
Language Evolves, so should WordNet - Automatically Extending WordNet with
the Senses of Out of Vocabulary Lemmas

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Jonathan Rusert

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Ted Pedersen

April 2017

© Jonathan Rusert 2017

Acknowledgements

I would like to acknowledge and support those individuals who helped motivate and

gave guidance along the way to completing this thesis.

First, I would like to thank my advisor Dr. Ted Pedersen. Dr. Pedersen always

gave timely and useful feedback on both the thesis code, and also thesis text. He

was also patient but helped keep me on the track to completing my thesis in a timely

manner.

Second, I would like to thank Dr. Pete Willemsen, our director of graduate studies.

Like Dr. Pedersen, Dr. Willemsen provided a good base of knowledge in the writing

of the thesis. He also helped answer any thesis questions and provided a sublime

starting motivation when writing the thesis.

Third, I would like to thank Dr. Bruce Peckham for being on my thesis committee

and provided support and feedback for my thesis.

Next, I would like to thank my fellow grad students for their help and support

throughout the thesis process. They were helpful in completing the classes required,

and also for keeping me sane during this process.

Finally, I would like to thank my good friends and family for their support through-

out this process. I would specifically like to thank Ankit, Austin, and Mitch for

providing motivational support as friends. Also, I would like to thank my parents,

Nathan and Lori Rusert, for their continued support.

Thank you.

i

Dedication

To my parents, Nathan and Lori Rusert. Thank you for your continued love and

support.

ii

Abstract

This thesis provides a solution which finds the optimal location to insert the sense

of a word not currently found in lexical database WordNet. Currently WordNet con-

tains common words that are already well established in the English language. How-

ever, there are many technical terms and examples of jargon that suddenly become

popular, and new slang expressions and idioms that arise. WordNet will only stay

viable to the degree to which it can incorporate such terminology in an automatic

and reliable fashion. To solve this problem we have developed an approach which

measures the relatedness of the definition of a novel sense with all of the definitions

of all of senses with the same part of speech in WordNet. These measurements were

done using a variety of measures, including Extended Gloss Overlaps, Gloss Vectors,

and Word2Vec. After identifying the most related definition to the novel sense, we

determine if this sense should be merged as a synonym or attached as a hyponym to

an existing sense. Our method participated in a shared task on Semantic Taxonomy

Enhancement conducted as a part of SemeEval-2016 are fared much better than a

random baseline and was comparable to various other participating systems. This

approach is not only effective it represents a departure from existing techniques and

thereby expands the range of possible solutions to this problem.

iii

Contents

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 3

2.1 WSD and Semantic Relatedness . 3

2.2 Previous Work . 5

2.2.1 Lesk’s Algorithm . 5

2.2.2 Extended Gloss Overlaps . 7

2.2.3 Gloss Vectors . 12

2.2.4 CROWN . 16

2.2.5 Google Similarity Distance . 19

2.2.6 Word2Vec . 21

2.3 Important Lexical Resources and Concepts 23

2.3.1 WordNet . 23

2.3.2 Wiktionary . 24

iv

2.3.3 SemEval16 Task14: Semantic Taxonomy Enrichment 25

3 Implementation 27

3.1 Pre-processing . 27

3.2 Location Algorithms . 29

3.2.1 Overlap . 29

3.2.2 Overlap with Stemming . 31

3.2.3 Relatedness . 32

3.2.4 Word2Vec . 33

3.3 Merge or Attach . 35

4 Experimental Results 36

5 Conclusions 45

5.1 Contributions of Thesis . 45

5.2 Future Work . 47

5.2.1 Micro Variations . 47

5.2.2 Macro Variations . 48

5.2.3 Beyond Nouns, Verbs, and Hypernyms 48

5.2.4 No Location Found . 49

5.2.5 Merge/Attach . 49

A Appendix A 50

A.1 Inserting New Words into WordNet 50

A.1.1 WordNet Data Files . 50

A.1.2 WordNet Data Format . 51

A.1.3 Implementation . 54

A.1.4 Discussion . 57

v

A.1.5 Future Work . 58

References 59

vi

List of Tables

4.1 System Scores on SemEval16 Task 14 Test Data 37

4.2 SemEval16 Task 14 Participating System Scores 39

4.3 Verb/Noun Scores on SemEval16 Task 14 Test Data 43

4.4 Contingency table of test data word placements. 44

4.5 Lemma Match Scores on SemEval16 Task 14 Test Data 44

vii

List of Figures

2.1 Similarity scores between respective bats. 12

2.2 cat, bat, and phone represented in a simple vector space 15

2.3 Simple representation of WordNet. 24

2.4 Wiktionary data for 2nd sense of bat https://en.wiktionary.org/wiki/bat 25

A.1 Visualization of attaching a new lemma 56

A.2 Visualization of merging a new lemma 57

viii

1 Introduction

Human language is forever evolving. Fifteen years ago a word like “selfie” was non

existent, but is now a commonly used word in the English language. It is impossible

to imagine what new words will become common in the next 15 years. As words

become commonly used, they tend to be integrated into our dictionaries. Our ever

evolving language make dictionaries a valuable part of our society, since new words

are not introduced to every person at once. Dictionaries allow humans to look up

words, old or new, with which we are not familiar. They also help humans translate

between languages.

WordNet1 is an online dictionary developed at Princeton University. WordNet

stores a collection of 155,287 words (or lemmas) along with their definitions (or

glosses) organized into 177,659 sets of synonyms (or synsets). WordNet also includes

other information including hypernyms and hyponyms. Hypernyms represent an “is

a” relationship between words. A husky “is a” dog, therefore dog is the hypernym of

husky. Hyponyms are the converse of hypernyms, e.g. husky is a hyponym of dog.

WordNet’s inclusion of this extra relational information makes it a useful research

tool in Natural Language Processing (NLP). In order for dictionaries to continue

being useful, they will have to adapt to and add the new vocabulary added to a

language. Unfortunately, WordNet has not been updated since December 2006 and

no new updates are planned. This thesis aims to add the ability to continuously add

1https://wordnet.princeton.edu/

1

new lemmas/senses into WordNet2.

We hypothesize that lemmas can be inserted based on a combination of the gloss of

the lemma and glosses of lemmas already in WordNet. The intellectual merits of this

thesis include the discovery of the best algorithms for finding where a lemma should

be inserted into WordNet. This thesis also develops an algorithm which determines

if a new lemma should be attached as a new hypernym to a word or if it is similar

enough to simply merge the new lemma into the existing set of synonyms.

The success of this thesis’ hypothesis will have broader impacts as well. If WordNet

cannot keep up with new language, it will become deprecated. This could have

serious consequences on the NLP research community as a whole. This thesis will

help WordNet keep up by implementing an algorithm which will have the ability to

insert new lemmas into any user’s local WordNet. This will allow researchers to add

in terms specific to their research fields, allowing them to continue to use WordNet.

2The particulars of WordNet database files and implementation of insertion can be found in
Appendix A

2

2 Background

When designing an algorithm for determining the optimal location of an unknown

word in WordNet, many factors come up. These include questions such as, “If I

determine I want to attach a new lemma to the word mouse, how do I know which

sense to attach it to?”, and also “How similar are the new lemma or words in the

new lemma’s gloss, and the word I am looking to attach to?” These questions relate

to two different areas in Natural Language Processing, Word Sense Disambiguation

and Semantic Relatedness.

2.1 WSD and Semantic Relatedness

Word Sense Disambiguation (WSD), is one of the core research topics in Natural

Language Processing. WSD seeks to answer the question of how to determine what

sense of a word is being used. For example, determining what bat refers to in the

following context: “The bat flew...”. Bat could refer to both the animal flying, or it

could refer to a baseball bat being thrown. The meaning becomes a little more clear

once we add more context: “The bat flew out of the batter’s hands.” With more

context, we can now better guess which sense of bat is being used (baseball bat).

Semantic Relatedness is connected to WSD. Semantic Relatedness refers to deter-

mining how two (or more) terms are related, and also measuring how closely they are

related. For example, a bat ISA (is a) animal, showing that bat has an ISA relation-

ship with animal. Also, bat (the animal) would be more related to cat than phone,

3

since the first two are both animals. Three important terms that often appear when

talking about semantic relatedness are hypernym, hyponym, and gloss. Hypernym

refers to any ISA relationship, as demonstrated above. Hyponym, refers to receiving

end of the hypernym. Hypernym can also be thought of a more general example

while hyponym is a more specific example or is a kind of. Animal is the hypernym

of bat, while bat is the hyponym of animal. Unlike hypernym and hyponym, gloss

is not a relation. Instead, gloss simply refers to the definition of the sense. One

gloss of bat would be, “Small rodent-like animal with wings.” The gloss is useful for

differentiating between different senses of the same lemma.

WordNet1 is an online system that NLP researchers, from Princeton, have cre-

ated to help solve WSD, semantic relatedness, and many other problems. WordNet

contains hierarchies of words and their multiple glosses . WordNet sets up the words

in hypernym and hyponym hierarchies. A small (generalized) example of WordNet

looks as follows:

Semantic relatedness or more specifically similarity can be determined through

WordNet by measuring how far terms are from each other in the WordNet hierarchy.

1WordNet can be found:https://wordnet.princeton.edu/

4

For example in the above figure, bat would be more similar to cat than phone since

bat is only two steps away from cat (bat�animal�cat). It can be seen that this

method alone would not be sufficient in measuring similarity, since bat and entity

would have the same similarity value as bat and cat. Other measures of similarity are

introduced in Previous Work, including Extended Gloss Overlaps (2.2.2), and Gloss

Vectors (2.2.3).

2.2 Previous Work

Since the goal was to find the ideal location of a new lemma only based on the

lemma’s gloss and glosses in WordNet, it could be seen that finding which sense of a

word is being used and how related the out of vocabulary (OOV) lemma and sense lo-

cations are would help achieve this goal. It followed that Word Sense Disambiguation

and Semantic Relatedness would be featured heavily in our approach. This made it

clear that systems and algorithms in these areas would make good assets. The follow-

ing systems were explored in order to try and form a basis to start our approach. The

systems take different approaches to both WSD and Semantic Relatedness, which

helps expand the breadth of the basis.

2.2.1 Lesk’s Algorithm

Michael Lesk first presented a solution to Word Sense Disambiguation when de-

scribing what is now commonly referred to as the Lesk Algorithm or Gloss Overlaps

[8]. Lesk aimed to tackle WSD by taking the definitions of the senses of a lemma and

seeing if words overlap onto definitions of the senses of a different lemma in the same

close context.

To demonstrate how this algorithm worked let us revisit our bat example first

5

shown in the background section. To determine what sense of bat is being used in the

sentence “The bat flew out of the batter’s hand.”, Lesk’s algorithm works as follows:

1. Retrieve the glosses for all senses of bat.

2. Retrieve the glosses for other words in the sentence. (Note: To simplify the

example, only the first sense of each word is shown.)

