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Abstract

Word Sense Disambiguation (WSD) is the problem of automatically deciding the correct

meaning of an ambiguous word based on the surrounding context in which it appears. The

automatic expansion of abbreviations having multiple possible expansions can be viewed as a

special form of WSD with the multiple expansions acting as ”senses” of the ambiguous abbre-

viation. Both of these are significant problems, especially in domains such as medical text with

abstracts of articles in scholarly medical journals and clinical notes taken by physicians.

Most popular approaches to WSD involve supervised machine learning methods which re-

quire a set of manually annotated examples of disambiguated words or abbreviations to learn

patterns that help in disambiguating future unseen instances. However, manual annotation im-

poses a limit on the amount of labeled data that can be made available to the supervised machine

learning algorithms such as Support Vector Machines (SVMs), because annotation requires sig-

nificant human work. Kernel methods for SVMs provide an elegant framework to incorporate

knowledge from unlabeled data into the SVM learners.

This thesis explores the application of kernel methods to two datasets from the medical do-

main, one containing ambiguous words and the other containing ambiguous abbreviations. We

have developed two classes of semantic kernels - Latent Semantic Analysis (LSA) Kernels and

Word Association Kernels (ASSOC) for SVMs, that are learned from unlabeled text containing

the ambiguous words or abbreviations using unsupervised methods. We have found that our

semantic kernels improve the accuracy of SVMs on the task of WSD in the medical domain. In

particular, we find that our LSA kernels with unigram features and ASSOC kernels with bigram

features perform better than off-the-shelf SVM learners and they are significantly better for five

out of 11 ambiguous words, which have a balanced sense distribution and for nine out of ten

abbreviations.

We also focus on the feature engineering aspect of the abbreviation expansion problem

in the domain of clinical notes text. We propose a flexible window approach for capturing

features and show that it significantly improves performance. We make use of features specific

to clinical notes such as the gender code of the patient and show that this improves performance

significantly in combination with Part-of-Speech features.
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1 Introduction

The English language has many words that have multiple meanings. For example, the word switch

in the sentence “Turn off the main switch” refers to an electrical object whereas in the sentence “The

hansom driver whipped the horse using a switch” it refers to a flexible twig or rod1. As can be

observed in the above examples, the correct sense is usually made clear by the context in which the

word has been used. Specifically, in the first sentence, the words turn, off and main combined with

some world knowledge of the person interpreting the sentence, for example, the fact that usually

there is a main switch for electrical connections inside a house, help in disambiguating the word,

that is, assigning the correct sense to the word. Similarly, in the second sentence the words hansom,

driver, whipped and horse serve the purpose of defining the appropriate context which helps in

understanding the correct sense of the word switch.

Word sense disambiguation (WSD) [23] is the problem of automatically assigning the appropri-

ate meaning to a word having multiple senses. So in our example above, given the ambiguous word

switch, WSD involves interpreting the surrounding context of the word and analyzing the properties

exhibited by the context to determine the right sense of switch.

Automatic abbreviation expansion [44] is a special case of WSD where an ambiguous abbre-

viation is to be assigned the correct expansion based on its surrounding context. For example, the

acronym PVC could have two possible expansions Polyvinyl Chloride and Premature Ventricular

Contraction. An occurrence of PVC in the sentence “Atenolol is an alternative drug in the treat-

ment of PVC in patients with coronary heart disease” can be expanded as Premature Ventricular

Contraction based on the presence of the words coronary and heart. In this work, we will use the

word disambiguation to refer to WSD as well as abbreviation expansion.

It may be sometimes perceived that ambiguity is less of a problem in more specialized domains,

for example, the word virus can be ambiguous if the domain is not known, and can refer to a

computer virus or a disease causing agent; but virus is not ambiguous if we know that the domain

under consideration is that of medicine. However, we have observed that ambiguity still remains
1According to the Merriam-Webster Dictionary online: http://www.m-w.com/cgi-

bin/dictionary?book=Dictionary&va=switch
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a significant problem even in the specialized domain of medicine. For example, radiation could

be used to mean the property of electromagnetic radiation, or as a synonym for radiation therapy

for treatment of a disease. While both of these senses are somewhat related, the therapy relies on

the radioactive property, there are also words like cold, which can mean the temperature of a room,

or an illness. Thus, even more specialized domains exhibit a full range of ambiguities. Weeber

et al., [54] have gathered a dataset containing 50 ambiguous words from the abstracts of scholarly

articles from biomedicine related journals, which demonstrates the difficulty of this problem.

As noted by Weeber et al., [54], the linguistic interest in medical domain arises out of the need

for better natural language processing (NLP) systems used for decision support or document index-

ing for information retrieval. Such NLP systems will perform better if they are capable of resolving

ambiguities among terms. For example, with the ability to disambiguate senses, an information

retrieval query for radiation therapy will ideally be capable of getting only those documents that

contain the word radiation in the “medical treatment” sense.

Most work in word sense disambiguation has focused on general English [7, 19, 23, 30, 42, 43].

Here we propose to study word sense disambiguation in the medical domain and evaluate how well

existing techniques perform, and introduce refinements of our own based on this experience. We

initially present our baseline results originally published in Joshi et al., [28] and expand upon them

using the idea of semi-supervised semantic kernels for Support Vector Machines.

Most popular approaches to the problems of WSD and abbreviation expansion make use of

supervised machine learning methods, which require a set of manually labeled or sense-tagged

training instances of the word or acronym to be disambiguated. The amount of labeled data required

to generate a robust model (i.e., a model which is accurate and generalizes well) using any learning

algorithm is usually quite large, the lack of which imposes a significant limitation on the knowledge

that a learning algorithm can acquire. This is the known as the so-called knowledge acquisition

bottleneck.

A large corpus of unlabeled text is easier to obtain as compared to manually labeled data for

a supervised machine learning algorithm. Unsupervised learning methods can make use of unla-

beled text to deduce similarity relationships among words and documents. Any machine learning

algorithm that can make use of such similarity relationships has the potential to benefit from a large
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corpora of unlabeled text. Kernel methods for Support Vector Machines (SVMs) provide exactly

such a mechanism to incorporate external knowledge from various sources to improve the accuracy

of the SVM learner.

The goal of this thesis is to evaluate kernel methods for WSD using existing unsupervised meth-

ods proposed by Purandare and Pedersen [49] and their extension in the form of a variation in the

data representation to evaluate the similarity of contexts of an ambiguous word. We have developed

two classes of semantic kernels that incorporate unlabeled text in a semi-unsupervised fashion. The

first class of kernels are the Latent Semantic Analysis (LSA) [29] kernels and the second are the

Word Association kernels. The difference among these two types of kernels is the data representa-

tion of the unlabeled instances.

Our goal is also to evaluate the feature engineering aspect of the abbreviation expansion problem

in the medical domain. This includes the idea of using a variable-sized context of the ambiguous

word for identifying features. We call this the flexible window approach, which does not physically

restrict the position of a feature with respect to the ambiguous word. Further, we have experimented

with using features that are specific to the domain of clinical notes from physicians, such as the

gender code of the patient and the department code of the department from where the clinical note

originated.

Our general findings are that although kernel methods using unlabeled text can significantly

improve performance of WSD in the medical domain, they are not advantageous under all circum-

stances. They are highly dependent on the quality of unlabeled data used for generating the kernels,

rather than quantity. In fact, a large quantity of low quality data can degrade the performance of an

SVM learner that makes use of such data. We have found that our semantic kernels improve the

accuracy of SVMs on the task of WSD in the medical domain. In particular, both LSA kernels and

Word Association kernels perform significantly better when the sense distribution for an ambiguous

word is balanced, that is a comparable number of labeled examples for each sense of the ambiguous

word are available.

Our feature engineering experiments show that the flexible window approach improves the per-

formance significantly for the task of abbreviation expansion. We also find that increasing the

window size beyond two or three words for abbreviations in the clinical notes does not significantly
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improve accuracy and hence localized features are the best for clinical notes, which is quite intu-

itive as clinical notes are typically transcripts of physicians’ diagnosis notes and tend to have short

sentences or sentence fragments providing a concise context. Finally, the use of features specific

to clinical notes also improves accuracy for abbreviation expansion and in combination with other

syntactic features such as Part-of-Speech tags they yield significant improvement over basic features

such as words and word pairs in context of the ambiguous abbreviation.

Overall, the contributions of this thesis categorized into research oriented contributions and

infrastructure oriented contributions are as follows:

Research Oriented Contributions

• Development of two classes of semantic kernels derived from unlabeled text

– Latent Semantic Analysis based kernels

– Word Association based kernels

• Evaluation of our semantic kernel on two medical domain datasets, demonstrating improve-

ments over default linear kernel Support Vector Machines

• A novel flexible window approach for feature extraction

• Feature engineering for abbreviation expansion in clinical notes

– Use of features specific to clinical notes, such as gender code, department code and

section identifier, in combination with Part-of-Speech features

– Evaluation of our flexible window approach, demonstrating significant improvement

using the same

Infrastructure Oriented Contributions

• Development of two word sense disambiguation toolkits
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– WSDShell2, which is a Perl based toolkit that wraps the functionality of Ngram Statis-

tics Package (NSP) [5] and SenseTools3 for feature identification and extraction and the

WEKA Data Mining Toolkit [55] for supervised WSD.

