
ratings and the R program used to analyze the ratings as open-source. Currently, these resources are
intended to be used to reproduce and compare results of studies involving computerized measures of
semantic relatedness. Our framework may be extended to the development of reference standards in
other research areas in medical informatics including automatic classification, information retrieval from
medical records and vocabulary/ontology development.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Querying electronic health records (EHR) for patients with a
particular syndrome often requires using a variety of medical
terms that not only denote the diagnosis itself but also symptoms
and conditions closely related to the syndrome. This task is espe-
cially important for effective clinical trial recruitment and quality
assurance functions where identifying these patients can assist
with the process of care. For example, when searching for cases
of heart failure, it is desirable to include terms for ‘‘pulmonary ede-
ma’’, ‘‘volume/fluid overload’’, ‘‘shortness of breath,’’ and possibly
others to achieve the maximum sensitivity in finding relevant
medical records [1]. The terms ‘‘heart failure’’, ‘‘pulmonary edema’’,
‘‘volume/fluid overload’’ and ‘‘shortness of breath’’ are clearly not
synonymous but are semantically related because they denote dif-
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ferent aspects of the same underlying condition. The terms ‘‘cardi-
omegaly’’ and ‘‘splenomegaly’’ may be considered semantically
similar, but not necessarily related, because they share a semantic
feature – both refer to an enlargement of an internal body organ.
These examples illustrate that semantic relatedness is a more gen-
eral notion that subsumes semantic similarity and synonymy as
special cases of semantic relatedness. This hierarchical relationship
between similarity and relatedness is a theoretically well estab-
lished notion in lexical semantics work on general English [2,3]
that we were able to confirm experimentally in a recent psycholin-
guistic study in the clinical sublanguage domain. In this study, two
groups of physicians were asked to rate the same 724 pairs of clin-
ical concepts (drugs, disorders, symptoms) for the degree of either
relatedness or similarity. The results of correlating the two groups’
judgments clearly showed a relationship of unidirectional entail-
ment – the pairs of terms that were judged as similar were also
judged as related but not vice versa [4].

Apart from searching EHR systems for patients with related
conditions, clusters of semantically related terms are also currently
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used for post-marketing drug safety surveillance. In this context,
drug safety reports comprising FDA Adverse Events Reporting Sys-
tem (AERS) may be searched using queries consisting of groups of
terms (Standardized MedDRA Queries) that are indicative of the
adverse event of interest [5]. For example, the adverse event of
‘‘demyelination’’ is represented by a Standardized MedDRA Query
(SMQ) consisting of a total of 35 other terms including ‘‘optic neu-
ritis’’, ‘‘multiple sclerosis’’ and ‘‘saccadic eye movement.’’ A recent
study found that using SMQs for automated identification of po-
tential adverse drug event signals in AERS yields more sensitive
(albeit less specific) results than using ungrouped terms [6]. Devel-
oping tools to support querying of clinical data for drug safety sur-
veillance is particularly important in light of the recent FDA
Sentinel initiative1 launched in May 2008 and designed to develop
a national electronic system to utilize electronic health records for
safety monitoring of FDA regulated medications. Electronic health
records include large amounts of highly variable free text in addition
to structured data and their use for drug safety surveillance will re-
quire aggregation of semantically related concepts to reduce this
variability.

Currently, several research groups, including ours, are investi-
gating computerized methods for determining the strength of sim-
ilarity and relatedness between medical terms and for grouping
the terms based on the strength of relatedness [7–12]. One of the
critical prerequisites in these investigations is the availability of
publicly accessible, validated reference standards that may be used
to assess the performance of automated algorithms relative to hu-
man judgments. In previous work, we have used and made publicly
available a reference standard of 30 medical term pairs [10]. These
medical term pairs represent a subset of a larger set of 120 term
pairs and were selected because the majority of the human anno-
tators agreed on the strength of relatedness between the terms. In
the current paper, we build on our previous work by providing a
detailed analysis of the entire dataset and describing a methodol-
ogy for analyzing human semantic relatedness ratings.

The main objective of this paper is to propose a framework for
creating reference standards for evaluating computerized mea-
sures of semantic relatedness. Towards this objective, we validate
a reference standard of medical concept pairs manually rated by
professional medical coding experts for the degree of semantic
relatedness between terms. We evaluate the reliability of human
ratings and, based on these results, provide suggestions for future
public use of this dataset to test computerized measures of seman-
tic relatedness. We also provide both the reference standards and
the statistical software for their analysis as open-source. Further-
more, we demonstrate the use of the proposed framework to eval-
uate two automatic computerized approaches to measuring
semantic relatedness between biomedical terms.
2. Background

2.1. Semantic relatedness in general English language text

Creating computer programs that can automatically judge if one
pair of concepts is more closely related than another is still an un-
met goal of natural language processing (NLP) and Artificial Intel-
ligence (AI). Most existing methods base relatedness judgments
on knowledge sources such as concept hierarchies or ontologies,
which may be augmented with statistics from text corpora. A num-
ber of proposed solutions to NLP problems rely on these measures.
For example, Budanitsky and Hirst [13] identify when a correctly
spelled word is used in the wrong context (i.e., malapropisms)
using various measures of relatedness. Both Resnik [14] and Pat-
1 http://www.fda.gov/Safety/FDAsSentinelInitiative/default.htm.
wardhan et al. [15] have shown that these measures can be used
to assign the meaning of a word in context, and perform word
sense disambiguation.

Most research on measuring semantic relatedness in general
English text has relied on WordNet [16], a freely available dictio-
nary that can also be viewed as a semantic network. WordNet
groups related words into synonym sets or synsets that represent
a particular concept. Each synset has a definition or gloss that char-
acterizes its meaning and is connected to other synsets via links
that represent relations such as is-a, has-part, and is-a-way-of-
doing. WordNet is best known for its noun hierarchies, which are
made up of is-a relations. The most recent version (3.0) includes
a noun hierarchy of 82,000 concepts. By comparison, there are
14,000 verb concepts arranged in more than 600 is-a-way-of-doing
hierarchies (e.g., to run is a way of moving) and networks of 19,000
adjectives and 4000 adverbs. An evaluation of the automated mea-
sures of semantic relatedness in general English has been success-
fully conducted based on a corpus of 30 English words found in
WordNet manually rated by over 50 native English speakers for
semantic similarity with high correlation [17].

2.2. Semantic relatedness in the biomedical sublanguage domain

The discipline of biomedical informatics has generated a signif-
icant amount of experience in terminology and ontology resource
development along with medical knowledge representation. The
Unified Medical Language System (UMLS) developed and main-
tained by the National Library of Medicine represents the most
comprehensive effort to date in unifying over 150 disparate termi-
nologies and ontologies into a single system. The UMLS has a sig-
nificantly wider and deeper coverage of the biomedical domain
with a significantly richer set of relations between medical con-
cepts than WordNet [18,19]. Current research on measures of
relatedness for biomedical text includes adaptations of existing
WordNet-based measures or variations specific to tasks such as
MEDLINE document retrieval or Gene Ontology (GO) searching.
For example, Lord et al. [20] adapted three Information Content
measures of similarity based on WordNet that were discussed pre-
viously (Lin, Resnik and Jiang-Conrath) to the GO ontology. Guo
et al. [21] demonstrated the utility of Information Content mea-
sures of semantic similarity derived from the Gene Ontology for
identifying direct and indirect protein interactions within human
regulatory pathways. In earlier work, Rada et al. [22] notably de-
vised a measure based on path lengths between concepts found
in MeSH. Rada used this measure to improve information retrieval
by ranking documents retrieved from MEDLINE.

Several other examples of the development of semantic related-
ness approaches can be found in the biomedical informatics litera-
ture. Bousquet et al. [7,8] explored the use of semantic distance
(the inverse of similarity) for coding of medical diagnoses and ad-
verse drug reactions. In contrast, Rodriguez and Egenhofer [23]
used semantic similarity to integrate various ontologies into a uni-
fied resource for subsequent use in information retrieval from
medical documents. To investigate the feasibility of semantic sim-
ilarity metrics based on the UMLS framework, Caviedes and Cimino
[9] developed a measure called CDist based on the shortest path
between two concepts and demonstrated that even such relatively
simple approaches tend to yield reliable results. Work by Wilbur
and Yang [24] defined a strength metric used to retrieve relevant
articles using lexical techniques. The described metric uses the cor-
relation between the occurrences of a term in documents with the
subjects of the documents to define the weight of each term. Re-
search by Spasic and Ananiadou [25] defined a new similarity mea-
sure based on a variation of edit distance applied at the word level.
In short, semantic similarity between two terms is the cost associ-
ated with converting one term to another, using insert, delete and
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replace operations on words (instead of letters). This method addi-
tionally uses the UMLS taxonomy to minimize the effect of word
variants. It also varies the costs associated with the operations
based on the ‘‘semantic load’’ of the word being edited. For exam-
ple, deleting a known term present in the UMLS has a higher cost
than deleting a conjunction.