3. Note how many words overlap in each combination of glosses. When comparing

the second gloss of bat to the first gloss of batter we see that bat, swing, baseball,

and bat again all overlap.

4. Presume the sense with the highest overlap value is the correct sense. (In this

case the last sense.)

To show the effectiveness of the algorithm, Lesk noted that the program performed

in the 50-70% accuracy range when used on short examples from Pride and Preju-

dice and an Associated Press article. However, Lesk acknowledged a problem in his

6

algorithm. The problem arises because glosses can be short and often times might

not overlap. Also, determining the gloss source can affect the performance. While

words may overlap successfully in the glosses from Webster’s Dictionary, they might

not overlap from WordNet or vice versa.

Lesk closes his introduction to his algorithm with many questions:

1. What machine readable dictionaries should be used for the glosses?

2. Should examples of the word be used in the algorithm?

3. How should the overlaps be scored compared to each other?

Lesk did not answer these questions outright but believed they offer an exciting future

for the possibility of his work. Later work also tried to address these questions.

2.2.2 Extended Gloss Overlaps

While Lesk’s algorithm was focused on WSD, Extended Gloss Overlaps [1] (EGO)

aim to measure semantic relatedness. EGO’s function by taking the Lesk Algorithm

and incorporating WordNet into the calculation of overlaps by adding in the hyper-

nyms and hyponyms of the lemma and their glosses. The algorithm not only compares

the definitions of the two terms, but also the definitions of their respective hypernyms

and also hyponyms. The resulting algorithm to calculate the relatedness is as follows:

relatedness(A,B) = score(gloss(A), gloss(B)) + score(hype(A), hype(B))

+ score(hypo(A), hypo(B)) + score(hype(A), gloss(B))

+ score(gloss(A), hype(B))

(2.1)

7

score(C,D) = numberOfOverlappedWords(C,D) (2.2)

Where gloss(), hype(), and hypo() correspond to the gloss of a lemma, the gloss of

the hypernym of a lemma, and the glosses of the hyponyms of the lemma respectively.

EGO would handle our bat example similarly to the Lesk Algorithm when calcu-

lating the relatedness between bat and cat, except it would add in the glosses of the

hypernyms and hyponyms of bat and cat :

1. Retrieve gloss for bat and cat.

2. Retrieve bat’s hypernyms’ and hyponyms’ glosses. (Only one shown for each as

example)

Hypernym:

Hyponym:

8

3. Retrieve cat’s hypernyms’ and hyponyms’ glosses. (Only one shown for each as

example)

Hypernym:

Hyponym:

4. Compare relatedness of hypernym glosses, hyponym glosses, and standard glosses.

Note: When comparing bat ’s and cat ’s hypernyms we observe that mammal

overlaps. mammal also overlaps multiple times when comparing bat ’s hyper-

nym’s gloss with cat ’s gloss, as well as when comparing cat ’s hypernym’s gloss

with bat ’s gloss.

9

5. Compute final relatedness with formula 2.1. The structure of all the glosses

compared can be seen below.

To evaluate EGO with respect to Semantic Relatedness, the method was compared

against human judgment. A 65 word pair set and also a 30 word pair subset were

used for the evaluation. The 65 word set was first shown in a study from Rubenstein

and Goodenough [14], while the 30 word pair set first appeared in a study by Miller

and Charles [5]. For both sets, human subjects were tested on the words by asking

them how similar a pair of words were on a 0.0 - 4.0 scale. To find the closeness of the

pairs, Spearmans Correlation Coefficient [16] was used. This ranks on values between

-1 (opposite ranking) and 1 (exactly the same). When evaluated on the 30 word pair

set, EGO has a correlation of .67 to the Miller and Charles study and when evaluated

on the 65 word pair set, a correlation of .60 to the Rubenstein and Goodenough study.

Banerjee and Pedersen note that EGO correlates well to human judgment.

EGO was also applied to Word Sense Disambiguation (WSD). The formulated

algorithm for solving WSD is as follows [11]:

1. Identify a window of context around a target word. Imagine we have the sen-

10

tence “The player threw the bat into the dugout.” and we are trying to deter-

mine which sense of bat is used. If a window (of surrounding words) of three is

chosen, then we examine the words player and dugout.

2. Assign a score to each sense of the target word by adding together EGO relat-

edness scores calculated by comparing the sense of the word in question to the

senses of each context word. In our example, each sense of bat would be scored

by EGO relatedness in comparison between bat and every sense of player and

dugout. The score between both the animal bat (bat#n#1) and the baseball

bat (bat#n#4) and the senses of player and dugout can be seen in figure 2.1.

Note that “lemma#pos#senseNum” is how WordNet represents lemmas and

their senses. In our example, “bat#n#1” shows the first sense of the noun bat.

3. The sense with the highest score is chosen as the sense of the target word. Words

like dugout score higher in relatedness to the baseball bat sense and help push

the score of bat#n#4 over bat#n#1, which means the baseball sense would be

chosen.

EGO was also evaluated on WSD. The data used for evaluation is a 73 word subset

from the data of Senseval-2 [3]. EGO was evaluated using three different measures:

Precision, Recall, and F-Measure. Precision was calculated by dividing the number of

correct answers by the number of answers reported. Recall is calculated by dividing

the number of correct answers by number of instances. F-Measure is a measure of

the test’s accuracy and is calculated by the following algorithm:

F-measure = 2× (precision× recall)/(precision+ recall) (2.3)

11

Figure 2.1: Similarity scores between respective bats.

Overall EGO scored 0.351 in Precision, 0.342 in Recall, and 0.346 in F-Measure.

The original Lesk algorithm, at the same task, scored significantly less 0.183 in each

category.

2.2.3 Gloss Vectors

Patwardhan and Pedersen [12] aimed at contributing to this area by researching

how context vectors combined with WordNet could be used to measure Semantic

Relatedness. Normal context vectors [15] function by measuring how two words are

12

related by looking at the words (or context) around those words. By looking at how

many times certain words occur with each other in each context, context vectors

can weight how closely two terms are related. Gloss vectors address the issue that

EGO and the Lesk algorithm had in getting rid of the dependence on glosses and

glosses overlapping to be successful. For example, imagine we are trying to find the

relatedness between beer and vodka. In WordNet, beer ’s gloss is “a general name

for alcoholic beverages made by fermenting a cereal (or mixture of cereals) flavored

with hops”, while vodka’s is “unaged colorless liquor originating in Russia”. We can

observe, that no words in either beer or vodka overlap, even though we know they

would appear in the same contexts.

WordNet-based context vectors (referred to as gloss vectors) implement normal

context vectors by using WordNet to obtain the glosses of the terms being compared,

then using those glosses to create context vectors. This helps create a more relevant

context with which to gain a more accurate context vector, since the glosses are added

into the calculations, increasing the overall relevant word count. Gloss vectors are

around 50,000 dimensions and are created by finding co-occurrences in the WordNet

glosses. To reduce dimensionality, and include more relevant terms, only those words

that occur at least five times appear in the 50,000 vector. To calculate gloss vectors,

Word Spaces are created as outlined in the gloss vector paper:

1. Initialize the first order context vector to a zero vector v. For example, if we

are looking for the word cat, cat ’s vector models:

(bird cave eat attack wings ring meow screech)

cat (0 0 0 0 0 0 0 0)

2. Find every occurrence of v in the given corpus. Continuing with our example,

13

find all the places where cat occurs.

3. For each occurrence of v, increment those dimensions of v, that correspond to

the words from the Word Space and are present within a given number of posi-

tions around v in the corpus. Again in our example, for each word that occurs

around cat, add one to that word to increase its occurrences with cat. If meow

occurs in a context with cat, we would increment meow in cat ’s vector resulting

in:

(bird cave eat attack wings ring meow screech)

cat (0 0 0 0 0 0 1 0)

This processes is repeated throughout the whole corpus until we arrive at a

resulting vector of cat:

(bird cave eat attack wings ring meow screech)

cat (2 0 4 5 1 0 7 3)

Gloss vectors tackle our bat and cat example by use of context vectors. Gloss

vectors take a context of bat and cat and follow the aforementioned steps, creating

vectors for bat and cat and incrementing the dimensions of v for each. Suppose we

arrive at the following three vectors:

(bird cave eat attack wings ring meow screech)

cat (2 0 4 5 1 0 7 3)

bat (2 4 5 4 5 0 0 4)

phone(0 0 0 2 0 9 0 0)

We can observe that bat and cat ’s vectors are more similar than cat and phone’s.

As seen in figure 2.2, the cat vector is closer to the bat vector versus phone since

cat is more like bat.

14

Figure 2.2: cat, bat, and phone represented in a simple vector space

Gloss vectors also include the ability to filter out certain words from appearing in

the vectors. Either a stop list can be used or frequency cuttoffs to filter words. Stop

lists are lists of common words (a—an—the—...) which many glosses contain and

therefore are not overall helpful in determining relatedness. Frequency cuttoffs func-

tion similarly to stop lists. However, instead of specifying specific words, frequency

cutoffs specify a number which when set as a threshold disqualifies a word from being

considered. For example, if the frequency cutoff is 15 and the appears 25 times in the

contexts, the is essentially stop listed. Although gloss vectors include these functions,

our systems do not utilize them as the filtering of words is taken care of on a higher

level.

Gloss vectors were evaluated similarly to EGO with the word pair set from Miller

15

and Charles and the word pair set from Rubenstein and Goodenough. When being

compared to other Semantic Relatedness measures tested on the same data set, Gloss

vectors performed the highest in relation to human perception tests. Gloss vectors

score 0.91 in Miller and Charles and 0.90 in Rubenstein and Goodenough. Extended

Gloss Overlaps [1] was the next highest compared measure, scoring in at 0.81 for

Miller and Charles and 0.83 for Rubenstein and Goodenough.

Gloss vectors also performed Word Sense Disambiguation (on SENSEVAL-2 data)

well (scoring 0.41), only behind Extended Gloss Overlaps by a few points (scoring

0.45). Patwardhan and Pedersen concluded that the gloss vector scored very well in

comparison to human judgments.

2.2.4 CROWN

While EGO and gloss vector determined semantic relatedness mainly using Word-

Net, Jurgens and Pilehvar [6] incorporated Wiktionary2 into the calculation of se-

mantic relatedness to better find the ideal location for a OOV lemma in WordNet.

CROWN aimed to add out of vocabulary (OOV) terms to the existing WordNet

synsets. With this method, a new synset was created for the OOV term and added

via a hyponym relation to the determined WordNet synset. Jurgens and Pilehvar

named this extension of WordNet, CROWN (Community enRiched Open WordNet).