– WSDGate [27]4, which is a Java based toolkit that integrates in the GATE (General

Architecture for Text Engineering) [10] environment, wrapping GATE and NSP for feature

identification and extraction and WEKA for supervised WSD. This toolkit provides the flexi-

ble window feature extraction capability.

• Development of NSPGate5, which is a Java based wrapper for NSP and integrates the NSP

functionality in GATE.

• Extensions of scripts from the SenseClusters [49] 6 package to generate kernels from unla-

beled data

• Addition of a new user defined kernel function to SVM Light [25], making use of the kernels

derived using SenseClusters

2http://www.d.umn.edu/∼tpederse/wsdshell.html
3http://www.d.umn.edu/∼tpederse/sensetools.html
4http://wsdgate.sourceforge.net/
5http://nspgate.sourceforge.net/
6http://senseclusters.sourceforge.net/
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2 Background

This chapter covers background topics including a formal introduction to the problems of word

sense disambiguation and abbreviation expansion and some motivation as to why these problems

are important in the medical domain. It then provides a general overview of the use of machine

learning for solving these problems and introduces some commonly used features.

It then describes five specific machine learning algorithms including the naı̈ve Bayes classifier,

decision trees, decision lists, Support Vector Machines and the AdaBoostM1 ensemble approach.

Finally it provides a description of kernel methods for Support Vector Machines and explains the

concept of semantic kernels, which are directly related to our approach.

2.1 Word Sense Disambiguation

Many words in the English language are potentially ambiguous, that is they have multiple possible

meanings. However, as humans, we rarely face the problem of ambiguity resolution since we can

quickly decide the correct meaning based on the context in which the ambiguous word has been

used. The same task however is extremely hard for computers to accomplish. Automatic methods

to decide the correct meaning of an ambiguous word are known as Word Sense Disambiguation

methods.

Word Sense Disambiguation (WSD) [23] is the process of assigning a unique correct meaning

to an ambiguous word that occurs in a given context. The correct meaning is chosen from a set

of possible meanings or senses for the ambiguous word, which are usually selected from some

standard dictionary. Such a set of meanings for an ambiguous word is known as its sense inventory.

For example, the New Oxford American Dictionary shows one possible sense inventory containing

eight meanings for the ambiguous word ring:

1. a small circular band, typically of precious metal

2. a thin band or disk of rock or ice particles around a planet

3. a circular marking or pattern
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4. an enclosed space typically surrounded by spectators

5. a group of people drawn together due to a shared interest or goal

6. a set of elements with two mathematical operations, addition and multiplication

7. make a clear resonant or vibrating sound

8. call by telephone

There are two things to note about this sense inventory. First, that the senses 1, 2 and 3 are

actually a finer distinction of the broader sense of ring referring to the central idea of something

being circular. The other senses can be distinguished from these and among themselves at a more

coarse level. Second, the senses 1 through 6 can only be used when ring is a noun, whereas senses

7 and 8 can be used when ring is a verb.

WSD is further categorized into: (i) target-word sense disambiguation and (ii) all-words sense

disambiguation. In target-word sense disambiguation (also known as a lexical sample task), the set

of words to be disambiguated is decided in advance and for each such word, a set of sentences or

paragraphs containing the ambiguous word are collected. These are known as lexical samples for

the given ambiguous word. In an all-words sense disambiguation task, no such predetermined set of

words is disambiguated, rather, the aim is to assign a meaning to each word in any given document

or set of documents.

2.2 Abbreviation Expansion

The New Oxford American Dictionary defines an abbreviation as a shortened form of a word or

phrase. For example “abbr.” is the abbreviation for the word “abbreviation. An acronym is defined

in the New Oxford American Dictionary as as a word formed from the initial letters of other words.

For example, APC is an acronym for Atrial Premature Complexes. Acronyms can therefore be

considered as a special class of abbreviations. We will henceforth use the term “abbreviation” to

refer to the broader category that includes acronyms.

A problem similar to WSD and also widely prevalent is that of automatic abbreviation expan-

sion. Many abbreviations have multiple expansions and deciding the correct expansion of an abbre-
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viation based on the context in which it appears is very much like deciding the correct sense of an

ambiguous word depending on the context in which it is used. Automatic expansion of ambiguous

acronyms is a challenge for computers, just like WSD. Abbreviation expansion is the problem of

automatically deciding the correct expansion of an ambiguous abbreviation, based on its surround-

ing context. It is considered a variation of WSD, where the multiple expansions of an abbreviation

can be considered as its “senses.” However, the difference from WSD arises due to the fact that

usually the expansions of an abbreviation have fairly coarse-grained distinctions and cannot form

a hierarchy of meanings, which is quite common for word senses. An example of an ambiguous

abbreviation in the abstracts of scholarly journal articles in the MEDLINE7 bibliographical database

is APC. The sense inventory for APC as defined in Liu et al., [35] is:

1. Antigen-Presenting Cells

2. Adenomatous Polyposis Coli

3. Atrial Premature Complexes

4. Aphidicholin

5. Activated Protein C

One point to note about sense inventories in general (whether for ambiguous words or for am-

biguous abbreviations) is that the sense inventory used for the disambiguation task is usually de-

pendent upon the corpus of data that is used for disambiguation - that is the different senses of

an ambiguous word or abbreviation present in the experimental corpus decide its sense inventory

for the task of disambiguation. For example, the same abbreviation APC had the following sense

inventory with 10 expansions, for the experiments in Pakhomov [44]:

1. Adenomatous Polyposis Coli

2. Argon Plasma Coagulation

3. Atrial Premature Contraction
7http://www.nlm.nih.gov/pubs/factsheets/medline.html
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4. Aspirin-Phenacetin-Caffeine

5. Activated Protein C

6. Adenomatous Polyposis gene

7. Allograft Prosthetic Composite

8. Anterior-Posterior Compression

9. Atrial Premature Complex

10. Antigen Presenting Cells

The difference in the two sense inventories above arises due to the different experimental data

used by Liu et al., [35] and Pakhomov [44].

As mentioned before, the problem of abbreviation expansion is very similar to the problem of

WSD and similar methods are applicable for solving both problems. Here onward we will refer

to WSD as an umbrella term that refers to both word sense disambiguation as well as abbreviation

expansion, unless stated otherwise explicitly.

2.3 WSD in the Medical Domain

Word Sense Disambiguation has been studied to a great extent in the domain of general English

text; see Ide and Véronis [23] for an extensive overview. Although there have been a few studies

on WSD and abbreviation expansion in the medical domain in the recent years [35, 44, 45], they

are still comparatively much lesser than those for the domain of general English text. Schuemie

et al., [51] contains an overview of WSD in the biomedical domain and mentions the scarcity of

manually labeled data as one of the causes of less research being done in this domain. Therefore

methods that can make use of small amounts of labeled data and can take advantage of the large

amount of unlabeled data available in the domain in the form of abstracts of scholarly journal articles

and in some cases data internal to the health organizations are of great value.

One might perceive that ambiguity is not a problem once we narrow down to a particular do-

main of text. However, the data collection of 50 ambiguous words from the abstracts of medical
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journal articles done by Weeber et al., [54] shows that even a specialized domain such as the medical

domain can exhibit a full range of word ambiguities. In addition to that, it has long been known

that acronyms and abbreviations are widely used in the medical domain and their ambiguous nature

poses a serious problem [2]. Liu et al., [34] note that over 33% of the abbreviations with six char-

acters or less in the UMLS [52] are ambiguous. In a further study, Liu et al., [32] show that 81%

of the abbreviations in MEDLINE abstracts are ambiguous and have on average 16 senses. With

such widely prevalent ambiguities and the sensitive nature of the medical domain, misinterpretation

of an ambiguity can be potentially harmful by way of an incorrect drug being prescribed or incor-

rect diagnosis being done for a patient. Therefore WSD and abbreviation expansion are of great

importance in this domain.

2.4 The Field of Machine Learning

Learning can be defined as improving one’s performance on a given task with the aid of prior

experience [39]. One way of making computers learn involves training machine learning algorithms

with the help of an initial set of training data. The experience that the machine learning algorithms

gain from the training data can then be applied to make predictions about previously unseen data.

For example, given 100 sentences containing the ambiguous word ring along with the correct sense

of ring in each of those sentences, one can train a machine learning algorithm such as the naı̈ve

Bayes classifier to disambiguate occurrences of the ambiguous word ring. Such a trained classifier

can then take as input previously unseen sentences containing the word ring, and predict the correct

sense of ring in those sentences.

Learning is further categorized as supervised or unsupervised. In supervised learning, a teacher

provides the correct labels or outputs (such as the category or some numerical outcome) for the

training data. Normally this means that the training data is manually labeled with the appropriate

annotation, such as the occurrence of an ambiguous word in a sentence being assigned the correct

sense. So the example above involving the ambiguous word ring and the naı̈ve Bayes classifier is an

example of supervised learning. In unsupervised learning, there is no teacher involved, the correct

label for the training data instances is not available. One form of unsupervised learning is clustering

where the goal of the machine learning algorithms is to partition the training data into coherent sets

10



(known as clusters) of instances based on their similarity. Any new instance is evaluated by the

algorithm to decide into what cluster it should be categorized. If in the above supervised learning

example, the correct sense of the ambiguous word ring was not known in each of the 100 sentences,

then the challenge for a clustering algorithm would be to firstly identify the number of senses of the

word ring in the 100 sentences, and then cluster them into those many clusters. Given a new sentence

containing the word ring, it should be assigned to one of the clusters formed from the training data

(or even create a new cluster of its own if the algorithm concludes that the new sentence does not fit

well into any of the existing clusters).