A hybrid approach that incorporates measures of semantic sim-
ilarity based on hierarchical relations with measures of relatedness
based on the vector-space model has also been developed and
demonstrated for computing semantic similarity between genes
and gene products [26]. More recently, Al-Mubaid and Nguyen
developed a measure of similarity between biomedical concepts
in the Medical Subjects Heading (MeSH) taxonomy, based on a
combination of existing ontology-only based approaches and two
additional characteristics – the specificity and the branching factor
of the hierarchies of the concepts being compared [11]. In a subse-
quent study, Lee et al. compared Al-Mubaid and Nguyen’s ontol-
ogy-only and Information Content based approaches [12]. We
have also adapted a number of ontology-based measures that were
originally developed for WordNet to use the UMLS as the source of
hierarchical relations information [27]. Our prior experiments with
a number of ontology-based and corpus-based measures of seman-
tic relatedness found preliminary evidence indicating that physi-
cians’ assessments of semantic relatedness correlated better with
corpus-based measures derived from dictated clinical reports,
while medical coding experts’ assessments of relatedness corre-
lated better with ontology-based measures [10].

Apart from the work described above on developing the seman-
tic relatedness measures themselves, several efforts have been di-
rected towards using automatically computed semantic
relatedness in information extraction [28] and textual inference
[29]. Bodenreider and Burgun [30] used the notions of lexical and
conceptual similarity to align the UMLS Metathesaurus and the
UMLS Semantic Network. Low-level measures of semantic related-
ness between individual medical concepts have also been used to
determine the similarity between patient cases based on the text
of the patient’s EHR [31] and similarity between biomedical arti-
cles for subsequent indexing [32] and document clustering [33].
In another subsequent study of patient similarity based on EHR,
the approach to computing patient case similarity was enhanced
by adding specific features such as diagnoses, findings and proce-
dures abstracted from the medical record [34].

2.3. Reference standards to evaluate semantic relatedness measures

Current efforts to develop measures of semantic similarity and
relatedness in medical informatics have traditionally relied on ref-
erence standards created specifically for each individual study
using various scales, human annotators and annotation instruc-
tions. The existing reference standard generation approaches are
thus limited in a number of important aspects. In addition to lim-
ited generalizability due to the utilization of different scales, anno-
tators and guidelines, reference standards created to evaluate the
tools in individual studies of semantic relatedness/similarity are
rated only by 2–3 human raters. Having larger numbers of raters
is particularly advantageous in domains such as medical terminol-
ogy where inter-rater agreement on semantic relatedness tends to
be low as we show in the current study. By comparison, reference
standards published on the general English domain consist of rat-
ings by over 50 participants [17,35], which constitutes a more rep-
resentative sample and enables techniques aimed at reducing
inter-rater variability (e.g., majority voting). Studies that use or
create reference standards for semantic relatedness published in
biomedical literature typically do not provide in-depth information
on the methods and characteristics of the reference standards and
thus are difficult to replicate. In addition to differences in reference
standard creation methods, investigators may use a variety of sta-
tistical methods to assess the reliability of their standards, thus
limiting the comparability of the results obtained in different stud-
ies. As demonstrated by Krippendorf, inferring the reliability of a
reference standard from a specific inter-annotator agreement coef-
ficient depends on the purpose for which the reference standard is
used [36]. Individual researchers report the agreement statistics
that are appropriate for the purposes of their study that may or
may not be appropriate if one were to use the reference standard
under different conditions and for a different purpose. Having pub-
licly available reference standards requires a variety of purpose-
sensitive methods to assess their reliability.

Furthermore, the majority of the reference standards reported
in the biomedical literature are not publicly available. The impor-
tance of releasing software used by researchers to obtain and pub-
lish their results so that they can be reproduced and improved
upon by others is abundantly clear [37]. An equally important
counterpart to publicly available software are the numerous refer-
ence standards that are also sometimes referred to as ‘‘test beds’’,
‘‘gold standards’’, ‘‘test sets’’ and ‘‘held-out sets.’’ Having reliable
and publicly available reference standards in addition to software
for semantic relatedness research is critical to enabling reproduc-
ible and easily comparable results. In the current study, we address
these issues with the availability of validated reference standards
for semantic relatedness in medical informatics by proposing and
piloting a standardized framework for creating, validating and dis-
seminating reference corpora for the assessment of computerized
semantic relatedness measures. We demonstrate our approach
on a set of heterogeneous medical term pairs rated by 13 medical
coding experts and two computerized automated measures.
3. Methods

3.1. Datasets

While random sampling is a widely used technique to generate
reference standards, we did not want to rely on this methodology
to create medical term pairs because random sampling was likely
to result in a disproportionate number of unrelated pairs. To have
a more balanced distribution across the relatedness spectrum, we
asked a practicing Mayo Clinic physician (AR, a rheumatology spe-
cialist also formally trained in health informatics) to generate a list
of 120 pairs of medical terms that would roughly correspond to
four categories: closely related, somewhat related, somewhat
unrelated and completely unrelated. The physician was instructed
to rely on his intuition in selecting pairs without having to define
explicitly the nature of the relationship between the terms. The
original list of 120 pairs was further revised to remove duplicates
and items that the physician felt unsure about. The resulting set
consisted of 101 pairs.

The corpus of 101 pairs was subsequently manually rated on a
scale of 1–10 (1-closely related, 10-unrelated) by 13 medical cod-
ing experts. All experts were at the time of the study a part of the
Mayo Medical Index group that continues to support multiple epi-
demiologic studies at the Mayo Clinic and beyond, including the
Rochester Epidemiology Project, a legacy of Henry Plummer [38].
These coding experts were previously trained to classify the diag-
noses contained in the Mayo Clinic medical records using a Hospi-
tal Adaptation of the International Classification of Diseases [39].
They had varying degrees of experience ranging from 2 years to
over 15. All of the experts participating in this study were female.
Subsequent to evaluating the corpus of 101 pairs, 9 of the 13 ex-
perts2 were also asked to rate 30 pairs of general English words in
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the Miller and Charles corpus [17]. All experts were instructed to
rate the term pairs for semantic relatedness rather than similarity
for both biomedical and general English terms. To focus the ratings
on relatedness, the raters were provided with a number of examples;
however, the raters were not formally trained to distinguish cases of
similarity from relatedness.

3.2. UMLS-similarity package

We recently implemented several ontology-based approaches
to computing semantic similarity based on the relational informa-
tion contained in the UMLS (version 2008 AB) [27]. For this study,
we correlated the automatic ratings produced by two ontology-
based approaches originally developed by Wu and Palmer [40],
and Leacock and Chodorow [40] in order to demonstrate the in-
tended use of our framework. Both of these approaches rely on
computing the length of the paths in the UMLS hierarchies be-
tween concepts and thus represent measures of similarity, a spe-
cial case of semantic relatedness.

3.3. Statistical analysis

Within our framework, we propose two types of statistical anal-
ysis – inter-rater reliability with subsequent exploration of the
internal structure that may be present in the use of the scales by
the raters. In the spirit of generating publicly available research re-
sources, we rely on the open-source R package for all statistical
computations and provide the code used for these computations
in Appendix C, available online at http://rxinformatics.umn.edu.

3.3.1. Inter-rater reliability
We report several inter-annotator agreement coefficients. First,

we computed a number of pair-wise (between raters) inter-anno-
tator agreement coefficients including Cohen’s kappa [41], Krip-
pendorff’s alpha [42] and mean Spearman’s rank correlation (rho)
appropriate for ordinal scales. To account for the fact that our data
are ordinal, we used the squared distance weighting scheme for
Cohen’s kappa whereby disagreements are weighted according to
their squared distance from perfect agreement. Second, to assess
more than two raters at a time, we used Cronbach’s alpha [43],
Kendall’s coefficient of concordance [44] and the Intra-class Corre-
lation Coefficient (ICC) [45]. Shrout and Fleiss define six types of
ICC depending on whether: (a) one-way random effects, two-way
random effects or two-way mixed effects ANOVA model is used,
(b) ICC is used to measure consistency of absolute agreement,
and (c) ICC is computed over single or averaged measures. Since
our study focuses on the raters as much as on the term pairs, we
used a two-way random effects ANOVA model in ICC computations
(i.e., ICC(2,k) in Shrout and Fleiss’s notation). Following McGraw
and Wong [46], we report on consistency measures rather than
absolute agreement because we expect to see some systematic var-
iation in raters’ judgments and we are more interested in deter-
mining whether the raters’ judgments consistently point in the
same direction even if they are using slightly different scales. We
report both single and average ICC measures – the former is useful
in assessing the reproducibility of the reference standard based on
individual raters’ judgments, while the latter is useful in assessing
the reliability of the means of the ratings by multiple raters. In
Shrout and Fleiss’s notation, the single measures ICC based on a
two-way model is represented by ICC(2,1), while the average mea-
sures ICC based on a two-way model is represented by ICC(2,k),
where k is the number of raters. We should also note that the latter
type of ICC(2,k) for consistency is equivalent to Cronbach’s alpha
[46].