To accomplish the addition of the new synset, CROWN used Wiktionary to look

up and add the glosses of similar synsets of the term to the calculation of the term’s

proper synset location. CROWN ran through 2 steps in its calculation, preprocessing

and attachment. In preprocessing, CROWN parsed Wiktionary data to obtain the

text associated with each Wiktionary gloss. The glosses were then processed using one

of the following two methods to identify which hypernym synset candidates might be

2https://www.wiktionary.org/

16

the correct for the OOV term. First, the glosses were paired with Stanford CoreNLP

[9] which extracted words conjucted to the head word as candidates. For example, if

we had the sentence “The man and woman were at an impasse.”, Stanford CoreNLP

would extract man and woman as candidates, since they are joined together by and.

Second, more possibilities were added by accessing the first hyperlinked term in the

gloss. A hyperlinked term means it also has an accessible entry in Wiktionary. In

Wiktionary, dog ’s first gloss is, “A mammal, Canis lupus familiaris, that has

been domesticated for thousands of years, of highly variable appearance due to

human breeding.” (where the words in bold are hyperlinks). Since mammal is is

the first hyperlinked word in dog ’s gloss, it would be accessed for more possibilities

by following the hyperlink to the corresponding Wiktionary entry.

In attachment, CROWN used either structural and lexical attachment or gloss-

based attachment. Structural and lexical attachment occurred in one of three ways.

First, Wiktionary was used to create mutually-synonymous terms, a common hyper-

nym was then estimated from the aforementioned terms by calculating the “most

frequent hypernym synset for all the senses of the set’s lemmas that are in Word-

Net” [6]. The OOV term was then attached to the calculated hypernym. Second,

Wiktionary glosses were examined to determine whether they matched a specific pre-

determined pattern or not. The patterns were inferred from glosses in Wiktionary,

since some followed regular patterns. The patterns were matched against the Person

and Genus. Person patterns started with the phrase “somebody who” while Genus

patterns started with “Any member of the” and contained a proper noun later. When

Person was matched, the term was attached to a descendant using lexical attach-

ment. When Genus was matched, the term was “attached to the same hypernym as

the synsets with a holonymy relation to the genus’s synset.” A holonymy is a rela-

tion that represents a part of a whole, Felis(cat family) is a holynym of cat. As an

17

example, cat ’s first gloss is “An animal of the family Felidae.” This would match the

Genus relation since it starts with a variation of “Any member of the” and Felidae is

a proper noun found later on. True cat is a synset of cat, while Felis domesticus is a

holonym of true cat. Therefore, cat would be attached to Felis domesticus. The third

structural and lexical attachment used was an Antonymy heuristic. Antonymy tested

the OOV term to determine if it had a prefix that could indicate it was an antonym

(e.g., “anti”). If the prefix was removed and the remaining term was in WordNet, the

OOV term was attached to the remaining term.

The second attachment, gloss-based attachment, was carried out by using the

associated senses of the OOV term which were found from Wiktionary. This method

generated possible hypernym synsets by taking each sense and ranking them according

to their gloss similarities. The OOV term was then attached to the highest scoring

hypernym synset generated.

To show how CROWN works, we will return to bat. Imagine that the term bat

does not yet exist in WordNet. CROWN would handle inserting bat with gloss based

attachment, as follows:

1. Create a possible set of hypernym candidates by looking at their gloss. (To save

space we will only display bat ’s hypernym’s previously known gloss.)

18

2. Placental mammal would be placed in the set of possible candidates since it

matches the first round of preprocessing, in that mammals is the first word

extracted and that exists in bat ’s gloss.

3. Gloss based attachment is then used as each term in bat ’s gloss is analyzed

and the highest scoring related term is selected as the hypernym. In this case

mammal ’s gloss makes it the ideal hypernym candidate since mammal over-

laps several times between the glosses, therefore bat is attached to mammal in

WordNet.

Two evaluations were used to determine the effectiveness of CROWN. The first

evaluation used CROWN on terms that were already in WordNet and examining

whether or not CROWN determined the correct action. To carry out the evalua-

tion, glosses of 36,605 out of 101,863 nouns and 4,668 out of 6,277 verbs that were

“monosemous” (only having one meaning) in WordNet and could be found in Wik-

tionary were used. CROWN scored well at attaching the terms, scoring 95.4% with

nouns and 90.2% with verbs.

The second evaluation calculated “the benefit of using CROWN in an example

application”. This evaluation used 60 OOV lemmas and 38 OOV slang terms to

test CROWN. 51 out of 60 OOV lemmas and 26 out of 38 OOV slang terms were

contained in CROWN.

2.2.5 Google Similarity Distance

While CROWN aimed to improve the coverage of WordNet and strength of se-

mantic relatedness by adding in Wiktionary to WordNet, Cilibrasi and Vitanyi tried

to incorporate the internet as a whole by using Google. Their intuition was that the

internet was a vast database, already being updated by humans and Google is a way

19

to search that database. They note that humans naturally use similar words together

when writing on the internet, which means similar terms should show up together in

a Google search. The result of this effort was the Google Similarity Distance (GSD)

[2].

The GSD calculated semantic relatedness by using meta-data obtained about the

terms in question when searched in the Google search engine. The GSD worked as

follows:

1. Google term1 and record the number of pages associated with term1.

2. Google term2 and record the number of pages associated with term2.

3. Google “term1 term2” and record the number of pages.

4. Record the number of indexed Google pages.

5. Plug in the recorded terms to the GSD formula (where x=term1, y=term2):

NGD(x, y) =
G(x, y)−min(G(x), G(y))

max(G(x), G(y))
(2.4)

Calculating the relatedness between bat and cat is simple following the above

formula. We would google bat and cat separately and record the number of associated

pages. Then we would google bat and cat together and record this number. Finally

we would plug these numbers into the NGD(bat, cat) formula.

Several evaluations for how the GSD performed were used. One evaluation, com-

parable to our previous methods used, was comparing how related different texts

are from English novelists. The three novelist whose works were used are William

Shakespeare, Jonathan Swift, and Oscar Wilde. The result was a constructed tree of

20

the novels and how closely they were related. The results were positive as all Shake-

speare’s works were close to the same tree node, as was the same with Swift’s and

Wilde’s works.

It should be noted that while the Google Similarity Distance was a different and

new approach to calculating Semantic Relatedness, GSD was not incorporated into

our system as it has a possible drawback. Since GSD is based on the web, and the

web is constantly changing with new news articles, trends, and other evolving content

the GSD score could change in a shorter period of time.

2.2.6 Word2Vec

Word2Vec was created by a group of researchers at Google led by Tomas Mikolov

[10]. While the previous approaches use different existing structured databases (Word-

Net, Wiktionary, Google), Word2Vec creates its knowledge by taking in large corpora

of text and creating vectors to represent words. Word2Vec uses a two-layer neural

network to create these vectors, along with one of two methods, Skip gram or CBOW.

Skip gram “learns” the word vectors by predicting the context of a given word, or

given one word, Skip gram predicts the words around it. CBOW (Continuous Bag of

Words), is opposite of Skip gram in that CBOW predicts the word given its context,

or given many words, CBOW predicts the word. The size of vectors for Word2Vec

are normally determined by a parameter passed in. This means the size could be any-

where from 100 - 1000 or more depending on what the user chooses. These vectors

provide a view of what contexts certain words appear in. This can be useful in both

WSD and Semantic Relatedness.

In WSD, knowing the context that appears around a word is the best way to find

which sense is being used. As a simple example, imagine we have a word vector that

21

appears as:

(cave batter sonar pitcher wings plate stands screech)

bat (0 4 0 3 0 2 1 1)

If we are trying to decide between the baseball bat and animal bat, the vector shows

that bat has appeared with batter 4 times, pitcher 3 times, and plate 2 times. Using

this information, it is easy to infer that this is the baseball bat sense.

In Semantic Relatedness, the context can again provide helpful information in

determining how similar two words are, since it is likely that similar words would

appear in similar contexts. Imagine we add the following word vectors to our data

set:

(cave batter sonar pitcher wings plate stands screech)

base(1 3 0 1 0 3 2 0)

home(2 2 0 1 0 2 0 3)

We are then able to observe that bat has a more similar vector to base than home.

We can then use these vectors, along with some calculations to find an approximate

value of relatedness if we would like.

Although both Word2Vec and Gloss Vectors represent words as vectors, the way

the vectors are created differ. Gloss Vectors create vectors by using the glosses from

words in WordNet, while Word2Vec creates vectors from large contexts of words.

Like Gloss Vectors, Word2Vec also contains the option for stop lists and frequency

cuttoffs. However, again the stop listing is handled on a higher level and these

functionalities are not used in our approach.

22

2.3 Important Lexical Resources and Concepts

As seen in EGO’s, Gloss Vectors, and CROWN, lexical resources are an essential

tool in WSD and Semantic Relatedness. Our approach is focused heavily on WordNet,

while others found Wiktionary to be a great help. In this section we expand on

WordNet and Wiktionary, as well as the SemEval task with which our thesis’ data

originates.

2.3.1 WordNet

As was stated in the introduction, WordNet is an online dictionary developed at

Princeton University3. WordNet was created in 1985 and the idea was formulated by

George Miller, a psychologist professor. Miller wanted to create a lexical database

which modeled the way humans group words, thus WordNet was born. WordNet

stores a collection of 155,287 words organized into 177,659 synsets. WordNet also

includes other information including hypernyms and hyponyms. The structure of

WordNet, with respect to hypernyms and hyponyms, can be visualized in figure 2.3.

This simple representation of WordNet can show the connection between the differ-

ent hypernyms placental mammal, club and their respective hyponyms bat#n#1 and

bat#n#5. WordNet also includes compound words such as “father-in-law”. Word-

Net’s large amount of words and, more importantly, relationships, make it an invalu-

able asset to many NLP systems. WordNet’s valuableness can be seen in the sheer

amount of citations WordNet has, over 30,000 different papers alone (at the time of

this thesis).

3https://wordnet.princeton.edu/

23

Figure 2.3: Simple representation of WordNet.

2.3.2 Wiktionary

Wiktionary4 is a collaborative project aimed at producing a “free-content multilin-

gual dictionary”. Wiktionary contains 5,101,420 entries in 3,200 different languages.

Like WordNet, Wiktionary offers more than just the gloss of a word. Wiktionary of-

fers additional information such as etymology, example contexts, derived terms, and

more. A sample page of Wiktionary can be seen in figure 2.4.

As can be observed in figure 2.4, Wiktionary also offers hyperlinks to other words

within the glosses of the current word being viewed. An example of these hyperlinks

being utilized effectively appears in CROWN. As with WordNet, Wiktionary’s large

database and connections to related words help enrich the data used NLP systems,

and subsequently WSD and Semantic Relatedness systems.

4https://www.wiktionary.org/

24

Figure 2.4: Wiktionary data for 2nd sense of bat https://en.wiktionary.org/wiki/bat

2.3.3 SemEval16 Task14: Semantic Taxonomy Enrichment

SemEval16 Task14 [7] called for a system that could enrich the WordNet taxonomy

with new words and their senses. This translates to inserting new lemmas and senses

that were previously not in WordNet into their (human perceived) correct place.