The advantage of supervised learning is that high accuracy can be obtained on unseen instances

given that a sufficient amount of manually labeled training data is provided to generate a good

model. The drawback of the supervised learning approach is that manually labeled data is highly

expensive to generate in terms of time as well as money. Unsupervised methods benefit from the

fact that they do not require manually labeled data. However, they usually suffer from low accuracy

values on unseen instances. A hybrid approach to learning, popularly known as semi-supervised

learning aims to capture the benefits of both supervised and unsupervised learning by making use

of a small amount of labeled data to increase the accuracy and large amount of unlabeled data to

effectively reduce the amount of labeled data required for generating accurate models.

2.5 Supervised Word Sense Disambiguation

Most popular approaches to WSD involve supervised machine learning. We now elaborate on some

aspects of supervised machine learning with respect to WSD and introduce some terminology.

A set of data items is referred to as a dataset. Each element in the dataset is referred to as a data

instance. For example, in the case of WSD, an instance can be a sentence containing the ambiguous

word under consideration. Every instance has a finite number of properties associated with it, that

are referred to as attributes or features. For example, in a WSD dataset, each instance might contain

10 attributes or features, which are the 5 words to the left and right of the ambiguous word. These

features are popularly known as Bag-of-Word (BoW) features, which we discuss in the next sub-

section. The features in a dataset can have discrete or continuous values. BoW features are an

example of discrete valued features. Discrete valued features are also referred tonominal features,
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where the possible set of values that they can take is known in advance. Continuous features on

the other hand can take any real value and therefore their set of values cannot be enumerated or

known in advance. As mentioned before, supervised learning requires an initial dataset for training

the machine learning algorithms. This dataset is referred to as the training data. The implicit

assumption in supervised learning is that the training data is labeled, that is every instance in the

training data is associated with an output value or label that can be thought of as a special attribute

or feature for each instance. For WSD, every instance in the training data should be assigned a label

that corresponds to the correct sense of the ambiguous word that the instance contains or represents.

Labels for a given dataset can have a finite number of discrete values (such as the different senses of

an ambiguous word in a WSD dataset) or a continuous value (such as the temperature in a weather

forecasting dataset). Machine learning algorithms make use of the instance attributes or features in

the training data and generate a model to predict the label of any given instance. This model can

be applied to unseen instances to predict their labels. Algorithms that can learn to predict discrete

valued labels are called as classification algorithms or classifiers, whereas the algorithms that can

learn to predict continuous valued labels are called regression algorithms. As the task of WSD only

involves discrete valued labels for word senses, we use only classification algorithms.

Automatic methods for WSD rely primarily on the surrounding context of the word (i.e., the

other words in its vicinity and their various properties) to identify distinguishing characteristics

that enable disambiguation. This idea originally comes from Firth, [15] whose famous quote goes

“You shall know a word by the company it keeps.” The properties of the surrounding context used

by WSD methods are known as features used for the task of WSD. Several types of features have

been proposed and used in the WSD literature. The most common type of features used are lexical

features, where word tokens in the context of an ambiguous word are used as features. They are

also known as the so-called Bag-of-Word (BoW) features since their position with respect to the

ambiguous word does not matter, only their presence or absence is important. For example, in the

sentence

“Frodo slips the Ring on and disappears.”

containing the ambiguous word Ring, the BoW features are:

{Frodo,slips, the, on, and, disappears}
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Note that although the above set lists the words in the order they appear in the sentence, the

order does not matter for Bag-of-Word features.

Usually, function words or closed-class words such as articles (e.g., a, an, the), conjunctions

(e.g., and, or) and prepositions (e.g., in, on) are excluded while identifying BoW features. Function

words are also commonly known as stop words. The BoW features for the above sentence, excluding

the function words would be:

{Frodo, slips, disappears}

Further, morphological variations of the BoW features are sometimes reduced to their root form

and this can be useful in identifying similar features if the only difference is due to morphological

variations. As an example,

“Frodo slips the Ring on and disappears.”

will have BoW features as shown above, while

“Frodo slipped the Ring on and disappeared.”

will have the features:

{Frodo, slipped, disappeared}.

If we analyze the similarity of these two contexts on the basis of number of overlapping words, we

will find that only one out of three words overlaps. However, removing the morphological variations

in both the sets of features will reduce them to the same set:

{Frodo, slip, disappear}

and yield an overlap of three out of three words, showing that the two contexts are indeed very

similar.

Another variation on the BoW features is limiting the size of the context from which BoW

features are identified. For example, if we limit the context to a window of two words around the

ambiguous word Ring above, then after eliminating function words and removing morphological

variations, the feature vector that we will obtain is:
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{slip}

Apart from single-word tokens, two or more contiguous words in the context of an ambiguous

word are also used as lexical features. Such features are termed as collocations. Continuing with

the example used above, the two-word collocation features for the same are:

{Frodo slips, slips the, the Ring, Ring on, on and, and disappears}.

Note that we have not excluded the stop words in this case. There can be various approaches to

decide which collocations should be eliminated based on the presence of stop words in them. One

approach can be to only eliminate a collocation if all of its words are stop words. The above feature

set would then reduce to:

{Frodo slips, slips the, the Ring, Ring on, and disappears}

Another approach can be removing all the collocations in which any of the words is a stop word.

This would yield a very small feature set of just one collocation “Frodo slips” in our example. Other

variations of this second criterion can be applied to collocations with more than two words (such as

eliminating only those three-word collocations where two or more words are stop words).

A more general category of lexical features is the ngram feature. An ngram is a set of one or

more word tokens, where the “n” stands for the number of word tokens in the ngram. So a single

word token is a 1-gram or unigram, a two-word set is a 2-gram or bigram, a three-word set is a

3-gram or trigram and so on. The difference between multi-word ngrams and collocations is that

ngrams do not require that the words they are composed of be contiguous. There can be zero or

more words in between a pair of words in an ngram. In that sense, collocations are a special case

of ngrams where there are no words permitted in between the constituent words. To restrict the

number of ngram features and keep them semantically coherent, usually a limit is imposed on the

number of words permitted in between two constituent words of an ngram. To clarify this with an

example, the bigram features in the sentence “Frodo slips the Ring on and disappears” with the limit

of at most two intermediate words permitted in their constituent words, and the restriction that no

word should be a stop word would be:

{Frodo slips, Frodo Ring, slips Ring, Ring disappears}
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Linguistic features of the context of an ambiguous word are also commonly used for WSD.

Among linguistic features, Part-of-Speech (POS) tags of the word tokens in close vicinity of the

ambiguous word (usually up to 2 words to the left and right of the ambiguous word, including the

POS tag of the ambiguous word itself) are fairly common. POS tags are special unique identifiers

for Parts of Speech of a language. For example, the POS tag for the part of speech noun in the POS

tag set used by Hepple [22] is NN. The POS tagged version of our sentence:

“Frodo slips the Ring on and disappears.”

using the Hepple POS tagger [22] implemented in GATE (General Architecture for Text Engineer-

ing) [10]8 is:

“Frodo/NNP slips/VBZ the/DT Ring/NNP on/IN and/CC disappears/VBZ ./.”

where the part of speech tags for each word token appear after the “/” and:

NNP stands for proper noun - singular,

VBZ stands for verb - 3rd person singular present,

DT stands for determiner,

IN stands for preposition or subordinating conjunction,

CC stands for coordinating conjunction and

. stands for the literal period.

So the POS tag features for our example, in a window of size two around the ambiguous word Ring

would be: {VBZ, DT, NNP, IN, CC}. Usually POS tags of stop words are not skipped, because

they may contain linguistics clues which can be useful in disambiguation and secondly, removal of

stop words can adversely affect the reliability of POS tagging.

Another type of linguistic feature used for WSD are syntactic features obtained by performing

a shallow parse of the context of an ambiguous word. Parsing of a sentence involves identifying

higher level linguistic phrases using POS tagged word tokens. Shallow parsing or chunking as

proposed by Abney [1] identifies simple phrases such as a Noun phrase, Prepositional phrase or

a Verb phrase in a sentence as opposed to a full parse yielding a detailed parse tree. Additionally
8http://gate.ac.uk
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some shallow parsers also include Subject-Object relationship identification [11]. In WSD, features

such as whether the ambiguous word belongs to the Noun phrase or the Verb phrase or whether it is

the subject or object of the main verb can be used. The shallow parse for our example as given by

the Memory-Based Shallow Parser9 proposed in [11] is as follows:

For the phrasal analysis:

[NP Frodo/NNP NP] [VP slips/VBZ VP] [NP the/DT Ring/NNP NP] [Prep on/IN Prep]

and/CC [VP disappears/VBZ VP] ./.