Following Krippendorff’s [36] conditions for measuring inter-
rater reliability, we do not infer reliability of our reference stan-
dard based on correlation (Spearman’s rho) and consistency
(Chronbach’s alpha, Kendall’s coefficient of concordance) coeffi-
cients as these measures do not correct for random chance. We
use these coefficients only as indicators of the raters’ behavior
rather than reproducibility of their ratings. Instead, we rely on
the Krippendorf’s alpha, Cohen’s kappa and ICC as indicators of
the reference standard reliability. While Cohen’s kappa is defined
only for two raters, Fleiss’s kappa [45] is defined for multiple raters
but requires nominal/categorical rating scales and is thus not
appropriate for assessing semantic relatedness judgments made
on an ordinal scale. However, for nominal/categorical scales, Fle-
iss’s kappa has been shown to be equivalent to ICC [45].

3.3.2. Internal structure of the ratings
We conducted subgroup analyses on the group of 13 experts to

determine if human ratings had any latent internal structure. For
example, it is likely that there may be subgroups within the 13 ex-
perts whose ratings are similar within the subgroups but not
across the subgroups. To conduct these analyses we used both a
top-down partitioning (k-means) and a hierarchical agglomerative
clustering based on the Ward’s method of minimum variances [47]
available as part of the irr library for the R statistical package avail-
able from Comprehensive R Archive Network (CRAN) repository.3

To determine the number of clusters for the k-means clustering ap-
proach, we used a sense discrimination approach based on the open-
source SenseClusters package4 as well as the sum-of-squares ap-
proach [48] available as part of R’s irr library.

SenseClusters contains algorithms for four cluster stopping
rules (PK1, PK2, PK3 and Gap) described in detail elsewhere [49].
Briefly, the cluster stopping rules are based on the clustering crite-
rion function. PK1–3 algorithms attempt to determine a point in
the list of successive cluster criterion function values after which
the values stop improving significantly. The PK 2 method is similar
to the Hartigan’s sum-of-squares approach. The Gap measure is an
adaptation of the Gap Statistic [50], which relies on detecting the
greatest difference between the criterion function values and a null
reference distribution. In the current study, the determination of
the optimal number of clusters was made by averaging the number
of clusters predicted by each of the four cluster stopping rules. The
sum-of-squares method consists of computing the within-cluster
sums-of-squares over all variables. The sum-of-squares declines
as more clusters are added to the solution and can be plotted for
visual examination to determine a sharp decline to estimate the
optimal number of clusters supported by the data.

Clustering analyses were followed by a factor analysis based on
the principal components analysis (PCA). Similarly to the sum-of-
squares method, we used Scree plots to determine the number of
factors. The loadings on factors were rotated using Varimax rota-
tion to obtain the final PCA solutions.

3.3.3. Correlations between automatic and manual measures
We used non-parametric correlation methods including Spear-

man rank correlation and Kendal’s tau to measure the degree to
which automated measures of semantic relatedness represent
manually established relatedness judgments.

3.4. Mapping to the UMLS

Since the measures of semantic relatedness used in this study
rely on the information on the location of the concepts in an ontol-
ogy or a hierarchical vocabulary, it was necessary to map the terms
in our medical term pairs dataset to an ontology of medical con-
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cepts. Our reference standard was initially generated by a physi-
cian without any reference to an ontology. Although in previous
work we have used SNOMED CT, the UMLS was used in this study
as the source of ontological relationships between concepts, as its
overall coverage of concepts includes over 2 million biomedical
concepts, and relationships between concepts (as defined in the
MRREL file). SNOMED CT is one of the vocabularies in the UMLS.

The mapping process could not be fully automated due to sig-
nificant orthographic, syntactic and semantic variation of terms
in the dataset. For this study, we use a semi-automatic approach
to determine the appropriate concept for each of the terms using
the concept mapping system MetaMap [51] which is specifically
designed to map terms in biomedical text to concepts in the UMLS
to support indexing of MEDLINE citations. MetaMap is a freely
available natural language processing system developed by the Na-
tional Library of Medicine. It operates by identifying simple noun,
verb and prepositional phrases with the help of a minimal commit-
ment parser [52] and bringing lexical and morphological variants
of medical terms to a standard form. It also uses linguistic princi-
ples to map the different types of phrases to the UMLS Metathesau-
rus, a compendium of over 100 medical vocabularies. The system
has found multiple applications beyond MEDLINE indexing and
has been shown to perform ‘‘out-of-the-box’’ at 72% sensitivity
and 56% specificity on the task of identifying respiratory findings
from hospital discharge summaries. The error analysis of these re-
sults showed that MetaMap was responsible for less than 1% of the
errors. Most of the errors had to do with inherent problems with
manual annotation of the reference standard [53].

In our study, mappings suggested by MetaMap were subse-
quently manually verified to ensure that the most appropriate con-
cept unique identifier was selected to represent each of the terms.
The terms for which MetaMap was unable to find any suitable
mappings, were matched to the closest UMLS concept manually
using the UMLS Knowledge Server on-line interface.
4. Results

4.1. Descriptive statistics of the datasets

The dataset consisting of 101 medical term pairs and individual
ratings is shown in Table 1. The distributions of the mean ratings
for the datasets consisting of 101 medical pairs and 30 general Eng-
lish word pairs are shown in Fig. 1. The ratings are not uniformly
distributed for either of the datasets. For the medical term pairs,
a greater proportion of ratings on average are found in the ‘‘re-
lated’’ (lower values) than the ‘‘unrelated’’ end of the scale. The dis-
tribution for the general English word pairs is bimodal suggesting
that the raters tended to make binary decisions.
4.2. Inter-rater reliability analysis

4.2.1. Pair-wise comparisons
The results of pair-wise comparisons between raters on both

datasets are shown in Tables 2 and 3. Each cell in these tables dis-
plays three values corresponding to different coefficients of inter-
rater agreement (Spearman’s rho, Cohen’s weighted kappa and
Krippendorff’s alpha for ordinal scales). In Table 2, all three values
for raters 5 and 7, as compared to most of the other raters, are low
(rho < 0.5, Kappa < 0.3 and alpha < 0.2) with the exception of raters
2, 3, and 11. These values are also somewhat higher (rho = 0.46,
Kappa < 0.54 and alpha < 0.43) in the cells that represents the
agreement between these two raters. This indicates that raters 2,
3, 5, 7 and 11 agree with each other but not the other raters. Rater
13 is borderline and has a mix of large and small coefficients. These
results indicate the presence of subgroups in the data.
The distribution of coefficients is more homogeneous for the
general English pairs than for medical term pairs (Table 3) with
the majority of raters having high coefficients in pair-wise compar-
isons with the exception of rater 9. The latter has markedly lower
coefficients in most pair-wise comparisons across all three statisti-
cal measures.

4.2.2. Multi-rater agreement
The results of multi-rater analysis are summarized in Table 3.

The intra-class correlation coefficients for consistency on both sin-
gle measures (ICC(2,1)) and average measures (ICC(2,13)) were
lower for the medical term pairs than for the general English pairs.
This was particularly evident on single measures where the differ-
ence between ICC’s was 0.27. The difference between the datasets
based on the Cronbach’s alpha coefficient was identical to the dif-
ference between ICC’s on average measures – 0.04, while the differ-
ence between Kendall’s coefficients of concordance was similar to
the difference between ICC’s on single measures – 0.23.

4.3. Analysis of internal structure of ratings

4.3.1. Determining the number of clusters
We used two different methods for determining the number of

clusters in the two datasets – sum-of-squares [48] implemented in
R and the cluster stopping rules available through the SenseClus-
ters package [49]. The sum-of-squares plots (Fig. 2) for both the
medical and the general English datasets indicate a sharp decline
in the sum-of-squares with a two cluster solution.

The four SenseClusters cluster stopping rules produced the fol-
lowing results: PK1 predicted four clusters, PK2 predicted three
clusters, PK3 predicted two clusters and the Gap predicted one
cluster averaging to 2.5 clusters. Based on SenseClusters results
and those obtained with the sum-of-squares method, we decided
to take a conservative approach and used two clusters for further
clustering analysis.

4.3.2. Partitioning clustering
The results of the top-down two-cluster k-means clustering

solutions based on correlations between raters are displayed in
Fig. 3. The solution for the medical terms dataset consists of a clus-
ter with four members (raters 4, 6, 12 and 13) and another cluster
with the rest of the raters as members. The solution for general
English word pairs singles out rater 9 into a cluster all of his/her
own, suggesting that this rater may be an outlier.

4.3.3. Hierarchical agglomerative clustering
The hierarchies resulting from the bottom-up agglomerative

clustering based on the Ward’s algorithm are shown in Fig. 4. In
Fig. 4a showing clustering results for the medical terms dataset,
the two branches at the top level separate the raters into a group
consisting of raters 4, 6, 12 and 13, and another group consisting
of the rest of the raters. In Fig. 4b, the results suggest that rater 9
is an outlier. Furthermore, the results of both clustering solutions
in Fig. 4 provide additional grouping information that is not as
apparent in the non-hierarchical solutions in Fig. 3. For example,
the hierarchical solution for the medical term pairs dataset sug-
gests that experts 1–2 form a group distinct from the group con-
sisting of experts 3, 5, 7 and another group consisting of experts
9, 8 and 11. Similarly, the hierarchy for the general English words
dataset suggests that raters 5 and 6 form a distinct group Table 4.