SemEval16 Task14 was the base starting point for our system.

Task14 also provided the data set on which our system is compared against in Re-

sults, Chapter 4. The data set consists of 600 out-of-vocabulary lemmas, along with

the part-of-speech, glosses, and Wiktionary references to each lemma. An example

from this data is:

25

palliative care noun test.1 A specialized area of healthcare that

focuses on relieving and preventing the suffering of

patients. https://en.wiktionary.org/wiki/palliative_care#English

The field test.1 in the example exists solely for testing purposes. It can be observed

that the part-of-speech for each OOV lemma as well, which is used within our ap-

proach. Task14 also included an evaluation program which would take in the output

from a system and compare that to the gold test key provided along with the test

data. This data along with the testing program helped provide a smooth evalua-

tion for the different variations of our system. Along with test data, “trial” and

“training” data were included in SemEval16. “Trial” data contains 127 OOV lemmas

and “training” data contains 400 OOV lemmas both formatted the same as the test

data. SemEval16 Task14 also helped provide ideas which are expanded on in the

Implementation (Chapter 3) and Results (Chapter 4) sections.

26

3 Implementation

This chapter aims to explain the multiple algorithms implemented for solving the

problem of locating where a word should be inserted in WordNet. We give the general

flow of our system and then step through each algorithm in detail.

Our system solves the given problem in three steps:

1. Pre-processing: Acquire all necessary data from WordNet and store it in one

step. The data needed includes each word’s definitions, hypernyms, hyponyms,

and synsets.

2. Location Algorithm: Our system uses one of four algorithms (Overlap, Overlap

with Stemming, Similarity, Word2Vec) in this step to determine the location of

the OOV lemma.

3. Determining attach or merge: Decide whether or not the new lemma should be

attached to the synset of the chosen sense, or merged into it. Attaching should

occur when the OOV lemma is the first of its kind, and merging should occur

when the OOV lemma is a synonym of the chosen sense.

3.1 Pre-processing

As the implementation of our system was underway, it was clear that the system

would be making a large number of calls to WordNet. As we accessed more and more

27

data from WordNet1, our program took longer to finish each time which created a

problem for evaluating changes quickly. The pre-processing method was created to

speed this process.

Pre-processing consolidates all calls to WordNet at the start of the program, so

no duplicate calls need to be made. It does this by first obtaining all nouns and verbs

from WordNet and storing them in their respective arrays (one array for nouns and

one for verbs). Pre-processing then iterates through each word and retrieves each

sense of each word, since the senses are what will determine which synset the new

lemma will be merged or attached to later on. The senses are stored in a separate

array, which is iterated through, one by one, in the Overlap step to obtain a score

for each sense. Next, it iterates through each sense and obtains that senses gloss.

Pre-processing cleans each gloss by making all letters into lowercase, removing punc-

tuation, and also removing this list of common stop words (the—is—at—which—

on—a—an—and—or—up—in) from each gloss. This list of stop words was deter-

mined by finding common, less helpful words in the trial/test data. These stop words

were found by outputting what words were being overlapped, and these appeared

the most frequently even though they rarely added positively to the overlaps scores.

Certain stop list words may also have misleading senses in WordNet. IN represents

inch, indium, and Indiana in WordNet, however, since in is a more commonly used

word, it could mislead our system by how often it is represented. It then stores the

cleaned gloss in a hash that maps the gloss to the corresponding sense. Finally, Pre-

processing obtains the hypernyms, hyponyms, and synsets for each sense and stores

them in their respective hashes (hypernyms, hyponyms, and synsets).

1http://search.cpan.org/dist/WordNet-QueryData/QueryData.pm

28

3.2 Location Algorithms

For the second step, our system uses one of four location determining algorithms:

Overlap, Overlap with Stemming, Similarity, Word2Vec.

3.2.1 Overlap

The Overlap algorithm aims to find the ideal location for the OOV lemma by

using the idea that similar lemmas will have some of the same words in their glosses

and therefore there will be overlapping or matching words. Ideas were borrowed

from both Lesk[8] and Extended Gloss Overlaps [1] which are covered in Chapter 2,

Background.

Overlap Implementation

Our Overlap algorithm works by iterating through each sense obtained fromWord-

Net and creating an expanded sense by adding information from each sense. The

expanded sense is then compared to the to-be-inserted lemmas creating a score to

determine how alike the terms are. It should be noted that only candidates with a

corresponding part-of-speech to the OOV lemma were compared as to improve time

and not cause nouns to be mapped to verbs and vice versa.

For each sense to be compared, the expanded sense was created. First the sense’s

gloss was obtained from the hash initialized in pre-processing. Next the sense’s im-

mediate hypernyms and their glosses were retrieved and added to the expanded sense.

Likewise, the sense’s immediate hyponyms and their glosses were retrieved and added

to the expanded sense. Finally, the sense’s corresponding synset and their corre-

sponding glosses were retrieved and added to the expanded sense. Next before any

word overlaps could be processed, the new lemma’s gloss needed to be cleaned up.

29

To provide clarity, we will act as if ink (taken from Semeval16 Task14 trial data)

is being inserted into WordNet. For reference ink ’s provided definition was “Tattoo

work.” The lemma was cleaned up following the same steps as the WordNet glosses

followed in the pre-processing step. Ink ’s definition would now become “tattoo work”,

since all letters are made lowercase. However, since ink did not contain any stop words

on the list, none were removed.

Now the system steps through each word in the lemma’s gloss and checks for

overlaps in the glosses of the expanded sense’s gloss, each hypernym’s gloss, each

hyponym’s gloss, and finally each synset’s gloss. If the word being checked is part of

the lemma of each sense, it receives a bonus score. The reasoning behind the bonus

score was that defining a lemma with words it belongs too is a common approach;

husky’s gloss is “breed of heavy-coated Arctic sled dog”, where dog would be the

target. The bonus score was originally set to (10 * the length of the lemma) but

was found to impact the overallscore when the bonus was changed. An experimental

exploration of the impact of this bonus can be found in Chapter 4, Results. This

bonus was applied to all single words but limited to compound words of at most

two words. The decision to limit the length of compound words was arrived at since

larger compounds like Standing-on-top-of-the-world would score higher than World-

wide just because they were much longer compounds, even though they occur less

often.

Since ink ’s definition contains the word tattoo, any sense with tattoo in its lemma

will receive the bonus. This means that tattoo#n#.̇. (i.e. any noun sense of tattoo)

would receive a bonus. The same holds true for work#n#.̇. (i.e. any noun sense

of work). The overlapping of words were also weighted by the number of characters

present in those words (or more simply length of those words), so longer words carried

a heavier weight in the score than shorter ones. As with ink, when the word tattoo,

30

in the definition of ink, overlaps with another compared word it adds 6 to the score

since tattoo contains 6 letters, whereas work would only add 4 to the score.

The final score of the sense was calculated by dividing the number of overlaps by

the total length of words from the new term.

score = (SenseLaps+HypeLaps

+HypoLaps+ SynsLaps

+BonusLapsTotal)/GlossLength

(3.1)

The sense with the highest score at the end was presumed to be the chosen sense to

either attach or merge to in WordNet.

Our system determined that ink belonged to tattoo#n#3 whose definition from

WordNet was, “the practice of making a design on the skin by pricking and staining”.

Since ink had a short definition provided from Wiktionary, the largest score came

from the fact that tattoo gained the bonus score from overlapping with the definition.

The correct answer provided in the key was tattoo#n#2, the reason for the differences

was thought to likely be the fact that our system did not identify present participle

words, since tattoo#n#2 contained the word “tattooing”. This miss brought us to

our next algorithm Overlap with Stemming.

3.2.2 Overlap with Stemming

Our Overlap with Stemming (OwS) algorithm aimed to address an issue above

with overlap, that different tenses of words (tattoo vs. tattooing) and different number

representations of words (singular vs. plural) would not overlap. Examples of this

missed overlapping might be “pony” vs. “ponies” or even more simply “bat” vs.

“bats”.

31

OwS Implementation

The OwS implementation is essentially the same as our Overlap algorithm, with

one change in the PreProcessing step. With OwS the PreProcessing step is carried

out with a stemming flag on. This causes a stemmer to be used on the glosses of

the words in WordNet before being stored. Stemming translates a word into it’s base

form (or lemma). For example, tattooing would become tattoo and ponies would

become pony in the cleaned glosses. We used Lingua::Stem2 as our stemmer. After

PreProcessing, OwS follows the Overlap algorithm exactly, except when cleaning the

OOV lemma’s gloss, it also stems the gloss unlike the Overlap algorithm.

When running OwS on the ink example, the system determines correctly that

ink should be attached to tattoo#n#2. This helps solidify the usefulness of adding

stemming to our system.

3.2.3 Relatedness

The Relatedness algorithm takes a different approach to finding where the OOV

lemma should be inserted. Instead of counting the overlapping words in the glosses,

Relatedness uses a relatedness measure to find how related two words are. Relatedness

aims to do away with relying on words in glosses matching perfectly to be relevant.

We used WordNet::Similarity::vector3 as our relatedness measure as it utilizes Word-

Net’s structure and allows the comparison between different parts-of-speech. Word-

Net::Similarity::vector is an implementation of gloss vectors discussed in Background

(Chapter 2).

2http://search.cpan.org/˜snowhare/Lingua-Stem-0.84/lib/Lingua/Stem.pod
3http://search.cpan.org/˜tpederse/WordNet-Similarity-2.07/lib/WordNet/Similarity/vector.pm

32

Relatedness Implementation

Like the previous two methods, Relatedness iterates through each sense, of same

part-of-speech (POS) as the OOV lemma, in WordNet. After cleaning the OOV

lemma’s gloss, the gloss is then processed through a POS tagger. We used Lin-

gua::EN::Tagger4 as our POS tagger. Lingua::EN::Tagger is a probability based tag-

ger, trained on corpus data, which determines parts-of-speech from a look up dictio-

nary and set of probabilities. After the gloss is tagged, each word from the gloss is

then passed against WordNet to find all the senses of the word. Each sense of each

word in the OOV lemma’s gloss is then compared against the current candidate sense

with a similarity measure and added to the candidate’s final score. As above, the

highest scoring candidate was chosen as the insert location.

When running Relatedness on ink the system chooses work#n#1 as the correct

placement. This might be surprising, however, the way Relatedness functions is by

finding the relatedness between a sense in WordNet and the lemma’s gloss. Unlike

the WordNet words, the words in the gloss are not specified to be a sense. This means

that tattoo could be tattoo#n#1, tattoo#n#2, or tattoo#n#3. The system compares

to all these to try and determine the correct candidate. While tattoo has three senses,

work has seven senses, which causes a weight towards work ’s favor.