For the subject-object analysis:

[NP1Subject Frodo/NNP NP1Subject] [VP1 slips/VBZ VP1] [NP1Object the/DT Ring/NNP

NP1Object] [P on/IN P] and/CC [VP disappears/VBZ VP] ./.

If we assume that we are interested in the following four ideas - whether the ambiguous word is a

part of the noun phrase, whether it is a part of the verb phrase, whether it is part of the subject or

whether it is a part of the object in the sentence. Each of these features is represented as a binary

value, 0 for “no” and 1 for “yes.” Then our syntactic features would be: {1, 0, 0, 1}.

Features using semantic knowledge can also be derived from an ontology such as WordNet

[14] has been explored to obtain additional features for WSD. In one such approach, Mihalcea and

Moldovan [37] use unambiguous words from the set of synonyms in WordNet for a given sense of

the ambiguous word or information from the gloss (i.e., definition) of that sense from WordNet to

create a search query and retrieve more data for that sense from the World Wide Web (WWW). Such

an approach helps to create an augmented set of BoW features for the task of WSD. Patwardhan et

al., [46] have made use of measures of semantic relatedness derived using WordNet to improve the

accuracy on the task of WSD.

Next we discuss some of the popular classification algorithms in supervised machine learning

and then introduce Support Vector Machines and kernel methods which are the focus of this thesis.
9http://ilk.uvt.nl/cgi-bin/tstchunk/demo.pl
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2.6 Machine Learning Algorithms

In this thesis we use the following machine learning algorithms: Naı̈ve Bayes Classifier, Decision

Trees, Decision Lists, Support Vector Machines, Boosting Algorithms and Kernel Methods. The

naı̈ve Bayes classifier, decision trees and decision lists have all been shown to perform well on the

task of WSD [6, 18, 41, 47, 56] and therefore establish a competitive baseline for comparing our

methods. Support Vector Machines have been recently shown to also perform well on WSD and

similar tasks [7, 30, 43]. The Boosting approach was included to compare our method with an

ensemble methodology. Each of these methods is described in the following sub-sections.

2.6.1 Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier is one of the simplest and most popular machine learning algorithms. It

is based on the Bayes’ rule for conditional probabilities, which states that:

P (Y = yi|X = xj) =
P (X = xj |Y = yi)P (Y = yi)∑
k P (X = xj |Y = yk)P (Y = yk)

This essentially states that the conditional probability or the posterior probability P (Y |X) can

be found by taking the product of the conditional probability P (X|Y ) and the unconditional prob-

ability or the prior probability P (Y ), and dividing this product by the total probability that X has

the given value over all possible values of Y . In the case of the naı̈ve Bayes classifier, Y represents

the output or the label for each instance of the dataset and X represents each instance in the dataset.

Since X can have multiple attributes, we represent it as a vector 〈X1, X2, X3, ..., Xn〉 with n fea-

tures in general. Using this, the Bayes’ rule equation for calculating the probability of any class

value yi for a given instance X becomes:

P (Y = yi|X1, X2...Xn) =
P (X1, X2...Xn|Y = yi)P (Y = yi)∑
k P (X1, X2...Xn|Y = yk)P (Y = yk)

The class value yi assigned to an instance is the one which has the maximum probability accord-

ing to the equation above. Since the denominator term remains the same for probability calculation

of all class values, we can assign the class value using the following equation:

Yout = arg max
yiεY

P (X1, X2...Xn|Y = yi)P (Y = yi)
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that is, the class value is the one which maximizes the numerator of the Bayes’ rule equation shown

earlier.

The “naı̈ve” part of the naı̈ve Bayes classifier is that it makes the simplifying assumption that all

the features of an instance are conditionally independent given its label Y . Therefore using the rule

of conditional independence of probabilities, the above equation reduces for a naı̈ve Bayes classifier

to:

Ynb = arg max
yiεY

P (Y = yi)
n∏

j=1

P (Xj |Y = yi)

Given a new unseen instance to classify, the naı̈ve Bayes classifier calculates the probability of

each class value given the features of the new instance and then assigns it the class value that has

the maximal probability.

2.6.2 Decision Trees

Decision trees are also one of the most intuitive and popular machine learning algorithms. They

are based on the idea of information gain from information theory. A decision tree is a top-down

hierarchy of test conditions on the attributes of a dataset. Every node in a decision tree is a test of

some attribute of the given instance, to categorize it into some subset depending on the value of the

attribute for that instance. Every such non-leaf node in the decision tree (that tests an attribute) has

as many branches or child nodes as the number of different values for the attribute being evaluated

at that node. The tree is built starting from the root node, which tests the attribute that provides

maximum information gain for the entire dataset, and the process continues recursively along each

branch, until no further classification is required (usually within some tolerable level of error, so

that the process can stop even if the dataset contains error).

Information gain is defined in terms of the entropy difference of a parent node in the decision

tree and the weighted average of the entropies of its child nodes. Entropy of a node can be seen as

a measure of “impurity” of a node in terms of the proportion of instances it contains of the different

classes. The more balanced the proportion of different classes, the more the set is impure and hence

the high entropy. So a set of instances with two class values will have maximum entropy if half of

the instances are of one class and the other half are of the second class. So a set of instances with
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two class values will have minimum entropy when all the instances are of the same class (either the

first or the second). Mathematically, entropy is the weighted average of negative logarithms (to the

base 2) of the probabilities of class values in the set of data instances at the given node. Therefore

the entropy of a node N is:

E(N) =
∑

−pilog2pi

where pi is the probability of class value i. For example, let us assume that for the node N being

currently processed while building a decision tree there are m instances of the positive class (+) and

n instances of the negative class (-). Then entropy at that node N is given by:

E(N) = −
(

m

m + n

)
log2

(
m

m + n

)
−

(
n

m + n

)
log2

(
n

m + n

)

To define information gain, let us assume the following: node N has |N | instances and entropy

E(N) is defined as above. Information gain is evaluated with respect to some attribute of the dataset.

Let us assume that the attribute being considered currently is A and that it has v distinct values in

the dataset. Therefore as discussed earlier, if the current node evaluates attribute A, then we will

have v branches and therefore v child nodes of N. Let us name these child nodes Ai, 1 ≤ i ≤ v.

Depending upon their value for the attribute A, the |N | instances are divided among the child nodes

Ai. Let us assume that the number of instances at child node Ai is |Ai| and the entropy at the child

node Ai is E(Ai). Now, we define information gain using attribute A at node N as:

Gain(N,A) = E(N)−
∑

i

|Ai|
|N |

E(Ai)

A decision tree is constructed recursively by evaluating the information gain of each attribute for

the set of data instances at the current node. For the root node, the information gain of all attributes

over the entire dataset must be determined. Then the attribute with the maximum information gain

is selected as the attribute to be used as the test for the current node. For all non-root nodes, the

information gain of only those attributes that have not already been used in the parent branch of

current node is evaluated. The leaf nodes do not evaluate any attribute, and in the best case contain

instances of just one class and are therefore “pure.” In the event the dataset contains an error or is

not separable using the decision tree algorithm, the leaf nodes may not be pure.
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Given a new unseen instance to classify, a decision tree begins by evaluating the instance for

the attribute at the root node and “passes” the instance down the appropriate branch in the decision

tree, until it reaches a leaf node. If the leaf node is pure, then the instance is assigned the same class

as that of all the nodes in the leaf node. If the node is not pure, then one approach can be to assign

the new instance the class that is most frequent among the instances at the leaf node.

2.6.3 Decision Lists

Decision list learning is a rule based approach, and is similar in concept to decision trees. The aim

of the decision list learner is to discover a set of “if....then” or “switch....case” conditions that test

attributes of the data instances and assign them a class value based on the first rule that matches or

covers the data instance. If none of the discovered rules matches a given instance, then the most

frequently occurring class in the training dataset is assigned as its class value. The rules are learned

in an iterative and incremental fashion using the features of the training data. One rule is learned at

a time and the set of examples covered by that rule are then eliminated from further analysis. Rules

can be learned using different kinds of heuristic search procedures and ordered using evaluation

criteria such as training sample accuracy (the rule that gives the best accuracy takes precedence) or

information gain as in the case of decision trees. The final decision list is ordered, so that any new

unseen instance to be classified is tested with each of the rules in the decision list in order from top

to bottom, and the first rule that covers the instance decides the output class.

2.6.4 Support Vector Machines

Support Vector Machines (SVMs) are machine learning algorithms that have their roots in statistical

learning theory [53] and can be applied to classification as well as regression problems. The SVM

formulation for classification is designed to handle only two-class problems, but there are extensions

to this basic formulation that handle the multi-class classification problems such as WSD. In its

basic binary formulation, given an N-dimensional dataset (i.e., a dataset with N features for each

instance) the aim of the SVM learner is to find an N-dimensional linear separating boundary between

the two classes in the dataset. This linear separating boundary is a hyperplane. To improve the
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η

‹w, x› + b = 0

‹w, x› + b = +1

‹w, x› + b = -1

Figure 1: Linear hyperplane of Support Vector Machine for a 2-dimensional dataset

generalization ability of the SVM model (i.e., to classify future unseen examples with minimum

error), the hyperplane should be selected such that it is located as far as possible from the data

instances on its both sides. Let us consider a simple 2-dimensional dataset that is linearly separable

to illustrate the terms related to SVMs and their formulation.