4.3.4. Factor analysis
Further examination using factor analysis confirmed the clus-

tering results as illustrated in Fig. 5a. The plot in Fig. 5a shows a
clear separation between two subgroups of raters. Group 1 consists
of raters 1–3, 5, 8, 9, 10, and 11, while Group 2 consists of raters 4,



Table 1
Medical term pairs corpus.

CUI1 CUI2 TERM1 TERM2 P1 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 Mean

C0003243 C0443146 Antinuclear antibody (ANA) Autoimmune 10 8 9 9 1 10 1 6 1 3 1 4 8 7 5.23
C0003873 C0035450 Rheumatoid arthritis Rheumatoid

nodule
10 7 8 9 9 10 3 5 7 8 5 10 3 8 7.08

C0003873 C1396859 Rheumatoid arthritis Joint erosion 10 7 10 1 8 10 2 6 5 6 7 8 2 8 6.15
C0004093 C0442874 Weakness Neuropathy 10 5 5 5 1 10 1 2 2 5 5 5 2 5 4.08
C0004604 C0037944 Back pain Spinal stenosis 10 7 9 5 1 8 2 2 5 8 9 6 2 5 5.31
C0006121 C1269897 Brainstem Cranial nerve 10 7 5 8 1 8 2 2 3 2 4 5 3 5 4.23
C0009676 C0011253 Confusion Delusion 10 5 5 7 9 9 5 4 6 3 7 7 5 7 6.08
C0011167 C0031133 Swallowing Peristalsis 10 5 8 8 1 5 1 2 4 3 9 5 1 5 4.38
C0011168 C0679317 Dysphagia Hypomotility 10 5 8 4 1 5 5 1 3 2 5 1 2 7 3.77
C0011644 C0036421 Scleroderma Systemic sclerosis 10 7 8 7 1 8 1 6 5 2 1 10 1 8 5
C0011991 C0009319 Diarrhea Colitis 10 5 9 7 5 8 1 6 4 4 8 8 6 1 5.54
C0013395 C0030920 Dyspepsia Peptic ulcer

disease
10 5 8 7 4 10 1 3 2 4 8 8 1 7 5.23

C0013404 C0231835 Dyspnea Tachypnea 10 5 8 3 1 5 5 1 6 7 1 8 2 1 4.08
C0018524 C0033975 Hallucination Psychotic 10 7 7 7 1 9 3 8 6 5 7 8 3 7 6
C0020877 C0010346 Ileitis Crohns Disease 10 5 9 9 5 8 8 7 5 7 8 7 3 8 6.85
C0022650 C0041956 Kidney stone Ureteral

obstruction
10 7 8 7 1 10 1 1 4 3 7 8 1 3 4.69

C0026848 C0011633 Myopathy Dermatomyositis 10 7 7 8 1 3 4 1 3 3 8 6 2 5 4.46
C0027540 Cl547030 Necrosis Liquefaction 10 7 1 5 1 2 1 1 2 1 1 1 1 1 1.92
C0027627 C0205699 Metastasis Carcinomatosis 10 9 10 7 10 10 8 9 8 5 7 8 6 10 8.23
C0029408 C0221434 Osteoarthritis Bone sclerosis 10 5 5 1 1 3 1 3 3 3 3 5 2 2 2.85
C0030472 Cl306459 Paraneoplastic Malignancy 10 7 9 9 8 4 3 2 4 5 3 5 1 9 5.31
C0032285 C0332448 Pneumonia Infiltrate 10 7 9 7 3 5 1 5 6 4 3 7 1 5 4.85
C0034065 C0019079 Pulmonary embolus Hemoptysis 10 7 5 3 1 4 1 1 3 2 1 5 2 1 2.77
C0034735 C0022116 Raynauds phenomenon Digital ischemia 10 7 8 1 1 8 2 3 6 4 1 9 5 8 4.85
C0038362 C0149745 Stomatitis Mouth ulcer 10 9 8 8 5 10 5 9 6 2 7 7 3 1 6.85
C0038454 C0018989 Stroke Hemipareisis 10 5 9 8 1 10 1 8 5 5 1 6 5 1 5
C0231736 C0231749 Drawer sign Knee pain 10 5 6 3 1 8 1 3 6 5 1 8 1 1 3.77
C0311394 C0231685 Difficulty walking Antalgic gait 10 7 9 8 5 9 8 2 6 3 10 8 7 5 6.69
C0332536 C0024796 Laxity Marfan Syndrome 10 5 5 3 1 5 1 1 1 1 1 1 1 1 2.08
C0457086 C0003873 Morning stiffness Rheumatoid

arthritis
10 5 8 8 1 10 1 8 2 7 8 6 2 8 5.69

C0458343 C0016053 Trigger point Fibromyalgia 10 5 5 5 1 8 1 1 2 3 8 5 1 1 3.54
C1510420 C0041296 Cavitation Tuberculosis 10 5 9 4 1 10 1 10 2 1 1 3 5 1 4.08
C1956089 C0018862 Osteophyte Heberdens node 10 7 2 9 1 9 3 8 4 2 1 1 4 1 4
C1956391 C0018681 temporal arteritis Headache 10 5 9 7 1 8 1 4 3 4 8 9 1 1 4.69
C2267026 C0020473 HMG Co A reductase

inhibitor
Hyperlipidemia 10 8 1 5 1 2 1 1 2 1 1 1 2 3 2.23

C0003507 C0006660 Aortic stenosis Calcification 5 5 9 8 5 5 1 1 5 8 8 5 4 9 5.62
C0003811 C0026264 Arrythmia Mitral valve 5 3 6 7 1 4 2 2 3 7 1 5 1 1 3.31
C0003873 C0003904 Rheumatoid arthritis Arthroscopy 5 7 5 5 1 5 1 1 1 5 9 7 1 1 3.77
C0009378 C0032584 Colonoscopy Polyp 5 7 9 8 5 8 1 2 7 7 8 7 1 1 5.46
C0010137 Cl563292 Cortisone Osteoporosis 5 7 8 3 1 5 1 1 2 2 4 1 1 1 2.85
C0013378 C0011167 Dysgeusia Swallowing 5 1 1 3 1 5 2 1 4 2 1 2 1 1 1.92
C0013394 C0029965 Dysparunia Ovulation 5 3 1 2 1 3 1 3 3 2 3 6 1 1 2.31
C0013604 C0017654 Edema Glomerular

filtration rate
5 7 6 5 1 3 1 1 1 2 1 1 1 1 2.38

C0017196 C0162429 Gastrostomy Malnutrition 5 7 9 4 1 3 1 1 4 4 9 9 3 1 4.31
C0018802 C0020541 Congestive heart failure Portal

hypertension
5 1 1 2 1 2 1 2 2 3 2 3 1 1 1.69

C0019054 Cl561562 Hemolysis Hemoglobin 5 5 8 8 5 9 3 9 6 2 3 6 2 5 5.46
C0020971 C0021051 Immunization immunodeficient 5 1 5 1 1 2 1 1 2 4 1 6 2 1 2.15
C0023223 C0042345 Leg ulcer Varicsoe vein 5 5 8 3 1 8 1 1 3 5 6 6 3 1 3.92
C0023418 C0038250 Leukemia Stem cell 5 7 9 8 1 10 1 7 3 7 4 7 1 1 5.08
C0024530 C0002438 Malaria Amebiasis 5 5 2 8 1 9 3 1 1 1 1 5 1 3 3.15
C0030326 C0023798 Panniculitis Lipoma 5 5 7 8 1 1 1 1 3 1 5 5 2 1 3.15
C0030842 C0020517 Penicillin Allergy 5 5 8 5 1 4 1 1 3 3 1 5 1 1 3
C0034065 C0032285 Pulmonary embolus Pneumonia 5 5 7 5 1 4 1 1 4 2 3 7 1 1 3.23
C0035450 C0034079 Rheumatoid nodule Lung nodule 5 5 7 2 1 1 1 1 4 3 3 1 1 1 2.38
C0036202 C0042866 Sarcoidosis Vitamin D 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1.46
C0036572 C0018681 Seizure Headache 5 5 5 5 1 6 1 1 2 4 4 7 1 1 3.31
C0042109 C0277942 Urticaria Buterfly rash 5 5 5 7 1 8 7 4 5 6 1 8 4 8 5.31
C0042164 C0019740 Uveitis HLA B27 5 7 7 1 1 4 1 1 1 1 1 1 2 1 2.23
C0042384 C0040053 Vasculitis Thrombus 5 5 5 3 1 5 1 1 3 5 1 4 4 1 3
C0080331 C0432601 Walking Stair climbing 5 5 4 5 5 8 6 4 2 3 3 4 3 5 4.38
C0085649 C0034063 Peripheral edema Pulmonary edema 5 5 7 5 1 5 3 5 5 5 1 1 1 7 3.92
C0224498 C0029408 Meniscus Osteoarthritis 5 1 1 7 1 3 1 1 2 4 5 6 1 1 2.62
C0243026 C0020649 Sepsis hypotension 5 5 5 1 1 1 1 1 1 2 1 1 1 1 1.69
C0333997 C0043352 Lymphoid hyperplasia Xerostomia 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0376358 C0001109 Prostate cancer Acid phosphatase 5 1 1 1 1 3 1 1 1 1 8 1 1 1 1.69
C0429103 C0027051 T wave Myocardial

infarction
5 7 9 8 1 6 1 4 5 5 9 7 1 5 5.23
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Table 1 (continued)