3.2.4 Word2Vec

Our final algorithm was one that used a large amount of training data with a

Word2Vec system. Word2Vec aims to utilize the notion that similar words appear in

similar contexts. We used the Gensim5 implementation of Word2Vec trained on the

4http://search.cpan.org/˜acoburn/Lingua-EN-Tagger-0.28/Tagger.pm
5https://radimrehurek.com/gensim/models/word2vec.html

33

Google-News-Vectors6. Google-News-Vectors is data created from vectors trained on

about 100 billion words from Google News.

Word2Vec Implementation

Instead of examining each sense in WordNet one at a time, as the other algorithms

do, Word2Vec takes in all words in WordNet with the same POS as the OOV Lemma.

These words are then passed to be evaluated via Word2Vec’s similarity measure.

Word2Vec is first trained on Google-News-Vectors. This training creates vectors for

each word in that data which can be used to determine similarity. Note that the

vectors created from Word2Vec differ from the gloss vectors in Relatedness, since

Word2Vec uses contextual similarity trained on Google-News-Vectors rather than

WordNet when creating the vectors. Word2Vec attempts to find the similarity of each

WordNet candidate word and the OOV lemma. If the OOV lemma does not exist in

the training data, Word2Vec finds the similarity between the candidate word and the

OOV lemma’s gloss’ words instead. The highest scoring, presumably most similar,

candidate word from WordNet is chosen as the insert location. After calculating the

highest similarity score, that score is paired against a user chosen confidence value

(CV). If the score is below the CV threshold, the OOV lemma and its candidate are

not included in the output.

Our Word2Vec system determines that for ink, toner#n#1 is the place in Word-

Net ink should be inserted. The reason for this decision demonstrates a flaw in the

chosen Word2Vec algorithm. While new words like selfie, would only appear in similar

contexts to the optimal hypernym, existing words such as ink can be overshadowed by

their pre-existing senses, and cause the system to choose a pre-existing sense instead.

6https://github.com/mmihaltz/word2vec-GoogleNews-vectors

34

3.3 Merge or Attach

Our system determines whether the term should be merged or attached by looking

at the frequency of the chosen sense as obtained from the WordNet::QueryData fre-

quency() function. The frequency function returns the frequency count of the sense

from WordNet database tagged text. If the frequency was low (if it was equal to

zero), then it was assumed to be a rarer sense so the program would attach the new

term. If it was higher (greater than zero), then the opposite was assumed and merge

was chosen.

ink was chosen to be attached to tattoo#n#2 which means the frequency was

equal to zero.

35

4 Experimental Results

This chapter presents experimental results from the implemented systems outlined

in Chapter 3, Implementation. The implemented systems were run on the 600 lemma

test data set which was provided for SemEval Task 14 [7] and described in Chapter

2, Background. Our implemented systems scored as shown in Table 4.1.

Several measures are used to evaluate the Task 14 systems. These include Wu &

Palmer Similarity (Wu&P), Lemma Match (LM), Recall, and F1.

Wu & Palmer Similarity, as defined by SemEval16 Task 14 task organizers, is

calculated by finding the “similarity between the synset locations where the correct

integration would be and where the system has placed the synset.”[7]

Wu & Palmer(s1, s2) = 2× depth(lcs(s1, s2))/(depth(s1) + depth(s2)) (4.1)

LCS stands for least common subsumer, and is the most specific ancestor in WordNet

which sense 1 (s1, the correct/gold sense) and sense 2 (s2 the system discovered sense)

share. This score is between 0 and 1.

The Lemma Match, again defined by the task organizers, is scored by, “the per-

centage of answers where the [attach or merge] operation is correct and the gold

and system-provided synsets share a lemma.” For example, if the system submits

“dog#n#1 attach” and the gold system has the answer as “dog#n#1 merge”, the

answer will be scored zero since the attach and merge do not match even though the

lemmas do. Likewise, if the system chooses “cat#n#1 merge”, even though both are

36

System Wu&P LM Recall F1
UMNDuluth Sys 1 (2 bonus) 0.3395 0.0984 0.9983 0.5067
UMNDuluth Sys 1 (10 bonus) 0.3857 0.1467 1.0000 0.5567
UMNDuluth Sys 1 (25 bonus) 0.3802 0.2117 1.0000 0.5509
UMNDuluth Sys 1 (50 bonus) 0.3809 0.2100 1.0000 0.5517
UMNDuluth Sys 1 (100 bonus) 0.3735 0.1550 1.0000 0.5439
UMNDuluth Sys 1 (500 bonus) 0.3791 0.2083 1.0000 0.5498

OwS (2 bonus) 0.2824 0.0767 1.0000 0.4404
OwS (10 bonus) 0.3539 0.1667 1.0000 0.5227
OwS (25 bonus) 0.3392 0.1467 1.0000 0.5066
OwS (50 bonus) 0.3667 0.1667 1.0000 0.5366
OwS (100 bonus) 0.3707 0.1700 1.0000 0.5409
OwS (500 bonus) 0.3708 0.1700 1.0000 0.5410

Relatedness 0.3256 0.0783 1.0000 0.4912
Word2vec (0.0 CV) 0.3574 0.0933 1.0000 0.5266
Word2vec (0.10 CV) 0.3591 0.0941 0.9917 0.5273
Word2vec (0.25 CV) 0.3722 0.1092 0.7633 0.5004
Word2vec (0.50 CV) 0.4229 0.1092 0.2650 0.3258
Word2vec (0.75 CV) 0.4256 0.0952 0.0350 0.0647

SemEval16 Baseline: First word, first sense 0.5139 0.4150 1 0.6789
SemEval16 Baseline: Random synset 0.2269 0.0000 1.0000 0.3699

Median of Task14 Systems 0.5900

Table 4.1: System Scores on SemEval16 Task 14 Test Data

chosen as merge, the lemmas do not match which again causes the score to be zero.

Recall refers to the percentage of lemmas attempted by the system. If 600 were

attempted out of 600, then recall equals one. The F1 score uses the average of all Wu

& Palmer scores and is calculated as follows:

F1 = 2× (Wu & Palmer× recall)/(Wu & Palmer+ recall) (4.2)

.

The SemEval16 Task 14 organizers also included two different baseline scores on

the data set, SemEval16 Baseline: First word, first sense and SemEval16 Baseline:

Random synset. These baselines are described below.

37

SemEval16 Baseline: First word, first sense starts by finding the first word with

the same part of speech as the OOV lemma, in the gloss of the OOV lemma. This

found word is chosen as the lemma’s target hypernym. First word, first sense always

chooses the first sense of that target word. For example, if puppy ’s gloss is “A young

dog.”, the first noun is dog, which will cause puppy to be mapped to “dog#n#1”.

SemEval16 Baseline: Random synset simply assigns the lemma’s hypernym randomly.

As can be seen in Table 4.1, First word, first sense scored well which proved to be a

hard baseline to overcome. The success of this baseline can most likely be attributed

to the notion that the OOV lemma’s gloss often contained the hypernym to which it

should be attached. This can be seen in many common lemmas’ definitions. Imagine

we are trying to define what an iPhone is. There is a good chance we would include

the fact that it is a cellphone, which is the exact place we’d want to attach it to in

WordNet. Another example is defining what a Husky is. Again, we would include

that a Husky is a dog, as well as the features that distinguish it.

Our first system UMNDuluth Sys 1 was based on the concept of extended gloss

overlaps[1] described in Background (Chapter 3). This system finds the candidate, for

which the OOV lemma should be attached or merged to, by overlapping words in the

OOV lemma’s gloss with words in each candidate’s gloss as well as each candidate’s

hypernym and hyponyms’ glosses. This system participated in SemEval16 Task 14

and placed 12th out of 13. Table 4.2 shows the systems and their respective scores

and rankings. As can be seen, even the #1 ranked system for Task 14 was only

slightly above the SemEval16 Baseline: First word, first sense.

After UMNDuluth Sys 1 was submitted, we noticed a last minute change in how

large of a bonus a candidate sense should receive for appearing in the OOV lemma’s

gloss. Our submitted system had a bonus of 2, however, our development system had a

bonus of 10 (the bonus had been reduced to test other affects of overlaps when testing).

38

Rank Team System Wu&P LM Recall F1
1 MSerjrKU System2 0.523 0.428 0.973 0.680
2 MSerjrKU System1 0.518 0.432 0.968 0.675
3 TALN test cfgRun1 0.476 0.360 1.000 0.645
4 TALN test cfgRunPickerHypos 0.472 0.240 1.000 0.641
5 TALN test cfgRun2 0.464 0.353 1.000 0.634
6 VCU Run3 0.432 0.161 0.997 0.602
7 VCU Run2 0.419 0.171 0.997 0.590
8 VCU Run1 0.408 0.124 0.997 0.579
9 Duluth Duluth2 0.347 0.043 1.000 0.515
10 JRC MainRun 0.347 0.066 0.987 0.513
11 Duluth Duluth3 0.345 0.017 1.000 0.513
12 UMNDuluth Run1 0.340 0.098 0.998 0.507
13 Duluth Duluth1 0.331 0.023 1.000 0.498

Baseline: First word, first sense 0.5139 0.415 1.000 0.6789
Baseline: Random synset 0.2269 0 1.000 0.3699

Table 4.2: SemEval16 Task 14 Participating System Scores

When running our submitted system with a bonus of 10, we noted an improvement

in the F1 score, which is shown as UMNDuluth Sys 2. This improvement led us to

run more experiments on the improvement of the F1 score with respect to the bonus.

We found that continuing to increase the bonus resulted in a plateau in the F1 score.

This can be seen in UMNDuluth Sys 2-6 in Table 4.1. The improvements in results

with increased bonuses most likely has to do with the intuition behind Baseline: First

word, first sense, which is the OOV lemma’s gloss will often contain the hypernym it

should be attached or merged to. As the bonus increases this causes the system to

pick one of these included words, since the bonus word begins to completely outweigh

any non bonus overlap.

Another common NLP technique omitted from our first system (Sys 1) was stem-

ming. To stem a word is to remove suffixes and return that word to its base form.

Flying would be stemmed to fly. We believed that adding stemming to our original

system would cause more words to overlap which would in turn arrive at a better

39

candidate. We used Lingua::Stem1 as our stemmer. OwS (Overlap with Stemming)

shows the scores received when adding stemming to our first system, which have de-

creased slightly. The decrease in score is likely to do with the low encounter rate of

relevant different verb tenses and noun plurals.

After the SemEval16 Task 14 was completed, other participating researchers (JRC

in table 4.2), released descriptions of their own approaches. One such approach used

relatedness measures, instead of only overlaps, to determine the optimal candidate for

each OOV lemma [17]. We believed a relatedness measure may offer a more rounded

score for each candidate hypernym as similar words such dog and puppy would score

well and contribute to the score even though they may not have overlaps in their

glosses. This inspired us to approach the problem in a similar manner by utilizing

WordNet::Similarity 2 [13]. WordNet::Similarity includes tools for measuring how

related two words are by factoring in their distance apart in WordNet. We used the

co-occurrence vector implementation3 to find the relatedness between each candidate

and each word in the OOV Lemma’s gloss, then determined the optimal candidate by

choosing the highest scoring. It should be noted that WordNet::Similarity::vector is an

implementation of the gloss vectors described in Background (Chapter 2). Relatedness

shows the results for this system.