In Figure 1, we have a two dimensional dataset with two features represented along the two

perpendicular axes. The solid circles are instances belonging to the positive class and the empty

ones are those belonging to the negative class. The bold solid line that separates the two types of

instances is the SVM hyperplane. Any hyperplane can be represented by the generic equation:

〈~w, ~x〉+ b = 0
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where ~w is an N-dimensional weight vector, ~x is an N-dimensional vector representing any point on

the hyperplane and b is the distance of the hyperplane from the origin. 〈~w, ~x〉 is the dot product or

inner product of ~w and ~x in the N-dimensional space, that is:

〈~w, ~x〉 =
N∑

i=1

wixi

where wi and xi are the components of ~w and ~x. In this basic formulation, learning an SVM model

is learning the N components of the weight vector ~w and the offset b. The two dotted lines parallel

to the separating hyperplane in Figure 1 pass through the data instances nearest to the hyperplane

on both sides. These are hyperplanes with equations 〈~w, ~x〉 + b = +1 (on the side of positive

instances) and 〈~w, ~x〉+ b = −1 (on the side of the negative instances). The distance between these

two hyperplanes that are parallel to the separating hyperplane is known as the margin of the SVM

classifier and is represented by η. As mentioned earlier, to maximize the generalization capability

of SVMs, the separating hyperplane should be at the farthest possible distance from both these

hyperplanes passing through the data instances on both sides. As a result, the separating hyperplane

is exactly in the center of these two hyperplanes and it should separate the data as much as possible.

The goal of maximizing the generalization capability of SVM translates directly into maximizing

the margin η. It can be shown that

η =
2

||~w||
where ||~w|| is the Euclidean length of the weight vector ~w or the 2-Norm of ~w, that is

||~w|| =
√

(w2
1 + w2

2 + ... + w2
N )

where wi represents the ith component of the N-dimensional weight vector ~w. Note that we want

the hyperplane to be defined such that for the instances of the positive class, 〈~w.~x〉 + b ≥ +1

should hold and for the instances of the negative class, 〈~w.~x〉 + b ≤ −1 should hold. Assuming

there are m instances in the dataset, if we represent yi, 1 ≤ i ≤ m as the class of an instance with

yi = +1 for positive instances and yi = −1 for negative instances, then we can combine the above

two conditions on the hyperplane into the single set of constraints:

yi(〈~w, ~x〉+ b) ≥ +1

We therefore have to maximize the margin subject to the constraints above. Although this actually

means maximizing 2
||~w|| subject to the constraints yi(〈~w, ~x〉+ b) ≥ +1, for practical purposes it is

22



convenient to convert the problem to an equivalent form:

minimize
1
2
||~w||2

such that yi(〈~w, ~x〉+ b) ≥ +1, 1 ≤ i ≤ N

Note that ||~w||2 is the same as 〈~w, ~w〉, from the definition of ||~w|| above. This is a classical

quadratic minimization problem where a quadratic expression is to be minimized subject to a set

of linear constraints. This is also known as the primal form of the SVM formulation. The solution

to the quadratic minimization yields the values of ~w and b. Any new unseen instance xnew is then

evaluated as follows: the function 〈~w, ~xnew〉+b is evaluated and ynew is assigned +1 if the function

evaluates to a positive value, else ynew is assigned the value -1.

Using the Lagrangian theory for constrained optimization problems, the above quadratic mini-

mization problem can be converted to an equivalent problem that has simpler constraints. This form

is known as the dual form of SVM formulation and is as follows:

maximize
m∑

i=1

αi −
1
2

m∑
i=1,j=1

αiαjyiyj〈~xi, ~xj〉

such that αi ≥ 0,
m∑

i=1

αiyi = 0

Now the problem has been converted to learning just the αi values (1 ≤ i ≤ m, one for each

instance in the dataset) instead of learning the N components of the weight vector ~w and b. These α’s

are known as the Lagrange multipliers and intuitively, they determine the importance of an instance

in deciding the separating hyperplane. The instances in the training dataset for which αi is non-zero

are known as support vectors as these are precisely the instances that “support” the solution, so that

even if the the other instances in the dataset are removed and the model is learned using only these

support vectors, the same separating hyperplane will be learned. So support vectors determine the

equation of the separating hyperplane. Referring back to Figure 1, the support vectors are the circled

instances on the dotted hyperplanes parallel to the separating hyperplane.

It can be shown that the weight vector ~w can be constructed using a linear combination of the

training instances, with their corresponding Lagrange multipliers as coefficients, that is:

~w =
m∑

i=1

αiyi~xi
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or equivalently

~w =
∑

iε{Support V ectors}
αiyi~xi

as the Lagrange multipliers for the instances that are not support vectors are zeroes.

For classifying a new unseen instance xnew, we need to evaluate the function 〈~w, ~xnew〉+b, but

we can do so without explicitly evaluating ~w by replacing the above value of ~w in this function. So

we need to evaluate: ∑
iε{Support V ectors}

αiyi〈~xi, ~xnew〉+ b

We still need b to evaluate new instances. It can be found using any one of the support vectors xsv,

as we know that for support vectors from the positive class:

∑
iε{Support V ectors}

αiyi〈~xi, ~xsv〉+ b = +1

and for support vectors from the negative class:

∑
iε{Support V ectors}

αiyi〈~xi, ~xsv〉+ b = −1

So b can be easily calculated once we have learned the α’s.

So far we have only analyzed a linearly separable dataset with no errors or outliers. Both the

primal and the dual formulations of SVM shown above can be extended to permit some amount

of error on the training data by adding error terms (known as slack variables) in the formulations.

For the dual formulation, it can be shown that this results in only one additional constraint on the

Lagrange multipliers α in terms of a a new parameter C which serves as an upper bound on their

value. This parameter C is known as the trade-off parameter between the error and the SVM margin

as selecting a large value for C forces the SVM margin to be smaller and vice-versa. Cristianini and

Shawe-Taylor [8] gives all of the formulations mentioned above along with their proofs.

2.6.5 Boosting Algorithms

Boosting algorithms in machine learning are based on the idea of combining several simple clas-

sifiers (such as a single node decision tree, also known as a decision stump) to form one classifier
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ensemble that yields significantly better accuracy than its component classifiers yield individually.

The argument in favor of boosting algorithms is that it is easier to build several simple classifiers that

correctly classify small subsets of the training data and combine them together rather than trying

to build one complex classifier that correctly classifies all the training instances. The AdaBoostM1

algorithm ([16, 17]) is an example of a boosting algorithm. Assuming that there is a simple, weak

learning algorithm available, the AdaBoostM1 algorithm repeatedly invokes this weak learner (the

number of iterations are fixed using a parameter T ) to classify a random sample of instances drawn

from the training data using a probability distribution D. Initially D is a uniform distribution so

that all the instances have equal probability of being selected. As the algorithm proceeds through

iterations, D is updated to reduce the probabilities of instances that are correctly classified by the

weak learner in the current iteration and correspondingly increase the probabilities associated with

the mis-classified examples. This forces the weak learner in subsequent iterations to focus on the

instances that were mis-classified in previous iterations. Once the T iterations are complete, the T

models of the weak learner are combined to create an ensemble that predicts the classification of a

new unseen instance based on a weighted vote of the T models. Intuitively, lower weight is given

to the classifier models from earlier iterations and higher weight is given to the classifier models

from latter iterations as they focus on getting the hard-to-classify instances correct. The label that

is predicted with the highest weighted vote is assigned to the new instance.

2.6.6 Kernel Methods

The SVM formulations presented above can find separating hyperplanes for linearly separable data.

However, if the data is not separable linearly, that is, if the data is such that it requires a non-linear

separating boundary for accurate classification, then the formulations above need to be adapted to

such situations.

One of the possible alternatives is to transform the input data using some transformation func-

tion Φ(.) such that in the transformed space, the data instances are linearly separable. Consider the

hypothetical example shown in Figure 2 where a 2-dimensional dataset that is not linearly separable

is transformed using some function Φ(.) into a 2-dimensional space where it becomes linearly sepa-

rable. The original space where the data is not linearly separable is referred to as the input space and
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Φ(.)

Figure 2: A 2-dimensional linearly non-separable dataset transformed using Φ(.) into a lin-

early separable dataset

the transformed space where the data becomes linearly separable is referred as the feature space.

Normally the feature space has higher number of dimensions compared to the input space, and in

some cases its dimensions are infinite.

The problem in this approach is that it is computationally prohibitive to transform a dataset into

a very high-dimensional (possibly infinite) feature space and then perform quadratic optimization

calculations in such a high-dimensional space. This is exactly where the kernel functions are useful.

Notice that in the dual formulation of the SVM, the actual data instances appear only in the form

of their inner products, 〈~xi, ~xj〉. Thus if we are able to calculate the inner products of the trans-

formed data instances in the high-dimensional feature space directly using some function, instead of

actually transforming the data points and then calculating their inner product then the computational

complexity will be reduced while still learning a linear separation in the high-dimensional feature

space. A kernel function is exactly such a function and it can be defined such that the following
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holds, for some transformation function Φ(.), which may not be necessarily known:

K(~xi, ~xj) = 〈Φ(~xi),Φ(~xj)〉

Consider for example a simple transformation function Φ(.) that operates on a 2-dimensional

vector ~x = (x1, x2) and converts it into a 3-dimensional vector such that Φ(~x) = (x2
1, x

2
2,
√

2x1x2).