CUI1 CUI2 TERM1 TERM2 P1 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 Mean

C0442874 C0522224 Neuropathy Paralysis 5 5 2 5 1 5 1 4 2 5 3 1 2 1 2.85
C1533685 C1253936 Injection Synovial effusion 5 7 4 3 1 8 2 1 2 1 7 5 1 1 3.31
C0005587 C0232208 Bipolar depression Junctional rhythm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0007286 C0549493 Carpal tunnel syndrome Alveolitis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0009871 C1444657 Contraceptive Contraindicated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0010043 C0011127 Corneal ulcer Decubitus ulcer 1 1 1 5 1 2 3 1 4 2 3 1 1 1 2
C0011849 C0032584 Diabetes Polyp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0011849 C0035450 Diabetes Rheumatoid

nodule
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C0013404 C0231528 Dyspnea myalgia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0018801 C0033975 Heart failure psychosis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0018926 C0043352 Hematemesis Xerostomia 1 1 1 2 1 1 2 1 1 1 1 5 2 1 1.54
C0020541 C0027962 Portal Hypertension Nevus 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0024117 C0018520 Chronic obstructive

pulmonary disease
Haletosis 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1.08

C0026269 C0030920 Mitral stenosis Peptic ulcer
disease

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C0026764 C0011581 Multiple myeloma Depression 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1.08
C0029408 C0392525 Osteoarthritis Nephrolithiasis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0033706 C0039142 Prothrombin Syringe 1 5 5 1 1 3 1 1 1 1 1 1 1 1 1.77
C0034069 C0003615 Pulmonary fibrosis Appendicitis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0034887 C0023055 Rectal polyp Laryngeal cancer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0035222 C0007642 Acute respiratory distress

syndrome
Celluitis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C0037199 C0442041 Sinusitis Sinusoid 1 1 1 8 1 4 1 8 2 1 1 1 3 5 2.85
C0037473 C0024485 Sodium Mri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0037926 C0886052 Spinal cord compression Wound compress 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0040583 C0007102 Tracheal stenosis Colon cancer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0041834 C0029456 Erythema nodusum Osteoporosis 1 1 1 1 1 5 1 1 1 1 4 1 1 1 1.54
C0149925 C0011860 Small cell carcinoma of lung Type 2 diabetes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0158280 C0023891 Cervical spinal stenosis Alcoholic cirrhosis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0162595 C0702166 Antiphospholipid antibody Acne 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1.08
C0220982 C0409974 Ketoacidosis Lupus 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1.23
C0233651 C1527356 Perseveration Venous stasis ulcer 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1.31
C0241910 C0022876 Autoimmune hepatitis Premature labor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0262538 C0040479 Medial collateral ligament

tear
Torsade de pointes 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1.08

C0267809 C0376180 Cryptogenic cirrhosis Gastrin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C0409162 C0333286 Hand splint Splinter

hemorrhage
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C0917996 C0034065 Cerebral aneurysm Pulmonary
embolus

1 1 1 1 1 4 1 1 1 4 1 1 1 1 1.46

Fig. 1. Distributions of mean ratings by 13 medical coding experts on the set of 101 medical concept pairs (a) and nine medical coding experts on 30 general English word
pairs (b).
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Table 2
Pair-wise inter-rater agreement coefficients (Spearman’s rho, Cohen’s weighted kappa and Krippendorff’s alpha) for 13 coding experts on the dataset of 101 medical term pairs.

Raters (statistic) 1 2 3 4 5 6 7 8 9 10 11 12

2 (Spearman) 0.76
2 (Kappa) 0.65
2 (Krippendorff) 0.73
3 (Spearman) 0.65 0.68
3 (Kappa) 0.68 0.57
3 (Krippendorff) 0.64 0.66
4 (Spearman) 0.35 0.48 0.43
4 (Kappa) 0.14 0.27 0.27
4 (Krippendorff) 0.03 0.09 0.07
5 (Spearman) 0.66 0.73 0.71 0.44
5 (Kappa) 0.58 0.62 0.68 0.25
5 (Krippendorff) 0.67 0.72 0.69 �0.02
6 (Spearman) 0.35 0.32 0.43 0.46 0.44
6 (Kappa) 0.19 0.19 0.24 0.54 0.21
6 (Krippendorff) 0.07 0.08 0.16 0.43 0.04
7 (Spearman) 0.47 0.59 0.62 0.49 0.71 0.39
7 (Kappa) 0.35 0.38 0.49 0.38 0.50 0.31
7 (Krippendorff) 0.34 0.41 0.47 0.40 0.44 0.36
8 (Spearman) 0.61 0.73 0.68 0.51 0.66 0.54 0.64
8 (Kappa) 0.49 0.50 0.49 0.51 0.47 0.46 0.51
8 (Krippendorff) 0.52 0.59 0.62 0.23 0.53 0.33 0.57
9 (Spearman) 0.53 0.74 0.62 0.40 0.67 0.35 0.56 0.74
9 (Kappa) 0.41 0.51 0.47 0.34 0.48 0.25 0.36 0.65
9 (Krippendorff) 0.48 0.61 0.57 0.18 0.54 0.21 0.50 0.74
10 (Spearman) 0.48 0.59 0.56 0.46 0.54 0.25 0.35 0.54 0.57
10 (Kappa) 0.46 0.53 0.52 0.33 0.47 0.21 0.22 0.42 0.48
10 (Krippendorff) 0.45 0.52 0.53 0.30 0.44 0.18 0.33 0.54 0.56
11 (Spearman) 0.58 0.74 0.62 0.45 0.71 0.37 0.56 0.76 0.74 0.61
11 (Kappa) 0.60 0.72 0.63 0.30 0.68 0.21 0.37 0.60 0.59 0.59
11 (Krippendorff) 0.59 0.70 0.63 0.17 0.68 0.19 0.45 0.69 0.68 0.59
12 (Spearman) 0.44 0.49 0.44 0.38 0.52 0.47 0.52 0.50 0.41 0.26 0.43
12 (Kappa) 0.23 0.30 0.24 0.39 0.27 0.48 0.45 0.38 0.25 0.17 0.23
12 (Krippendorff) 0.20 0.26 0.23 0.30 0.16 0.45 0.50 0.39 0.31 0.21 0.30
13 (Spearman) 0.49 0.53 0.56 0.51 0.56 0.54 0.58 0.54 0.49 0.41 0.49 0.48
13 (Kappa) 0.42 0.39 0.42 0.55 0.46 0.46 0.48 0.27 0.33 0.38 0.45 0.40
13 (Krippendorff) 0.37 0.37 0.41 0.43 0.33 0.51 0.58 0.49 0.45 0.39 0.41 0.47

Table 3
Pair-wise inter-rater agreement coefficients (Spearman’s rho, Cohen’s weighted
kappa and Krippendorff’s alpha) for nine coding experts on the dataset of 30 general
English word pairs.

Raters (statistic) 1 2 3 4 5 6 7 8

2 (Spearman) 0.83
2 (Kappa) 0.60
2 (Krippendorff) 0.81
3 (Spearman) 0.84 0.85
3 (Kappa) 0.85 0.55
3 (Krippendorff) 0.84 0.79
4 (Spearman) 0.86 0.90 0.89
4 (Kappa) 0.79 0.77 0.87
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6, 7, 12 and 13. Comparing these results to the groupings obtained
with clustering methods we found that rater # 7 is the only rater
on which the three methods disagree. K-means clustering, simi-
larly to PCA, assigned this rater to Group 2 while Ward’s agglomer-
ative clustering method assigned this rater to Group 1. Using the
subgroups identified based on the factor analysis results, we
recomputed inter-rater agreement with and without rater 7 for
the subgroups determined based on the groups discovered by the
clustering and factor analyses. The agreement results for the sub-
groups are shown in Table 5. Without rater 7, the group represen-
tative of the first component (Group 1) for both datasets had a
higher ICC(2,1) (single measures) – 0.61 vs. 0.51 for medical terms
and 0.83 vs. 0.78 for general English terms. However, the ICC(2,k)
(average measures) remained about the same. Adding rater 7 to
either of the groups slightly decreased the agreement within the
groups. For example, ICC(2,1) for Group 1 decreased from 0.61 to
0.59 and for Group 2 – from 0.47 to 0.45.
4 (Krippendorff) 0.83 0.88 0.86
5 (Spearman) 0.81 0.83 0.82 0.88
5 (Kappa) 0.82 0.74 0.83 0.89
5 (Krippendorff) 0.82 0.81 0.81 0.86
6 (Spearman) 0.83 0.84 0.85 0.89 0.89
6 (Kappa) 0.49 0.71 0.76 0.62 0.86
6 (Krippendorff) 0.85 0.74 0.83 0.86 0.85
7 (Spearman) 0.80 0.82 0.77 0.79 0.74 0.82
7 (Kappa) 0.72 0.68 0.71 0.73 0.64 0.66
7 (Krippendorff) 0.75 0.72 0.74 0.74 0.70 0.81
8 (Spearman) 0.85 0.88 0.84 0.88 0.81 0.77 0.84
8 (Kappa) 0.68 0.48 0.64 0.68 0.25 0.32 0.74
8 (Krippendorff) 0.52 0.48 0.57 0.55 0.51 0.55 0.61
9 (Spearman) 0.58 0.68 0.59 0.64 0.77 0.65 0.66 0.70
9 (Kappa) 0.30 0.60 0.33 0.34 0.39 0.61 0.52 0.40
9 (Krippendorff) 0.38 0.33 0.27 0.42 0.42 0.41 0.51 0.48
4.4. Mapping to the UMLS

Of the 186 unique terms in the set of 101 pairs, MetaMap was
able to map 136 (73%) terms correctly to a single concept in the
UMLS; 12 (6%) terms had no matching concept; 8 (4%) terms were
mapped to inappropriate concepts; and 30 (15%) terms were
mapped to more than one concept. Spelling variations resulted in
failing to assign concepts to 12 terms, for example, no concept
was found for the term ‘‘haletosis’’, which should map to the con-
cept ‘‘C0018520: Halitosis’’.