Our final idea was to incorporate machine learning into our system. Word2Vec is

a system, originally developed at Google [2], which is trained on a large corpus of text.

This creates word vector spaces which represent each word as a large vector populated

with high counts of words that appear in the same context. We believed Word2Vec’s

extra knowledge of large contexts could help find which WordNet words OOV lemmas

were most similar to. This follows the same idea as Relatedness as similar words would

1http://search.cpan.org/˜snowhare/Lingua-Stem-0.84/lib/Lingua/Stem.pod
2http://search.cpan.org/˜tpederse/WordNet-Similarity-2.07/lib/WordNet/Similarity.pm
3http://search.cpan.org/˜tpederse/WordNet-Similarity-2.07/lib/WordNet/Similarity/vector.pm

40

appear in similar contexts. After the initial implementation of our Word2Vec system,

we added a confidence value (CV) which would filter out chosen candidates if their

calculated similarity value was not above the CV threshold. Our Word2Vec system is

represented as Word2Vec (x CV) where x is the set confidence value with range 0 - 1.

As can be observed, as the CV increases, the Wu & Palmer score increases, however,

the recall decreases. This makes sense, as we are factoring out the words we are less

confident about, which decreases the total number tested but increases the score of

those tested. While the bonus and CV both have the ability to be adjusted in different

systems, the bonus was left out of this initial implementation as the application of the

bonus would cause the need for all words to be normalized based on the bonus. This

could reduce the effectiveness of any CV above 0.1 or lower. For example, suppose a

bonus is set to 10. In order to keep the score below 1, we would need to divide each

score by an additional 10, since when a bonus word is found, we want it to both be

worth 10 times the amount of non bonus words and remain below 1. If the bonus was

too large, even the most confident candidate could fall below a CV of 0.1.

Table 4.3 shows how our systems performed on the individual parts-of-speech

(POS). Total Recall refers to the amount of that parts-of-speech in the 600 word test

data from SemEval16 Task 14. As can be seen, nouns composed most of the test

data with 86%, while verbs composed the final 14%. POS F1 refers to the F1 score

for that particular POS. This means that instead of using the Total Recall in the F1

score, we use a flat recall of 1.0000 to show the F1 score for each POS. The separation

between nouns and verbs reveals some things about the results. Nouns composing

most of the test data, means that if a system performs better at one POS over the

other, it could be affected by this. The Wu & Palmer for each of our systems, is

very similar in each the noun and verb category. However, the Lemma Match (LM)

is significantly higher in the verb data compared to the noun data. This may be due

41

to the lower amount of verbs, which would mean getting a few correct would have a

larger impact on the LM score compared to nouns. In order to fully test this theory

though, we would need to test an equal amount of verb tests.

Regardless of which system was used, all of our systems approached the problem of

determining how to merge and attach the same way (by using the frequency amount

of a candidate from WordNet). This approach is described in Implementation. Our

results for the 600 word test set are seen in the contingency table, Table 4.4. These

results show that the data itself is weighted towards attaching an OOV lemma over

merging it. Also, our system correctly chose 447/568 attaches, and 7/32 merges, for

a total of 454/600 or 75.67% accuracy.

To see how much of an effect the missed attach/merge choices had on our Lemma

Match score we combined the key answers for attach/merge with our lemma answers.

The results of select systems are shown in Table 4.5. LM System shows the lemma

match calculated with our systems’ attach/merge answers, while LM Key shows the

lemma match calculated with the keys’ attach/merge answers. As can be seen, LM

Key does not score that much higher than LM System. This means that the LM score

is brought down more by our system not choosing the correct lemma, rather than the

system not choosing the correct attach/merge action.

42

System POS Wu&P LM Total Recall POS F1

UMNDuluth Sys 1 (2 bonus)
Noun 0.3552 0.0677 0.8617 0.5242
Verb 0.3509 0.3373 0.1383 0.5195

UMNDuluth Sys 1 (10 bonus)
Noun 0.3792 0.1199 0.8617 0.5499
Verb 0.3545 0.3614 0.1383 0.5234

UMNDuluth Sys 1 (25 bonus)
Noun 0.3839 0.1219 0.8617 0.5548
Verb 0.3474 0.3373 0.1383 0.5157

UMNDuluth Sys 1 (50 bonus)
Noun 0.3813 0.1257 0.8617 0.5521
Verb 0.3552 0.3494 0.1383 0.5242

UMNDuluth Sys 1 (100 bonus)
Noun 0.3777 0.1277 0.8617 0.5483
Verb 0.3614 0.3253 0.1383 0.5309

UMNDuluth Sys 1 (500 bonus)
Noun 0.3831 0.1277 0.8617 0.5539
Verb 0.3626 0.3614 0.1383 0.5322

OwS (2 bonus)
Noun 0.2815 0.0522 0.8617 0.4393
Verb 0.2884 0.2289 0.1383 0.4477

OwS (10 bonus)
Noun 0.3547 0.1354 0.8617 0.5237
Verb 0.3591 0.3735 0.1383 0.5284

OwS (25 bonus)
Noun 0.3406 0.1199 0.8617 0.5081
Verb 0.3306 0.3133 0.1383 0.4969

OwS (50 bonus)
Noun 0.3683 0.1393 0.8617 0.5383
Verb 0.3569 0.3373 0.1383 0.5261

OwS (100 bonus)
Noun 0.3729 0.1431 0.8617 0.5432
Verb 0.3571 0.3373 0.1383 0.5263

OwS (500 bonus)
Noun 0.3729 0.1431 0.8617 0.5432
Verb 0.3579 0.3373 0.1383 0.5271

Relatedness
Noun 0.3299 0.0832 0.8617 0.4961
Verb 0.2986 0.0482 0.1383 0.4599

Word2vec (0.0 CV)
Noun 0.3581 0.0754 0.8617 0.5274
Verb 0.3534 0.2048 0.1383 0.5222

Word2vec (0.10 CV)
Noun 0.3598 0.0760 0.8550 0.5292
Verb 0.3549 0.2073 0.1367 0.5239

Word2vec (0.25 CV)
Noun 0.3748 0.0909 0.6417 0.5452
Verb 0.3588 0.2055 0.1217 0.5281

Word2vec (0.50 CV)
Noun 0.4203 0.0889 0.2250 0.5918
Verb 0.4371 0.2917 0.0400 0.6083

Word2vec (0.75 CV)
Noun 0.4385 0.0000 0.0217 0.6097
Verb 0.4048 0.2500 0.0133 0.5763

Table 4.3: Verb/Noun Scores on SemEval16 Task 14 Test Data

43

system
merge attach

merge 7 25 32

k
e
y

attach 121 447 568
128 472 600

Table 4.4: Contingency table of test data word placements.

System LM System LM Key
UMNDuluth Sys 1 (2 bonus) 0.0984 0.1050
UMNDuluth Sys 1 (10 bonus) 0.1467 0.1533
UMNDuluth Sys 1 (100 bonus) 0.1550 0.1550

OwS (2 bonus) 0.0767 0.0767
OwS (10 bonus) 0.1667 0.1683
OwS (100 bonus) 0.1700 0.1700

Relatedness 0.0783 0.0783
Word2vec (0.0 CV) 0.0933 0.0933

Table 4.5: Lemma Match Scores on SemEval16 Task 14 Test Data

44

5 Conclusions

In this chapter we re-examine the discoveries of our system and their importance.

We continue on to examine possible future directions in which our system can be

research and applied.

5.1 Contributions of Thesis

This thesis investigated the problem of locating the optimal location for an Out

-of- Vocabulary lemma to be inserted in WordNet. We applied various Natural Lan-

guage Processing approaches to the problem, including: Extended-Gloss-Overlaps,

Stemming, Similarity Measures, and Word2Vec. Our results, and the results of other

SemEval16 Task 14 participants, demonstrate the strength of the idea that lemmas’

glosses often contain the location where that lemma belongs. Even though our results

did not exceed the second baseline from SemEval16 Task 14 (the system which chose

it’s hypernym by picking the first same part-of-speech word in the gloss), our vari-

ations explore other possibilities than choosing only a word from the OOV lemma’s

gloss. Our research expands the range of examined approaches and allow us to con-

tribute the following discoveries:

1. Extended-Gloss-Overlaps: EGO’s helped increase the amount of training data

without increasing the overall data required, by incorporating in the glosses of

the hypernyms and hyponyms of the candidate lemmas. This approach per-

formed better than the random word baseline from SemEval16 Task 14, but did

45

not surpass the second baseline.

2. Stemming: Stemming helped to increase the number of relevant overlaps, by

transforming data into similar roots. While stemming helped fix specific data

examples, it did not surpass the EGO’s. We believe this is tied to the data in

the gloss, since the number of different tenses and plural nouns was not large

enough to be relevant.

3. Relatedness: Relatedness measures use WordNet’s inherent structure to nat-

urally find the relatedness between a hypernym and the OOV lemma’s gloss.

Relatedness performed above the random word baseline, but not above EGO’s,

this was due to the fact that when calculating WordNet relatedness from the

OOV lemma’s gloss, the measure does not automatically know which WordNet

sense each word from the gloss is.

4. Word2Vec: Word2Vec applied contextual similarity to the problem and we dis-

covered that the Wu & Palmer score increased as the confidence value (CV)

increased, but recall performed the opposite. This occurred since as the CV

rises, less OOV lemmas are tested (decreasing the recall) but more confident

ones are chosen (increasing the Wu & Palmer score).

5. WordNet::Extend: We coded our experiments and released them as open sourced

in WordNet::Extend1. WordNet::Extend::Locate contains the code and ex-

periments from this thesis for other developers to freely download. Word-

Net::Extend::Insert2 contains code which allow a user to insert OOV lemmas

into WordNet.

1http://search.cpan.org/˜jonrusert/WordNet-Extend-0.052/lib/WordNet/Extend.pm
2Implementation found in Appendix A

46

These different variations increase the breadth of possible approaches to tackling this

problem.

5.2 Future Work

Our results open a window into the variations that our systems could explore. For

example, we experimented with the bonus in our initial system and also the stem-

ming system to examine the effect on the chosen candidates. Likewise, we also tried

variations of the confidence value on the word2vec system. These micro variations

(changing a single system value) along with larger, macro variations (changing or

combining new or current systems) lead to possible extended examination on the

problem, by combining approaches already examined and reviewing the outcomes

(E.g. confidence value with EGO’s).

5.2.1 Micro Variations

For micro variations, it would be interesting to incorporate the confidence value

into the other algorithms. Correspondingly, applying the bonus to word2vec candidate

words could have a large effect on the output, since more relevant words (which are

highlighted by the bonus) could cause a gloss to more easily pass the confidence

value. Another variation on word2vec would be to experiment with different training

data, by either changing the source altogether, or even increasing the amount of data.