Now given two vectors ~x and ~y in input space, their inner product in this 3-dimensional feature space

will be equal to:

〈Φ(~x),Φ(~y)〉 = (x2
1, x

2
2,
√

2x1x2)(y2
1, y

2
2,
√

2y1y2)

= x2
1y

2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2

= 〈~x, ~y〉2

This shows that defining a kernel function K(~x, ~y) such that:

K(~x, ~y) = 〈~x, ~y〉2

achieves the effect of finding an inner product in the 3-dimensional feature space defined by:

Φ(~x) = (x2
1, x

2
2,
√

2x1x2)

It simply computes the inner product of the data instances in input space and squares that result.

This is the so-called kernel trick, where a kernel function directly gives the inner product of input

data instances in a very high-dimensional transformed feature space by performing the transfor-

mation and inner product calculation in high-dimensional feature space implicitly at a much lower

computational cost.

In the example mentioned above, the kernel function was arrived upon with the knowledge of

the transformation function Φ(.). It is not necessary that this be the case. One can define a kernel

function without having to know the actual transformation that leads to the feature space in which

the kernel function evaluates the inner product. In such a case, to verify that the kernel function is

“valid” (i.e., it leads to a sound definition of inner product in some transformed space) the function

needs to have certain properties.
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Before we mention the properties that a function should have in order to be a valid kernel

function, it will be useful to define a kernel matrix. First, let us embed the kernel function K(~x, ~y)

in the dual formulation of the SVM to transform it into:

maximize
m∑

i=1

αi −
1
2

m∑
i=1,j=1

αiαjyiyjK(~xi, ~xj)

such that αi ≥ 0,
m∑

i=1

αiyi = 0

Here we have just replaced the inner product 〈~xi, ~xj〉 in the original dual formulation with the

kernel function K(~xi, ~xj). Now we can see that the kernel function will be evaluated for every pair

of training instances when solving the quadratic optimization problem to learn an SVM model. The

kernel matrix (also known as the Gram matrix) is a square matrix of size m-by-m (m is the number of

training instances), where the entry in the ith row and jth column is K(~xi, ~xj). Thus a kernel matrix

stores the kernel evaluations for all pairs of training examples. A function is a valid kernel function

if the kernel matrix generated using that function is a symmetric positive semi-definite matrix (i.e.,

a symmetric matrix whose every eigenvalue is non-negative).

While the computational advantage is an appealing aspect of the kernel methods, another equally

interesting aspect is the fact that any quadratic optimization problem using a kernel function can use

any well-defined kernel matrix for learning a decision surface. From this perspective, we need not

look at the entries in the kernel matrix necessarily as inner products of some vectors. A more general

perspective can be that the values of the kernel matrix are similarity values between pairs of objects

and these objects need not be representable in the form of vectors, but can be of any type as long as

a there is some well-defined measure of similarity between them. For example, one can have kernel

matrices generated out of similarity values between parse trees, where the similarity score could be

the number of overlapping identical branches in the two parse trees. This idea is what makes kernel

methods extremely powerful for introducing prior knowledge into SVM learners, to aid the task of

classification.

2.7 Semantic Kernels

Our approach is based on the idea of latent semantic kernels [9] and domain kernels [19] for WSD.

The classical Vector Space Model (VSM) from information retrieval literature is the basic building
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block for both these approaches. First, we introduce some concepts and terminology related to the

VSM that we shall utilize later. Initially, we use the conventional information retrieval terminology

and then translate that into the WSD terminology.

Given a set D containing m documents, the Vector Space Model [50] involves constructing a

term-by-document matrix where all the unique set of terms (which can be single words, collocations

or word phrases, or any other features that can be identified from the corpus of documents) in the

entire set D of documents are represented as rows of the matrix and the documents themselves

are represented as the columns of this matrix. If there are n unique terms in the set of terms T

in all the documents in D then the representation is an n × m matrix. The cell value in the ith

row and jth column is the number of times the term ti occurs in the document dj . The reason

this model is known as the “Vector Space Model” is that in the term-by-document matrix, each of

the m documents is represented as an n dimensional column vector, with each of its components

representing the term frequency (TF) of the respective term in the given document. In one variation

of this model, the matrix values are not term frequencies in the corresponding documents, but a

value known as the TF-IDF score – which stands for the product of the term frequency and the

inverse document frequency (IDF). Term frequency is the same as before – the number of times a

term occurs in a given document. Inverse document frequency is a measure of how informative a

given term is to help identify a subset of documents from D - the smaller the subset of documents

identified, the more informative is the term. Mathematically IDF of a term ti that occurs in mi

documents out of the total m documents is defined as:

IDF (ti) = log2(
m

mi
)

One can see that as mi decreases (i.e., the term occurs in fewer number of documents), its IDF value

increases and as mi approaches m, the IDF value approaches 0, that is, a term that occurs in all of

the documents in D is not considered informative.

Given this VSM, there can be several methods to analyze the similarity of two documents using

their corresponding document vectors. One of the commonly employed mechanism is finding the

cosine value of the angle between the two document vectors. The cosine value of the angle between

two vectors is in the interval [−1,+1], -1 being the value when the vectors are pointing in opposite

directions (i.e., they are 180 degrees apart and therefore most unlike or dissimilar from each other)
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and +1 being the value when the vectors are pointing in the same direction (i.e. they are 0 degrees

apart and therefore most alike or similar to each other). The cosine value between two document

vectors ~d1 and ~d2, each n-dimensional, is defined as:

cos( ~d1, ~d2) =
〈 ~d1, ~d2〉
||~d1||.||~d2||

where the numerator is the inner product of the document vectors and is defined as previously in

the introduction to SVMs and the denominator is the product of the Euclidean lengths of the two

document vectors, again as defined earlier in the SVM introduction. Note that the formulation for

the cosine of two vectors can be re-arranged to view it simply as the inner product or dot product of

their normalized unit vectors:

cos( ~d1, ~d2) =

〈
~d1

||~d1||
,

~d2

||~d2||

〉

So if the vectors are already normalized, then the cosine evaluates to the same value as the dot

product of the two vectors. So that,

cos( ~d1, ~d2) = 〈 ~d1, ~d2〉 if ||~d1|| = 1 and ||~d2|| = 1

An essential property of a measure of similarity is that it should be symmetric, so that similar-

ity(a, b) is the same as similarity(b, a). This is true for the cosine measure since cos( ~d1, ~d2) is equal

to cos( ~d1, ~d2) which is the cosine of the smaller angle between the two vectors. Another commonly

used measure of similarity is simply the inner product or the dot product of the document vectors.

This is exactly the numerator of the cosine measure above – it is not normalized using the Euclidean

vector lengths in the denominator.

Recalling the concept of kernels as a measure of similarity between instances in a dataset, one

can see that an m ×m matrix K created out of similarity values between every pair of documents

in D (such that Ki,j represents the similarity between document vectors ~di and ~dj and Kj,i = Ki,j)

is a kernel matrix for the set of documents D and can be used to apply the SVM algorithm on

these set of documents. This kernel K and the polynomial and Gaussian extensions to it (which are

simply mathematical transformations on the basic kernel K) were proposed by Joachims [24] for

text categorization of documents into a predefined set of topics. If the similarity measure used is the
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inner product, then this kernel matrix K is the same as the m×m resultant matrix after multiplying

the transpose of D (DT ) and D, that is:

Km×m = DT
m×nDn×m

This is the basic VSM kernel.

A major disadvantage of the VSM is that any similarity measure based purely on the document

vectors in the VSM takes into account just the lexical overlap of the terms across documents. Two

documents appear to be more similar if more terms overlap. This does not take into account the

semantic relationships among terms, such as the fact that two words are synonyms of each other

(and hence should ideally increase the similarity of the documents in which they occur) or that an

ambiguous word is used in two documents in different senses (and thus should not contribute to

increasing the similarity of the documents). To incorporate semantic relationships in evaluating

document similarities, Cristianini et al., [9] propose using the concept of Latent Semantic Indexing

(LSI) [12] from the information retrieval theory to build Latent Semantic Kernels (LSK). LSI in-

volves Principal Component Analysis (PCA) of the term-by-document VSM matrix by means of a

process known as Singular Value Decomposition (SVD). The goal of PCA in a task such as doc-

ument categorization is to extract the important concepts from the entire corpus of documents and

modify the document vectors in such a way that they represent the similarity or difference of the

documents with respect to the important concepts. This can be achieved by dimensionality reduc-

tion after decomposing the term-by-document matrix using SVD. SVD decomposes a matrix D as

follows:

D = UΣV T

where U and V are orthogonal matrices (i.e., UUT = V V T = I , the identity matrix) and Σ is a

diagonal matrix (not necessarily square) such that the diagonal elements of Σ are singular values of

D and the columns of U are left singular vectors of D corresponding to the singular values in Σ.