The mapping of 30 terms to more than one concept was due to
word sense ambiguity. For example, the term ‘‘diabetes’’ has two
possible concepts ‘‘C0011849: Diabetes mellitus’’ and «C0011860:
Non-insulin dependent diabetes mellitus.» In the cases with word
sense ambiguity, we chose the concept that was most similar to
its term pair counterpart based on the similarity score between



Fig. 2. Hartigan’s sum-of-squares plot for different numbers of clusters based on the ratings by 13 coding experts on 101 medical term pairs (a) and nine coding experts on 30
general word pairs. The steep drop in the sum-of-squares after adding the second cluster indicates that the data supports two clusters.

Fig. 3. K-means clustering solution obtained on the semantic relatedness ratings by the13 medical coding experts on 101 medical term pairs (a) and nine medical coding
experts on 30 general English term pairs (b). In (a), the ratings on the term pairs are clustered into two groups – cluster 1 consisting of raters 4, 6 12 and 13 and cluster two
consisting of raters 1–3, 5, 7, 8–11. In (b), the ratings are clustered into a group of raters 1–8 and an outlier rater 9 in cluster 2.
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the two terms computed with UMLS-Similarity package.5 In this
case, the term pair counterpart for ‘‘diabetes’’ is ‘‘polyp.’’ The latter
maps to the concept: ‘‘C0032584: polyp’’ and the similarity between
C0011849 and C0032584 is 0.1111 using the path measure while the
similarity between C0011860 (non-insulin dependent diabetes mel-
litus) and C0032584 (Polyp) is 0.1000 therefore the term ‘‘diabetes’’
is disambiguated (albeit somewhat arbitrarily) to the concept
‘‘C0011849: Diabetes mellitus’’.

Based on the prior work reported in the literature on semantic
relatedness both in the general English and biomedical domains,
as well as the lessons learned from this study reported in this pa-
per, we propose the following framework for the development of
semantic relatedness reference standards.
4.5. Framework for reference standard development

The framework consists of the following components:
5 http://search.cpan.org/dist/UMLS-Similarity/.
4.5.1. Dataset
Compile a set of concept pairs balanced across the semantic

relatedness spectrum. Balancing the pairs across the relatedness
spectrum is difficult. As indicated by Lee et al.’s study [12], selecting
a list of medical terms and using all of their pair-wise combinations
leads to heavy bias towards unrelated or dissimilar pairs. The quasi-
random stratified sampling that we used in the current study leads
to the opposite effect, as illustrated in Fig. 1. Both Lee et al.’s [12]
and our findings with respect to relatedness distributions are not
surprising as we would expect most pair-wise combinations on a
random list of terms to be unrelated, while we would also expect
people to be biased towards thinking of pairs of terms that are re-
lated. These findings are consistent with prior work in priming in
lexical semantics demonstrating that showing a prime (first word
in a sequence of two words) that is semantically related to the tar-
get (second word) results in shorter reaction times than in pairs of
unrelated words [54,55]. A number of neuroimaging studies have
also provided evidence that semantically related words elicit
clearly detectable differences in neural response from semantically
unrelated words. Weber and colleagues [56] used functional Mag-
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Fig. 4. Hierarchical agglomerative clustering solution (WARDS) obtained on the semantic relatedness ratings by 13 medical coders on 101 medical term pairs (a) and nine
medical coders on 30 general English term pairs (b). In (a), the ratings on term pairs are clustered into two groups – cluster 1 consisting of raters 4, 6 12 and 13 and cluster two
consisting of raters 1–3, 5, 7, 8–11. In (b), the ratings are clustered into a group of raters 1–8 and an outlier rater 9 in cluster 2.

Table 4
Multi-rater statistics for the two reference standards (101 medical term pairs and 30 general English word pairs).

Agreement statistic Reference standard

101 Medical term pairs dataset 30 General English pairs dataset
(k = 13) (k = 9)

ICC(2,1) (two-way, consistency, single measures) 0.50 0.78
ICC(2,k) (two-way, consistency, average measures) 0.93 0.97
Chronbach’s alpha 0.93 0.97
Kendall’s coefficient of concordance 0.57 0.82

Fig. 5. Plots representing 2-component PCA solutions with Varimax rotation for the medical pairs dataset (a) and the general English word pairs (b). The plot in (a) shows a
split between two major groups: raters 1–3, 5, 8, 9, 10 and 11 in Group 1 and raters 4, 6, 12 and 13 in Group 2. The plot in (b) indicated a separation of rater 9 from the rest.
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netic Resonance Imaging (fMRI) to demonstrate that neural similar-
ity computed by comparing the location and intensity of the signal
on fMRI images correlates with behavioral ratings of similarity be-
tween pairs of concepts representing a semantic category of mam-
mals. In another recent study, Mitchell and colleagues [57] used a
large word corpus of general English text to train a neural network
model able to predict the neural activation patterns detected with
fMRI imaging for common English nouns (e.g., celery, airplane).

We propose that an approach to compiling reference standards
that are balanced across the relatedness spectrum should consist of



Table 5
Agreement coefficients calculated for subgroups of raters based on the groups of raters discovered by all three clustering analysis methods
(k-means, Ward’s and PCA).

Agreement coefficient 13 Raters on 101 medical pairs Nine raters on 30 general English pairs
Subgroups of raters Subgroups of raters

G1: 1–3, 5, 8, 9, 10, 11 G2: 4, 6, 12, 13 G1: 1–8 G2: 9

ICC(2,1) 0.61 0.47 0.83 –
ICC(2,k) 0.93 0.78 0.98
Chronbach’s 0.93 0.78 0.98
Kendall 0.68 0.36 0.79 –
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a combination of random sampling from an ontological resource
(e.g., UMLS, SNOMED CT) and using an expert (e.g., a medical
professional).

4.5.2. Annotator training
The annotators may be trained on existing general English or

medical reference standards iteratively until acceptable agreement
has been reached on these corpora. This step ensures that the
annotators understand the task (e.g. difference between similarity
and relatedness) and have internalized a common rating scale. Pre-
viously published mean ratings on these corpora should be used
during the training only as a guide for the study investigators
but not the annotators to avoid possible bias. The protocol for
training may include the presentation of term pairs to the raters
independently of each other at first with subsequent interim anal-
ysis of the disagreements and discussion. It is also important to
either ensure that the medical terms used for the reference stan-
dard are either not polysemous or have a single clearly dominant
meaning that is readily understood by the annotators.

4.5.3. Annotation process
At the most basic level, the annotators are presented the con-

cept pairs one at a time and are asked to rate them on a pre-defined
Likert scale. Variations of this process may include presenting the
pairs multiple times at random intervals, counterbalancing the or-
der of presentation of the terms in the pairs, or using reaction time
in priming experiments instead of the Likert scale.

4.5.4. Corpus reliability analysis
At the most basic level, one should analyze the ratings produced

as a result of the annotation process using standard statistical mea-
sures of inter-rater reliability including intra-class correlation coef-
ficient or weighted Kappa statistic. Variations may include
transformations of the rating scales (e.g. reducing the dimensional-
ity of the rating scale, shifting the scales used by individual raters).
The choice of reliability coefficients and their interpretation strat-
egies greatly depend on the context of the study and the purpose
for which the reference standard is being generated. We refer the
reader to previously published work regarding the choice of the
coefficients and interpretation [36,42,46,58]; however, we suggest
that it is important to report several appropriate reliability coeffi-
cients, as long as the data meet their assumptions.