Another set of data that Word2Vec could be trained on is the English Wikipedia3.

Stop lists were also consistent throughout the testing of the different systems. It

could be beneficial to test the effectiveness of different sizes of stop lists to determine

how great of impact they have on the systems.

3https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

47

5.2.2 Macro Variations

Possible macro variations include combining the systems or adding in new data.

As was used in CROWN (introduced in Background Chapter 2), Wiktionary data

could be a large help as it would not only increase the overall data available, but also

have links to words that might not appear in WordNet. Another idea is generalizing

the words in the glosses to find an optimal location. This could be combined with

Wiktionary to find a same part-of-speech word that doesn’t appear in WordNet, then

continue to generalize it until a WordNet word is found. This would take the First

sense, first baseline approach and extend it to Wiktionary. A final macro variation

deals with extending the research of Relatedness. As was noted, Relatedness was

hindered by not knowing which sense of a word occurs in each OOV lemma’s gloss. If

the system could first apply Word Sense Disambiguation to the gloss, then calculate

the relatedness, we believe the system would score better overall.

5.2.3 Beyond Nouns, Verbs, and Hypernyms

Since SemEval16 Task14 only examined nouns and verbs which can be attached

or merged, our system followed suite. Since adjectives and adverbs do not have

hypernyms, attach is irrelevant to them. However, other operations/relations exist in

WordNet that incorporate adjectives, adverbs, as well as different relations for nouns

and verbs. These different relations include: holonym/meronym(a part of a whole),

derivationally related form, antonym, and more. Future work could include how these

relations are determined by some of the previously examined methods.

48

5.2.4 No Location Found

Another challenge for finding the location of a new lemma in WordNet occurs if

an OOV lemma is found not to be related to any existing word in WordNet, which

means it cannot be inserted which a traditional operation but requires its own start

in WordNet. Future work could determine if a lemma is not similar enough to any

existing word and how that should be handled (whether in a new hypernym structure,

or another variation).

5.2.5 Merge/Attach

A final idea for future research exists with merge/attach. Our systems currently

uses the frequency of a candidate hypernym to determine whether to merge or attach.

An increased exploration of this subject would allow future systems to increase the

number of correct merge/attach guesses.

As shown, many possibilities still exist, and would provide compelling, continued

research in this field and this problem. Increased research would only lead to a better,

longer lived WordNet. This is important because WordNet is widely used, and will

lose its viability if it cannot grow and adapt.

49

A Appendix A

A.1 Inserting New Words into WordNet

As seen the thesis focused on locating where a lemma should be inserted in Word-

Net. It became apparent early on that while finding a location is useful, if we cannot

then proceed to insert that lemma into that location in WordNet we would not end

up improving WordNet too much overall. Thus we arrived at the conclusion early

on that the ability to insert new lemmas into WordNet would be a great help to the

continuation of WordNet. When searching for Perl based utilities which allowed the

inserting of a new lemma, only one was found1. However, this was deprecated, as

it only worked with older versions of WordNet. This drove us to develop our own

WordNet insertion functionality.

A.1.1 WordNet Data Files

When researching how WordNet data is stored, we found that the WordNet

database was created especially for WordNet in 1998 [4]. Wordnet stores its data

in a low level representation with hard coded byte offset addresses representing the

location of a specific sense. This made the inserting of a new lemma into WordNet

much more difficult as once new bytes were added or changed in a file, all the following

byte offsets had to be changed in all files they appeared in. WordNet’s original source

1http://search.cpan.org/ dbrian/Lingua-Wordnet-0.74/Wordnet.pm

50

files were written by lexicographers. The source files were divided into four parts-of-

speech (pos), noun, verb, adjective, adverb. The lexicographer files stored each word

in WordNet, as well as their gloss and also pointers to other words. The pointers

marked relations to other WordNet words (e.g. hypernyms). In order to convert the

lexicographer files to a more portable/distributable format, the files were rewritten

into several pos based files including index.pos, index.sense, and data.pos. It should

be noted that the morphology (converting words to base lemma) of WordNet words

occurs outside the database, in a function called morphy2. Morphy allows words such

as threw to be search and WordNet to return throw (the correct base form).

A.1.2 WordNet Data Format

Of the files mentioned above, we found that the aforementioned index and data

files needed to be modified in order to insert a new word into WordNet. These include:

index.pos and data.pos, where pos is one of four parts-of-speech (verb, noun, adj, adv)

and contain information only for the specific pos; index.sense which contains senses

for every lemma no matter which pos it is.

Index.pos

In index.pos each unique lemma is represented by a line of data formatted as:

lemma pos synset_cnt p_cnt [ptr_symbol...] sense_cnt tagsense_cnt

synset_offset [synset_offset...]3

Where: synset cnt refers to how many senses that lemma has; p cnt and ptr symbol...

refer to the different relations it posses to other words (hypernym, hyponym, etc.);

sense cnt is the same as synset cnt but was “preserved for compatibility issues”;

2https://wordnet.princeton.edu/man/morphy.7WN.html
3https://wordnet.princeton.edu/wordnet/man/wndb.5WN.html

51

tagsense cnt refers to the number of senses that are ranked according to their fre-

quency in lexicographer texts; synset offset refers to the byte offset in data.pos which

contains the specific senses of lemma (there are synset cnt number of synset offsets.

As an example for index.pos, in index.noun cocaine is stored as

cocaine n 1 3 @ ~ \#s 1 1 03060294

This translates to: lemma is cocaine; pos is n or noun; synset cnt and sense cnt are

both 1, which means there is only one sense of cocaine; p cnt is 3 and is followed

by three pointers “@ #s”, which are hypernym, hyponym, and substance holonym

respectively4; tagsense cnt is 1 since only one sense exists it must be the only ranked;

synset offset is 03060294, which is the byte location where we will find cocaine#n#1

in data.noun (since only one synset offset appears and synset cnt is 1, cocaine only

has one sense).

Data.pos

In index.pos each lemma is represented on a single line. However, in data.pos

each sense is represented on a single line formatted as:

synset_offset lex_filenum ss_type w_cnt word lex_id

[word lex_id...] p_cnt [ptr...] [frames...] | gloss

Where: synset offset corresponds to the a same unique offset as was describe in

index.pos; lex filenum corresponds to the lexicographer file name which contains the

synset; ss type is a one character code which corresponds to the pos; w cnt refers

to the number of words in that synset; word and lex id refer to the word in ASCII

format and identifies the sense in the lexicographer files respectively; p cnt is the

number of pointers to different relationships; ptr refers to the data which points

to each relation of the synset; frames (which only exists in data.verb) refers to the

4https://wordnet.princeton.edu/wordnet/man/wninput.5WN.html

52

generic verb sentence frames for a word in the synset; glos refers to the gloss of that

synset.

As an example for data.pos, we follow up cocaine in data.noun. It is stored as

03060294 06 n 02 cocaine 0 cocain 0 007 @ 03492717 n 0000 #s 03060074

n 0000 + 00021679 v 0201 + 00021679 v 0202 ~ 02806274 n 0000 ~ 03066743

n 0000 ~ 03125184 n 0000 | a narcotic (alkaloid) extracted from coca

leaves; used as a surface anesthetic or taken for pleasure; can become

powerfully addictive

This translates to: synset offset is 03060294 (the same as it was in index.noun);

lex filenum is “06”, which means cocaine#n#1 is found in lexicographer file “06”;

ss type is ‘n’, the code for noun; w cnt is “02”, meaning there are two words in this

synset; word and lex id correspond to both “cocaine 0” and “cocain 0”, showing

cocaine and cocain as words in this synset with sense “0” in the lexicographer file;

p cnt is “007”, meaning cocaine has relations with seven different words; ptr covers

the seven different pointers from “@ 03492717 n 0000” to “ 03125184 n 0000”, trans-

lating “@ 03492717 n 0000” to mean cocaine has a hypernym (@) located at byte

offset “03492717” in the data.noun (n) file which is the current file (0000); gloss is

everything after the “—” symbol.

Index.sense

The index.sense file differs from each of the previous files as instead of focusing on

one pos, it includes all parts-of-speech. Index.sense contains all 206,941 senses within

WordNet arranged alphabetically. Each line is formatted,

lemma%ss_type:lex_filenum:lex_id:head_word:head_id synset_offset

sense_number tag_cnt5

5https://wordnet.princeton.edu/wordnet/man/senseidx.5WN.html

53

Where: lemma refers to the lemma; ss type refers to an integer which corresponds to

the pos; lex filenum refers to the lexicographer file name which contains the synset;

lex id refers to the sense in the lexicographer files; head word appears only if the

sense is in an adjective satellite synset and refers to the lemma of the first word of the

satellite’s head synset; head id acts the same as lex id but references the head word

in the lexicographer files; synset offset refers to the byte offset in the data.pos file;

sense number refers to the sense of the word; tag cnt refers to the number of times

the sense has been tagged in WordNet texts.

Continuing our example for cocaine we find it stored in index.sense as

cocaine%1:06:00:: 03060294 1 1

Comparing to the format we find: lemma is cocaine; ss type is 1, which corresponds

to noun; lex filenum is “06”, meaning it is found in lexicographer file “06”; lex id is

“00”, since it is the only sense, it need not be uniquely identified in the lexicographer

file; head word and head id are both empty since this is not an adjective satellite

synset; synset offset is “03060294”, which corresponds to the byte offset in data.noun;

sense number is “1”, meaning this is the first sense of cocaine; tag cnt is “1”, which

shows cocaine has been tagged once in WordNet texts.

Note how in each example, the files share some same information, showing the

cohesivity of the files with each other. Each time a new word/sense is inserted into

WordNet, each of these files would need to be updated to match.

A.1.3 Implementation

Inserting a word into WordNet can either mean attaching it to an existing lemma

as its hyponym or merging it into the synset, if it is a synonym. We split implemen-

tation between attach and merge.

54

attach

A word is attached into WordNet via the following process (visualized in figure

A.1):

1. For the new lemma, calculate the new offset by traversing to the end of data.pos.

2. In data.pos:

(a) Add new lemma to end of file.

(b) Update lemma’s hypernym to add the lemma’s offset to the hypernym.

(c) All other following offsets must be updated since more bytes of data have

been added before them. Change all affected offets.

3. In index.pos:

(a) If new word:

i. Add new lemma alphabetically.

ii. Change all updated offsets from data.pos.

(b) If existing word:

i. Update existing line with new offset and other information.

ii. Change all update offsets from data.pos.

4. In index.sense:

(a) Add new lemma sense alphabetically.

(b) Change updated offsets that correspond to the same pos.

5. In all other data.pos files:

(a) Change updated offsets that correspond to the new lemma’s pos.