They are in fact the eigenvectors of the term-term similarity matrix DDT . Similarly, columns of V

are the right singular vectors of the matrix D and eigenvectors of the document-document similarity

matrix DT D. For an matrix D with n rows (representing n terms) and m columns (representing m

documents), that is, for a matrix of size n×m, the full SVD is defined as:

Dn×m = Un×nΣn×mV T
m×m (1)
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A variation known as the thin or economy sized SVD is defined as:

Dn×m = Un×mΣm×mV T
m×m (2)

A compact SVD is defined as:

Dn×m = Un×rΣr×rV
T
m×r (3)

Here r represents the rank of the matrix D and r ≤ min(n, m). Note again that Σ can be a

rectangular matrix (as in the full SVD when n 6= m), the only condition is that all its non-diagonal

elements (Σi,j , i 6= j) are zeros. Finally, the most commonly used SVD formulation is the truncated

SVD:

Dn×m = Un×kΣk×kV
T
m×k (4)

where only the first k columns of U and V along with the k singular values from Σ from the full

SVD are selected such that k � m. These and further details about SVD can be found in Bai

et al.,(editors) [3]10. In all of the above formulations of SVD, the dimensions of the matrix re-

constructed after multiplying U , Σ and V T are still n × m. The process however is known as

dimensionality reduction because of the fact that fewer number of singular values are used to re-

construct a modified matrix D. Intuitively one can think of selecting k singular values as selecting

the first k predominant concepts in the set of documents and then re-evaluating the vector com-

ponents of all documents. This process results in some loss of information due to the compaction

to k dimensions, but also helps identify the k principle semantic concepts. It indirectly takes into

account co-occurrence information of terms such that if two terms ti and tj often occur together

in many documents, then they also induce similarity between documents dx and dy even if only ti

appears in dx and only tj appears in dy. An illustrative example of this can be found in Deerwester

et al., [12] and Landauer et al., [29]. This adds a semantic perspective to the similarity analysis,

which is lacking in the original VSM.

Now we consider the thin SVD from Equation 2 and explain the formulation of the Latent

Semantic Kernel in [9]. Let Ik denote a size m×m identity matrix with elements beyond Ik,k equal

to zero. Now let Uk = Un×mIk be the matrix of left singular vectors with only the first k columns

of Un×m non-zero. Now a kernel similar to the basic VSM kernel, but generated using Uk is:

Ksemantic = (UT
k D)T UT

k D

10Also available online at the URL http://www.cs.utk.edu/∼dongarra/etemplates/book.html
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This is the basic form of Latent Semantic Kernel (LSK) proposed in Cristianini et. al., [9] and it

captures the similarity of documents in a space with reduced dimensions as only k left singular

vectors are used in evaluating the similarity. One can verify that within a very small error, the above

kernel matrix is the same as the one generated by reconstructing Dk by multiplying the component

matrices obtained after truncated SVD of D and then computing K = DT
k Dk.

Consider again the thin SVD formulation from Equation 2. The concept of domain kernels [19]

is based on a domain matrix created from the SVD of a term-by-document matrix as follows:

DLSA = IN
n×nUn×k

√
Σk×k

where IN
n×n is defined as a normalizing diagonal matrix with IN

i,i being the Euclidean length of the

ith row of the matrix Un×k

√
Σk×k and

√
Σk×k simply denotes a matrix consisting of the square

roots of individual cell values of Σk×k. Each row in this domain matrix represents a term in the

reduced k-dimensional feature space instead of the original m-dimensional feature space and is

referred to as a domain vector for the corresponding term. The idea is that the m documents have

collapsed into the k most meaningful domains at a conceptual level and the relevance of term i in

domain j is represented by the value DLSAi,j of the domain matrix. Given this domain model,

the kernel function for similarity between any two terms is simply the dot product of their domain

vectors:

K(ti, tj) = 〈~ti,~tj〉

where ~ti and ~tj represent the ith and jth rows of the domain matrix DLSA (i.e., the domain vectors

for ti and tj) and correspond to the representation of the terms ti and tj respectively in the domain

model. The kernel function for evaluating the similarity of two documents initially requires creation

of domain vectors for the documents. A domain vector for a document is created by transforming

the document vector in the original VSM into a lower dimensional feature space as follows:

~d′i = ~diI
IDF DLSA

where IIDF represents the square diagonal matrix containing inverse document frequencies of the

n terms and DLSA is the domain matrix described above. Now the kernel function for any two

documents is the dot product of their domain vectors:

K(di, dj) = 〈~d′i, ~d′j〉
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At this point, we will translate the VSM terminology introduced so far into corresponding con-

cepts related to WSD, which is fairly straightforward and intuitive. The concept of documents trans-

lates to instances of ambiguous words such as sentences or paragraphs, more commonly known as

contexts in WSD. The terms in the VSM translate into features for the task of WSD. A term-by-

document matrix becomes a feature-by-context matrix. The notion of similarity between contexts

is identical to that of similarity between documents, with the intuitive understanding that more the

similarity of two contexts of an ambiguous word, more is the chance that it has the same sense in

those two contexts. This is a due to the distributional hypothesis proposed by Harris [21] and the

contextual similarity hypothesis by Miller and Charles [38].

2.8 Unsupervised Learning

The unsupervised learning part of our approach is captured by knowledge about similarity of two

contexts, which we evaluate using kernel matrices generated from unlabeled instances of an ambigu-

ous word. Generation of one class of kernel matrices in our approach is done using the transpose of

the first-order context representation as presented by Purandare and Pedersen in [49] and that of the

second class of kernels is done using the second-order context representation used by Purandare and

Pedersen [49]. Both these representations and the methods using them work in a completely unsu-

pervised fashion, evaluating the similarity of the contexts under consideration. They are described

in more detail in Purandare [48].

The first-order context representation in [49] is a context-by-feature representation of the corpus

containing the ambiguous word. A list of features such as unigrams or bigrams or co-occurrences

are extracted from a corpus containing multiple instances of an ambiguous word. Every context

is then represented along the rows of a matrix and every identified feature is represented along the

columns of the matrix. The cell values are frequency counts of the number of times a feature appears

in a given context, or binary values indicating presence or absence of a feature in a given context.

The rows of this matrix therefore represent context vectors with the features as their dimensions.

The second-order context representation creates a word-by-word matrix out of bigram or co-

occurrence features identified from the set of contexts of ambiguous words. For bigram features,

the first word in the bigram forms a row of the matrix and the second word forms a column of the
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matrix, and the corresponding cell value stores a statistical score of association for that bigram.

For co-occurrence features, all the unique words are extracted and are listed along the rows as well

as columns of a square matrix, and the cell values again contain a score of association for the co-

occurrence. The rows of a word-by-word matrix (created using either bigrams or co-occurrences)

represent word vectors with the words that they co-occur with as dimensions. Any context is then

represented as a vector by averaging the word vectors for words that are present in that context.

Both the first and second order context representations and clustering of data using these repre-

sentations are implemented in the freely available SenseClusters11 package.

We elaborate on the exact process of kernel matrix creation using context representations of

unlabeled data in the next chapter.

11http://senseclusters.sourceforge.net/
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3 Semi-Supervised Semantic Kernels for Word Sense Disambiguation

In this chapter we present an approach based on semi-supervised learning, that makes use of unla-

beled data and we elaborate on our SVM kernel formulations.

3.1 Motivation

While supervised machine learning methods represent the state-of-the-art in WSD, they face the

problem of the so-called “Knowledge Acquisition Bottleneck.” As mentioned earlier, supervised

methods require a set of labeled instances of an ambiguous word in order to learn a model to dis-

ambiguate new instances. Ng [42] estimates that approximately 3.2 million labeled instances of

ambiguous words (3200 ambiguous words with 1,000 labeled instances of each) would be required

to build a robust and general-purpose WSD system that can significantly improve the accuracy over

the baseline measure of assigning the most frequent sense. He further mentions that this is roughly

equivalent to 16 man-years worth of effort in annotating the data with the correct sense for all the

3.2 million instances. It also empirically establishes for WSD the fact that the availability of more

training data for a learning algorithm leads to better accuracy on novel instances. This clearly shows

the “data-hungry” nature of the supervised machine learning algorithms. In order to be able to build

classifier models that are highly accurate as well as generalize well (i.e., have low error on unseen

data instances), the training data size should be sufficiently large to allow the algorithms to acquire

knowledge of the majority of the disambiguating aspects of a large number of ambiguous words and

their senses. But the requirement to annotate such a large number of instances imposes a practical

limitation on the amount of labeled training data that can be made available. This is known as the

Knowledge Acquisition Bottleneck.

With the advent of the World Wide Web and the exponential increase in digital storage of content

such as newspaper articles, scholarly publications and medical records of patients, there is compara-

tively more data in a raw form than labeled data. Such a free-flowing corpus of text is often referred

to as “unlabeled data.” Recent efforts in NLP literature [19, 20] have focused on making use of un-

labeled data to improvise upon the classical supervised machine learning tasks such as word sense

disambiguation and text categorization. This approach is generally referred to as “semi-supervised
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learning.” While having fully unsupervised methods to acquire knowledge from unlabeled data is

very appealing, in practice the lower accuracy of unsupervised methods poses a significant lim-

itation. The aim of semi-supervised methods is to combine the good properties of unsupervised

and supervised learning approaches - the broad coverage provided by unsupervised methods using

plentiful unlabeled data and the accuracy provided by supervised methods using a small amount of

labeled data. However, to our knowledge relatively few studies have been done in the NLP litera-

ture related to the medical domain that make use of semi-supervised approaches [44, 45] and more

specifically there has not been any research in applying task-specific SVM kernels to the problem of

WSD and abbreviation disambiguation in medical domain. This thesis focuses on applying existing

unsupervised methods by Purandare and Pedersen [49] and extensions to these methods to generate

task-specific SVM kernels for the problem of WSD and abbreviation disambiguation in the medical

domain.