4.5.5. Analysis of the ratings
From the standpoint of the end user of the reference standard, it

is important to know not only what the inter-rater reliability is but
also if the ratings in the reference standard are homogeneous.
Standard clustering or factor analysis techniques may be used to
identify subgroups, if any, among the human annotators. From
the standpoint of the reference standard developer, these tech-
niques may help identify the existence of any relationships be-
tween the annotators and the ratings. In-depth systematic
analysis of the latent internal structure of the ratings may help dis-
cover this group and any outliers, and facilitate appropriate data
partitioning. Arguably raters 4, 6, 12 and 13 in Table 1 (also avail-
able at http://rxinformatics.umn.edu) could be spotted right away
because their ratings are substantially different from the rest even
on visual examination. However, using clustering and factor anal-
yses that can help find patterns in ratings based on their correla-
tions and variance is a more systematic approach to identify
raters that are consistently different from the majority. These rat-
ers’ judgments need to be carefully examined as they may repre-
sent a valid interpretation of semantic relatedness.

4.6. Demonstration of intended use of the framework

The comparison of correlations between the reference standard
and the two ontology-based approaches resulted in a Spearman
correlation coefficient 0.29 (p = 0.006) for the Leacock and Chodo-
row method and 0.30 (p = 0.006) for the Wu and Palmer method.
We also correlated these measures with the two subgroups within
the reference standard: Group1 consisting of raters 1–3, 5, 8, 9, 10,
and 11, Group 2 consisting of raters 4, 6, 7, 12 and 13). The Leacock
and Chodorow method resulted in a coefficient of 0.27 (p = 0.008)
on Group 1 and 0.24 (p = 0.019) on Group 2. The Wu and Palmer
method also resulted in a coefficient of 0.27 (p = 0.010) on Group
1 but a slightly higher coefficient of 0.29 (p = 0.005) on Group 2
than the Leacock and Chodorow method.

4.7. Tools and resources in support of the framework

In order to make the proposed framework for developing and
validating semantic relatedness reference standards easier to
examine, adopt and further develop by other investigators in the
community, we are also releasing the datasets (see Appendices A
and B, available at http://rxinformatics.umn.edu) as well as the R
program (see Appendix C, available at http://rxinformat-
ics.umn.edu) that were used in the development of this framework
and the writing of this manuscript. The UMLS-Similarity and
UMLS-Interface packages that enable the user to experiment with
some of the existing measures of semantic relatedness have been
released as open-source [27].
5. Discussion

Automatic assessment of the degree to which biomedical con-
cepts are semantically related is important in a number of different
primary and secondary application contexts. The primary applica-
tions include information retrieval from clinical records and bio-
medical literature, and drug safety surveillance, whereas
secondary applications are no less important and include support
for such natural language processing tasks as automatic word
sense disambiguation. In the context of drug safety surveillance,
measures of semantic relatedness may be used to group together
concepts that constitute an adverse effect of a medication currently
defined by Standardized MedDRA Queries. Measures of semantic
relatedness with subsequent clustering may enhance the process

http://rxinformatics.umn.edu
http://rxinformatics.umn.edu
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of creating Standardized MedDRA Queries by adding a data driven
component. Another potential use for clusters of terms defined
using semantic relatedness is to improve the sensitivity of elec-
tronic searches for patients that meet clinical research study eligi-
bility criteria.

Our study is the first to make publicly available a validated ref-
erence standard for testing computerized measures of semantic
relatedness in the medical domain. A previous study by Lee et al.
[12] reported using averaged ratings on 190 pairs of medical terms
from 25 practicing primary care physicians as the reference stan-
dard. However, their corpus is limited by the fact that both the
physicians and the term pairs were split for efficiency of data col-
lection into non-overlapping groups of physician and term pair
blocks effectively resulting in seven smaller (20 term pairs) data-
sets each annotated by at most four physicians. In creating our ref-
erence standard, we asked the raters to rely on their intuition
about the terms rather than any explicit knowledge of the asser-
tions underlying the term’s meaning. The main objective of the
current manuscript is to introduce a systematic approach valuable
for exploring implicit semantic relatedness judgments to deter-
mine if the judgments contain an internal structure indicative of
differences in conceptualization of medical knowledge. The results
of this work to date show that, on the task in which the raters are
given unlimited time to make the judgments, groups of raters as
well as term pairs emerge with relatively high agreement even if
the overall agreement for the entire group is low. We hypothesized
that the disagreements may be partly due to the raters trying to
define the relationship between the terms explicitly and thus
resulting in variability across groups of raters. To test this hypoth-
esis, we designed a subsequent psycholinguistic experiment [4] in
which we limited the time the raters were allowed to judge each
pair thus trying force them to tap into their implicit knowledge
of the meanings of the terms. The results of that experiment indi-
cated that, in this time-limited context, the physician raters did
tend to agree with each other better on the majority of term pairs
thus providing additional evidence for the reality of the general no-
tion of semantic relatedness that holds between the ‘‘core’’ mean-
ings of the medical terms.

Assessing the validity of reference standards for natural lan-
guage processing and computational linguistic tasks has been a
matter of continued debate in the computational linguistics com-
munity [36,58]. This debate is highly relevant to the medical infor-
matics community as it engages in research involving language
and cognition that often requires the presence of valid reference
standards. Several points of general consensus on acceptable prac-
tices in the assessment of reference standards can be identified.
One of the key points relevant to the current study is the distinc-
tion between reliability and validity. According to Artstein and
Poesio [58], reliability refers to the reproducibility of the annotated
reference standard – it indicates how reliable the process of the
data collection is, independently of how close the human raters
are to capturing the actual phenomenon (e.g., semantic relatedness
between concepts). The validity, on the other hand, is said to reflect
the ‘‘trustworthiness’’ of the conclusions from subsequent analyses
conducted by using the reference standard.

These two notions are often treated as indistinguishable by re-
searches; however the distinction is critical because, as clearly
demonstrated by Krippendorff, and Artstein and Poesio, the inter-
rater agreement coefficients are sensitive to factors that determine
what questions can be answered by using a particular reference
standard. When the research question is whether results obtained
on a small manually annotated reference standard can be extrapo-
lated to a larger dataset, one wants to be assured that if another
data sample were taken from the larger dataset and manually
annotated, the same (or at least similar) results would be obtained.
Hence in this scenario, the reliability of the reference standard is of
utmost importance. If the research question is whether the results
obtained on a reference standard with some algorithm A are the
same or different from the results obtained on the same standard
with algorithm B, the validity of the reference standard takes pre-
cedence. Here the researcher is concerned with whether the man-
ual ratings on a specific reference standard accurately reflect the
underlying phenomenon the raters were asked to measure. Fortu-
nately, the differences between coefficients that are more ‘‘sensi-
tive’’ to reliability and validity become smaller as the level of
agreement and the number of raters increase. Therefore, having
more than two raters for creating a reference standard is more
likely to improve both the reliability and the validity of the refer-
ence standard.

Apart from selecting the right coefficient to measure reliability,
choosing an appropriate interpretation of the coefficients is also a
matter of debate. The medical community relies on the interpreta-
tion scales consisting of the following values: 0–0.2 – poor; 0.2–0.4
– fair; 0.4–0.6 – moderate; 0.6–0.8 – substantial; 0.8–1.0 – perfect
[45,59]. The scales proposed in computational linguistics research
are much more stringent where the coefficient has to exceed 0.8
for the reference standard to be considered reliable or valid
[36,42]. One must keep in mind that these scales are established
by convention and, like p-values in statistical tests, their use
greatly depends on the context and the purpose for which they
are being used. Also, Krippendorff’s guidelines for interpreting
agreement coefficients were discussed in the context of discrete
nominal scales where absolute agreement on category names
rather than consistency in their relative ordering is important.

The overall consistency of our dataset of 101 medical term pairs
measured with average measures ICC(2,13) is in the ‘‘perfect’’
range; however the reliability measured with single measures
ICC(2,1) is in the ‘‘moderate’’ range and clearly falls short of the
0.8 threshold proposed by Krippendorff and others in computa-
tional linguistics. The former coefficient is an equivalent of Cron-
bach’s alpha and is indicative only of whether the means of the
ratings in the dataset may be used as an index representative of
the raters. It does not indicate that we would obtain similar results
if we used a completely different set of raters. Thus, we would rec-
ommend that anyone using the entire dataset provided in Table 1
(also available as at http://rxinformatics.umn.edu) in their re-
search ought to keep in mind that this dataset (in its entirety) is
more appropriate for conducting pilot studies rather than for
drawing definitive conclusions. For example, given the high con-
sistency of the ratings, it would be appropriate to use the means
for all 13 raters provided with this dataset to compare different
algorithms for computing semantic relatedness with the caveat
that the results of the comparison may not be used to establish
the relative superiority of the algorithms in general. Any conclu-
sions drawn from such a comparison would be limited to this par-
ticular dataset and may not be readily generalizable; however,
despite this limitation, this reference standard will be useful in
examining the differences between algorithms and understanding
their relative strengths and weaknesses with respect to this partic-
ular dataset.