55

Figure A.1: Visualization of attaching a new lemma

merge

A word is merged into WordNet as a synonym via the following process (visualized

in figure A.2):

1. In data.pos:

(a) Update existing data line, adding in the word to the synset.

(b) All other following offsets must be updated since more bytes of data have

been added before them. Change all affected offsets.

2. In index.pos:

(a) If new word:

i. Add new lemma alphabetically.

ii. Change all updated offsets from data.pos.

(b) If existing word:

56

i. Update existing line with new offset and other information.

ii. Change all update offsets from data.pos.

3. In index.sense:

(a) Add new lemma sense alphabetically.

(b) Change updated offsets that correspond to the same pos.

4. In all other data.pos files:

(a) Change updated offsets that correspond to the new lemma’s pos.

Figure A.2: Visualization of merging a new lemma

A.1.4 Discussion

Since our system has the option to attach or merge, two operations that deal with

hypernyms/hyponyms and synsets, our system has the ability to add in new nouns

57

and new verbs. Our system has been run against tests of WordNet::QueryData6 to

ensure our insertions would not negatively affect other systems that use WordNet.

Our system is currently being hosted on cpan as open-source code7.

A.1.5 Future Work

This system right now focuses primarily on inserting hypernym relationships. Ad-

jectives and adverbs do not have hypernym relations and therefore cannot be added

in by this method. Our initial system was fine with leaving these out however, as

nouns and verbs make up a bulk of WordNet’s data. Future work on this system

would then work to include adjective and adverb insertions.

Besides hypernyms and hyponyms, WordNet stores many other relations between

words. These include: holonym/meronym (a part of a whole), derivationally related

form, antonym, and more. Future work in this area could work to incorporate these

relationships in, either when inserting initially, or adding relations in as they are

noticed later.

Since words change, the meaning of words may change overtime as well and wished

to be changed. Future work could include the ability to change existing glosses.

Subsequently, if a relationship between two words is discovered after a word has been

inserted, the ability to add in relationships would be useful.

Currently, the system runs under the assumption that any OOV lemma would

share a relation with an existing WordNet word. However, we might discover an

OOV lemma that does not cleanly have a relation to any current WordNet word (e.g.

proper names). Future work would work to include the ability to insert an OOV

lemma into WordNet without having to choose a specific hypernym.

6http://search.cpan.org/˜jrennie/WordNet-QueryData-1.49/QueryData.pm
7http://search.cpan.org/˜jonrusert/WordNet-Extend-0.052/lib/WordNet/Extend.pm

58

References

[1] S. Banerjee and T. Pedersen. “Extended Gloss Overlaps As a Measure of Se-

mantic Relatedness”. In: Proceedings of the 18th International Joint Conference

on Artificial Intelligence. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Pub-

lishers Inc., 2003, pp. 805–810. url: http://dl.acm.org/citation.cfm?id=

1630659.1630775 (cit. on pp. 7, 16, 29, 38).

[2] R. L. Cilibrasi and P. M. B. Vitanyi. “The Google Similarity Distance”. In:

IEEE Trans. on Knowl. and Data Eng. 19.3 (Mar. 2007), pp. 370–383. issn:

1041-4347. doi: 10.1109/TKDE.2007.48. url: http://dx.doi.org/10.1109/

TKDE.2007.48 (cit. on pp. 20, 40).

[3] P. Edmonds and S. Cotton. “SENSEVAL-2: Overview”. In: The Proceedings of

the Second International Workshop on Evaluating Word Sense Disambiguation

Systems. SENSEVAL ’01. Toulouse, France: Association for Computational Lin-

guistics, 2001, pp. 1–5. url: http://dl.acm.org/citation.cfm?id=2387364.

2387365 (cit. on p. 11).

[4] C. Fellbaum, ed. WordNet: an electronic lexical database. MIT Press, 1998 (cit.

on p. 50).

[5] J. J. Jiang and D. W. Conrath. “Semantic Similarity Based on Corpus Statistics

and Lexical Taxonomy”. In: International Conference Research on Computa-

59

http://dl.acm.org/citation.cfm?id=1630659.1630775
http://dl.acm.org/citation.cfm?id=1630659.1630775
http://dx.doi.org/10.1109/TKDE.2007.48
http://dx.doi.org/10.1109/TKDE.2007.48
http://dx.doi.org/10.1109/TKDE.2007.48
http://dl.acm.org/citation.cfm?id=2387364.2387365
http://dl.acm.org/citation.cfm?id=2387364.2387365

tional Linguistics. 1997. url: http://arxiv.org/pdf/cmp-lg/9709008.pdf

(cit. on p. 10).

[6] D. Jurgens and M. T. Pilehvar. “Reserating the awesometastic: An automatic

extension of the WordNet taxonomy for novel terms”. In: Proceedings of the

2015 Conference of the North American Chapter of the Association for Com-

putational Linguistics Human Language Technologies (NAACL HLT 2015).

Denver, Colorado, 2015 (cit. on pp. 16, 17).

[7] D. Jurgens and M. T. Pilehvar. “SemEval-2016 Task 14: Semantic Taxonomy

Enrichment”. In: Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016). San Diego, California: Association for Computa-

tional Linguistics, June 2016, pp. 1092–1102. url: http://www.aclweb.org/

anthology/S16-1169 (cit. on pp. 25, 36).

[8] M. Lesk. “Automatic Sense Disambiguation Using Machine Readable Dictio-

naries: How to Tell a Pine Cone from an Ice Cream Cone”. In: Proceedings of

the 5th Annual International Conference on Systems Documentation. SIGDOC

’86. Toronto, Ontario, Canada: ACM, 1986, pp. 24–26. isbn: 0-89791-224-1.

doi: 10.1145/318723.318728. url: http://doi.acm.org/10.1145/318723.

318728 (cit. on pp. 5, 29).

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mc-

Closky. “The Stanford CoreNLP Natural Language Processing Toolkit”. In:

Proceedings of 52nd Annual Meeting of the Association for Computational Lin-

guistics: System Demonstrations. Baltimore, Maryland: Association for Com-

putational Linguistics, June 2014, pp. 55–60. url: http://www.aclweb.org/

anthology/P/P14/P14-5010 (cit. on p. 17).

60

http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://www.aclweb.org/anthology/S16-1169
http://www.aclweb.org/anthology/S16-1169
http://dx.doi.org/10.1145/318723.318728
http://doi.acm.org/10.1145/318723.318728
http://doi.acm.org/10.1145/318723.318728
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed

Representations of Words and Phrases and their Compositionality”. In: Ad-

vances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran As-

sociates, Inc., 2013, pp. 3111–3119. url: http://papers.nips.cc/paper/

5021-distributed-representations-of-words-and-phrases-and-their-

compositionality.pdf (cit. on p. 21).

[11] S. Patwardhan, S. Banerjee, and T. Pedersen. “Using Measures of Semantic Re-

latedness for Word Sense Disambiguation”. In: Proceedings of the 4th Interna-

tional Conference on Computational Linguistics and Intelligent Text Processing.

CICLing’03. Mexico City, Mexico: Springer-Verlag, 2003, pp. 241–257. isbn: 3-

540-00532-3. url: http://dl.acm.org/citation.cfm?id=1791562.1791592

(cit. on p. 10).

[12] S. Patwardhan and T. Pedersen. “Using WordNet-based Context Vectors to Es-

timate the Semantic Relatedness of Concepts”. In: Workshop on Making Sense

of Sense at the 11th Conference of the European Chapter of the Association

for Computational Lingustics. 2006, pp. 1–8. url: http://www.aclweb.org/

anthology/W06-2501 (cit. on p. 12).

[13] T. Pedersen, S. Patwardhan, and J. Michelizzi. “WordNet::Similarity: Measur-

ing the Relatedness of Concepts”. In: Demonstration Papers at HLT-NAACL

2004. HLT-NAACL–Demonstrations ’04. Boston, Massachusetts: Association

for Computational Linguistics, 2004, pp. 38–41. url: http://dl.acm.org/

citation.cfm?id=1614025.1614037 (cit. on p. 40).

[14] H. Rubenstein and J. B. Goodenough. “Contextual Correlates of Synonymy”.

In: Commun. ACM 8.10 (Oct. 1965), pp. 627–633. issn: 0001-0782. doi: 10.

61

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://dl.acm.org/citation.cfm?id=1791562.1791592
http://www.aclweb.org/anthology/W06-2501
http://www.aclweb.org/anthology/W06-2501
http://dl.acm.org/citation.cfm?id=1614025.1614037
http://dl.acm.org/citation.cfm?id=1614025.1614037
http://dx.doi.org/10.1145/365628.365657
http://dx.doi.org/10.1145/365628.365657

1145/365628.365657. url: http://doi.acm.org/10.1145/365628.365657

(cit. on p. 10).

[15] H. Schtze. “Automatic Word Sense Discrimination”. In: Comput. Linguist.

24.1 (Mar. 1998), pp. 97–123. issn: 0891-2017. url: http://dl.acm.org/

citation.cfm?id=972719.972724 (cit. on p. 12).

[16] C. Spearman. “The Proof and Measurement of Association between Two Things”.

In: The American Journal of Psychology 15.1 (1904), pp. 72–101. issn: 00029556.

url: http://www.jstor.org/stable/1412159 (cit. on p. 10).

[17] H. Tanev and A. Rotondi. “Deftor at SemEval-2016 Task 14: Taxonomy En-

richment using Definition Vectors”. In: Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016). San Diego, California: As-

sociation for Computational Linguistics, June 2016, pp. 1218–1221. url: https:

//www.aclweb.org/anthology/S/S16/S16-1210.pdf (cit. on p. 40).

62

http://dx.doi.org/10.1145/365628.365657
http://doi.acm.org/10.1145/365628.365657
http://dl.acm.org/citation.cfm?id=972719.972724
http://dl.acm.org/citation.cfm?id=972719.972724
http://www.jstor.org/stable/1412159
https://www.aclweb.org/anthology/S/S16/S16-1210.pdf
https://www.aclweb.org/anthology/S/S16/S16-1210.pdf

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	WSD and Semantic Relatedness
	Previous Work
	Lesk's Algorithm
	Extended Gloss Overlaps
	Gloss Vectors
	CROWN
	Google Similarity Distance
	Word2Vec

	Important Lexical Resources and Concepts
	WordNet
	Wiktionary
	SemEval16 Task14: Semantic Taxonomy Enrichment

	Implementation
	Pre-processing
	Location Algorithms
	Overlap
	Overlap with Stemming
	Relatedness
	Word2Vec

	Merge or Attach

	Experimental Results
	Conclusions
	Contributions of Thesis
	Future Work
	Micro Variations
	Macro Variations
	Beyond Nouns, Verbs, and Hypernyms
	No Location Found
	Merge/Attach

	Appendix A
	Inserting New Words into WordNet
	WordNet Data Files
	WordNet Data Format
	Implementation
	Discussion
	Future Work

	References