The detailed analysis of the internal structure of the medical
coding experts’ ratings on the medical pairs dataset suggested that
the dataset contains two subgroups – one with higher inter-rater
agreement than that of the entire group and one with lower agree-
ment. The inter-rater agreement of the first group is in the ‘‘sub-
stantial’’ range (albeit still short of Krippendorff’s 0.8 threshold).
This agreement is calculated on eight raters, thus we propose that
this subset of raters (1–3, 5, 8, 9, 10, 11) represents a reference
standard with higher validity (but not reproducibility) than the
set of all 13 raters.

http://rxinformatics.umn.edu
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5.1. Analysis of disagreements

A typical source of poor agreement stems from variable under-
standing of the task by the raters. The fact that the medical coding
experts that rated the corpus of medical terms had relatively high
agreement coefficients on the general English words dataset indi-
cates that they understood the general requirements of the task.
The differences in reliability statistics for these two datasets are
more likely to be due to the fundamental differences between
the datasets. One possible explanation is that general English
words are learned by native speakers of English at a very early
age and are continually reinforced through contextual co-occur-
rence throughout life. The meanings of general English words are
thus more stable and better internalized than those of medical
terms learned much later in life and represent part of a profes-
sional jargon prompting greater variability of interpretations. Be-
low, we provide an account of the possible sources for
disagreements among human raters on semantic tasks and relate
these sources to the specific example of the medical term pairs
dataset.

The examination of the scores provided by the medical coding
experts suggest the following reasons that likely contributed to
the lower inter-rater agreement on the corpus of medical term
pairs as compared to the agreement on the general English pairs.

1. Differences in the use of rating scales. The coding experts were
instructed to use a 10 point scale; however, not all raters used
the whole range. For example, the highest rating for raters 6, 8,
9 and 12 was 8. The rating of 9 was the highest for raters 1 and
3. Subsequent experiments with physician raters [4] confirmed
that a 10 point scale is too wide and that a coarser scale of at
most four points is more optimal to use. Contrary to our initial
expectation, a smaller scale is perhaps more suitable for relat-
edness judgments in a specialized domain such as medicine
because the terminology is learned by health care professionals
much later in life than general English words making it more
difficult to draw fine-grained distinctions.

2. Differences in understanding of the notion of relatedness. It is evi-
dent from the ratings provided by some of the experts that they
clearly interpreted the notion of relatedness differently from
other raters. For example, raters 5 and 7 consistently rated most
of the term pairs (86 out of 101 for rater 5 and 75 out of 101 for
rater 7) as completely unrelated (score of 1).

3. Differences in conceptual models of the medical terminology. How
coding experts conceptualize the medical terminology space is
inevitably going to influence their rating decisions. For example,
raters 4, 6, 12 and 13 assigned a score of 1 to the pair ‘‘temporal
arteritis – headache.’’ The mean rating for this pair among the
other experts is 6.33 with a standard deviation of 2.34. Thus
the score of 1 is clearly below two standard deviations for this
pair. It is possible that these four raters may have interpreted
the relationship between the disease ‘‘temporal arteritis’’ and
one of its possible manifestations ‘‘headache’’ as belonging to
two different categories unrelated to each other in any direct
way. This example is indicative of a systematic difference in
interpretation by these four experts from the rest of the group
rather than just neglect or carelessness on the part of the
experts. This view is also supported by the clustering and factor
analysis findings placing these four experts in a distinct group
that is systematically different from the rest.

4. Differences in experience. Medical coding experts that partici-
pated in this study had a variety of experience with medical
coding. All of them were trained to use the Hospital Adaptation
of ICD coding nomenclature; however, they had variable levels
of expertise. We should note here that, in this case, greater
amount of experience does not necessarily mean better ability
to determine the degree of relatedness between medical
concepts.

The four reasons we outlined above as possible sources of dis-
agreements between the raters are clearly not independent of
each other. It is likely that any given disagreement was caused
by a combination of these factors in addition to chance. These
and other possible sources for disagreements on semantic related-
ness tasks, particularly in specialized areas like medicine, need to
be systematically examined in order to develop reliable reference
standards.
5.2. Demonstration of intended use of the framework

The reference standard developed under the proposed frame-
work was used to compare two ontology-based approaches. The
low overall correlation between the ontology-based measures
and the manual reference standard is not surprising as it is consis-
tent with the notion that semantic similarity captured with ontol-
ogy-based approaches is different from semantic relatedness
judgments of the medical coding experts. For example, both ontol-
ogy-based measures assigned a low rank of 92 to the pair
C0003811 (arrythmia) – C0026264 (mitral valve), whereas the
medical coders gave it a mid-range rank of 17. Another example,
is the pair C0009676 (confusion) – C0011253 (delusion) that re-
ceived a very low rank of 87 by the ontology-based measures but
a very high rank of 5 by the medical coders. These examples show
that concept pairs judged by humans as related are not semanti-
cally similar based on theirs relative locations in an ontology.
The converse is also true – concepts that appear to be semantically
similar based on their location in an ontology, may not be judged
as related. Examples of this type of discrepancy include the pair
of concepts C0010043 (corneal ulcer) and C0011127 (decubitus ul-
cer) that was ranked number 10 by the ontology-based measures
but number 88 by the medical coding experts. In the UMLS, the
two types of ulcers are classified under the same parent node;
however, clinically, a typical corneal ulcer is arguably very differ-
ent in its properties and etiology from a typical decubitus ulcer,
depending on the context. The latter observation would be better
captured with a measure of relatedness rather than ontology-
based similarity. A third type of discrepancy that we observed be-
tween the automated ontology-based measures and human ratings
has to do with either possible problems in the relational organiza-
tion of the ontology or the path traversal algorithm (or both). For
example, the pair C0011849 (diabetes) – C0032584 (polyp) was
ranked very low by the human raters but relatively high by the
ontology-based measures – rank 25. In this particular case, we
were able to identify that this discrepancy was due to the ambigu-
ity of the term ‘‘diabetes’’ as was discussed in Section 4 (Mapping
to the UMLS). One of the intended uses of the corpus of 101 med-
ical pairs presented in this article is to enable this type of analysis
to guide the process of developing automated measures of seman-
tic relatedness and semantic similarity.
6. Limitations

Several limitations must be discussed to facilitate the interpre-
tation of the results of this study. First, the size of the reference
standard is relatively small compared to all possible pairs of bio-
medical concepts, which limits its generalizability. However, this
reference standard may be useful in guiding software development
efforts and pilot studies aimed at comparing various measures of
semantic relatedness to each other as long as the results of such
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comparisons take into account the limitations of this dataset. Sec-
ond, the pairs were initially chosen by a rheumatology specialist,
which may have biased the set towards that specialty. In the fu-
ture, it will be important to explore other methods for selecting
pairs. Third, the concept space in the biomedical domain is very
large (e.g. the UMLS contains close to 1 million concepts repre-
sented by 2 million names). Thus, annotating even a 10% sample
of concept pairs from this space is not feasible. A more feasible ap-
proach would consist of partitioning this space into more manage-
able subdomains. One possible subdivision may consist of medical
specialties, for example. Another approach that we are currently
pursuing is to subdivide medical concepts according to their
semantic types and address a subset that is most relevant for a spe-
cific purpose – drug safety surveillance. As part of this approach we
have selected pairs of concepts (following the approach presented
in this paper) from three semantic types and their intersections:
drugs, disorders and symptoms. The resulting corpus contains
724 pairs and is currently being annotated for semantic related-
ness. A pilot version of the corpus rated by five physicians for sim-
ilarity and another five for relatedness is available at
rxinformatics.umn.edu. Fourth, the nested nature of the relation-
ship between the notions of semantic similarity and semantic
relatedness introduces an asymmetry in the usability of reference
standards developed to assess the tools measuring these two no-
tions. A reference standard developed specifically for measuring
the strength of semantic relatedness based on associative relation-
ships may be used to some extent to test algorithms for determin-
ing semantic similarity, as semantic similarity as a special case of
semantic relatedness. Fifth, due to time constraints we were un-
able to provide extensive training to the medical coders on making
distinctions between relatedness and similarity. We were only able
to provide a number of examples of term pairs that are related but
not necessarily similar; however, now that we have a corpus of
terms that have been rated for both relatedness and similarity,
we will be able to create a training set for further annotation to ad-
dress this limitation going forward.
7. Conclusion

While the notions of semantic relatedness are highly subjective,
particularly in a narrow terminological domain such as medicine,
our work to date shows that it is possible to compile a dataset that
represents a generalized notion of relatedness to be used as a ref-
erence for developing computerized tools for measuring the degree
of association between medical terms. However, our work also
shows that considerable disagreements may exist and a systematic
approach is necessary to exploring the human ratings of similarity
and relatedness. We have proposed a framework and a starting set
of publicly available tools and resources to support the efforts
aimed at developing reference standards for testing automated ap-
proaches to measuring semantic relatedness between medical con-
cepts. Compiling reliable and valid reference standards is clearly a
complicated process. Detailed information about the methods used
to generate the dataset as well as the motivation behind the use of
reliability coefficients and their interpretation should be included
by study investigators in publications reporting experimental re-
sults. Without this information, the results may be uninterpret-
able. Our framework attempts to lay the foundation for
organizing the efforts of investigators involved in research on
semantic relatedness of biomedical concepts by promoting open-
source tools and resources. Currently, these resources are intended
to be used to reproduce and compare results of different studies on
semantic relatedness; however, the framework we propose may be
extended to the development of reference standards in other re-
search areas in medical informatics including automatic classifica-
tion, information retrieval from medical records and vocabulary/
ontology development. Our framework has a number of limitations
that must be taken into account by anyone using the framework or
the reference standards that are generated by using it.
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