3.2 Semantic Kernels

Our approach combines unsupervised knowledge from unlabeled corpora of text and supervised

knowledge from labeled training instances using kernel methods for SVMs. We assume the avail-

ability of a large set of unlabeled instances of an ambiguous word for unsupervised learning to create

feature vectors that are used in evaluating kernel matrices for the instances from labeled data. The

process in general proceeds as follows: First, features are identified from the unlabeled data using

unsupervised methods. Second, each feature is represented using a feature vector which encodes

the properties of the corresponding feature, which are derived from the unlabeled data. The set of

feature vectors for all identified features represents the knowledge gained from unlabeled corpora.

Third, this knowledge is used to create a vector representation for each of the contexts available

in the labeled data. Fourth, the similarity between every pair of context vectors is calculated. A

square matrix created out of these similarities of every pair of labeled contexts is the kernel matrix

that we utilize for running SVMs on the labeled instances. One thing to note here is that we do not

utilize the labeled instances as a part of unsupervised learning. The features from labeled data are

identified separately and are used in the supervised learning process of SVMs in addition to the ker-

nel matrix. While evaluating the actual kernel function, the similarity values from the unsupervised
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kernel matrix are added to the similarity values computed using the default linear kernel on features

from labeled instances - thus providing additional input to analyze similarity of the contexts. All of

our kernels are generated using the unsupervised methods provided in the SenseClusters12 package

and extensions of these methods that we have created.

The features from labeled data are available to all machine learning algorithms, however SVMs

can make use of the unsupervised knowledge in the form of kernels in a very elegant way. So the

kernel matrices learned from the unlabeled data form the key elements of our methodology and

represent the semi-supervised learning aspect of our methods. Based on the idea of latent semantic

kernels and on the concept of domain kernels, we define two classes of kernels that are extensions

of these existing kernels with respect to the type of features used and more crucially, with respect to

the type of feature representation used for learning from the unlabeled data.

3.2.1 Latent Semantic Analysis Kernels

The first class of kernels that we introduce is the Latent Semantic Analysis (LSA) kernel, which is a

generalization of the domain kernel by Gliozzo et al., [19], involving the use of features other than

unigrams or Bag-of-Words to learn from unlabeled data. Initially we create a first-order context

representation of the unlabeled contexts as described in Purandare and Pedersen [49]. This yields a

context-by-feature matrix, where the features along the columns of the matrix can be unigrams, bi-

grams or two-word co-occurrences, each selected using different feature selection criteria. We then

take the transpose of this context-by-feature matrix, which yields a feature-by-context matrix. Note

that this representation is similar to the LSA representation proposed in Deerwester et al., [12] and

therefore we call this class of kernels LSA kernels. The rows of this transposed first-order context

representation are the feature vectors used for representing any two contexts whose similarity is to

be evaluated using unsupervised methods. We explain each kernel in this category, based on the

features used in our LSA representation below.

Unigram LSA Kernels Our unigram kernels are similar to the domain kernels introduced by

Gliozzo et al., [19]. We start with an unlabeled corpus containing m instances of the ambiguous
12http://senseclusters.sourceforge.net/
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word. Unigram features are then identified for these m instances using the Ngram Statistics Package

[5] (NSP). Feature selection is done by eliminating a predefined set of stop words or functional

words and also by removing words that occur fewer times in the m contexts than some frequency

cut-off value (which is a parameter and takes the values of 2, 5, 10 and 15 for our experiments).

Assuming that n unigrams are identified as features, a unigram-by-context matrix is created as the

transpose of the first-order context-by-feature matrix, so that for the m instances of the ambiguous

word and the n unigrams identified across all the instances, a matrix D of size n×m is generated.

Consider for example, the following set of five unlabeled contexts (c1 through c5) for the word

immunosuppression:

c1: The patient received a second graft and despite an optimal six-antigen-match and different

immunosuppression with tacrolimus, thrombosis recurred by the fifth postoperative day.

c2: This study included five groups: allografts without immunosuppression (group A, n = 12),

allografts with immunosuppression (group B, n = 13), autografts without immunosuppression

(group C, n = 11), autografts with immunosuppression (group D, n = 12), and autografts treated

by 45 minutes of pretransplant warm ischemia to induce acute graft pancreatitis (group E, n =

14).

c3: STUDY DESIGN: Ninety-eight consecutive patients (59 children, 39 adults) with a panoply

of indications received 104 allografts under tacrolimus-based immunosuppression: intestine

only (n = 37); liver and intestine (n = 50); or multivisceral (n = 17).

c4: If this immunosuppression is critical for the development of most skin tumors, then its

prevention should result in prevention of photocarcinogenesis.

c5: However, excessive exposure to UV can overwhelm the cutaneous antioxidant capacity,

leading to oxidative damage and ultimately to skin cancer, immunosuppression and premature

skin aging.

Assume that the following unigram features are identified from these five sentences: graft,

antigen, tacrolimus, thrombosis, allografts, autografts, liver, intestine, skin, tumors, photocarcino-

genesis, cutaneous, cancer. In this example, the number of features n = 13 and the number of

unlabeled contexts m = 5. The n×m feature-by-context matrix D for this example is as shown in
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Table 1: A unigram-by-context matrix used for unigram LSA kernels.

c1 c2 c3 c4 c5

graft 1 1 0 0 0

antigen 1 0 0 0 0

tacrolimus 1 0 1 0 0

thrombosis 1 0 0 0 0

allografts 0 2 1 0 0

autografts 0 3 0 0 0

intestine 0 0 2 0 0

liver 0 0 1 0 0

skin 0 0 0 1 2

tumors 0 0 0 1 0

photocarcinogenesis 0 0 0 1 0

cutaneous 0 0 0 0 1

cancer 0 0 0 0 1

Table 1. The cell values in this matrix are frequency counts of the number of times a feature appears

in a context.

Truncated SVD of D yields D = Un×kΣk×kV
T
m×k. We then define the domain matrix as

DLSA = Un×k

√
Σk×k. Once the domain matrix is defined, then any arbitrary context can be

represented in the k-dimensional domain space as the average of its feature vectors that form the

rows of the domain matrix. Mathematically:

~ci =
∑

kεfeatures of ci
~wik

number of features of ci

where wik is a feature identified for the context ci and ~wik represents its corresponding feature

vector as a row in the domain matrix. For example consider the following new context c6 of the

word immunosuppression:

c6: Predictors and outcome of early- versus late-onset major bacterial infections in liver trans-
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plant recipients receiving tacrolimus (FK506) as primary immunosuppression.

Since our unigram-by-context matrix from Table 1 is quite small originally, we do not show the

truncated SVD and the creation of the domain matrix DLSA from it. Instead let us assume that for

this example DLSA = D. Now, the two words liver and tacrolimus in the new context c6 are present

in our domain matrix. Therefore, a context vector for c6 is created as follows:

~c6 =
−−−→
liver +−−−−−−−→

tacrolimus

2

=
[0 0 1 0 0] + [1 0 1 0 0]

2

=
[1 0 2 0 0]

2
= [0.5 0 1 0 0]

Any feature of ci that is not present in the domain matrix cannot be used in evaluation of the

kernel. However, since the kernel matrix represents a source of unsupervised knowledge in our

case, we can rely on the supervised part of our algorithm to utilize such features that are found in

the labeled training data, but not in the unlabeled data. Now the semantic kernel function to evaluate

similarity of two arbitrary contexts is defined as:

Ksemantic(ci, cj) = cos(~ci,~cj)

where ~ci and ~cj are the two context vectors, created from the average of feature vectors as shown

above.

The unigram LSA kernel is then defined as the sum of the semantic kernel above and the default

linear kernel of SVMs, that evaluates the dot product of the supervised feature vectors of ci and cj .

The supervised feature vectors of ci and cj are not the same as ~ci and ~cj , since they are derived

purely on the basis of labeled data. Mathematically, the unigram LSA kernel is defined as:

Kunigram = Klinear(ci, cj) + Ksemantic(ci, cj)

The linear kernel represents the supervised learning component of our unigram LSA kernel and
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Table 2: A two-by-two contingency table for the bigram “star wars.”

wars wars

star n11 = 50 n12 = 25 n1+ = 75

star n21 = 75 n22 = 10, 000 n2+ = 10, 075

n+1 = 125 n+2 = 10, 025 n++ = 10, 150

the semantic kernel represents the unsupervised learning component. This unigram kernel function

is used to solve the dual formulation of SVMs with kernels, shown in Section 2.6.6.

Bigram LSA Kernels Bigrams are pairs of words (possibly non-contiguous) in the context of

the ambiguous word. Non-contiguous bigrams can contain one or more words in between the two

words of the bigram. We control the number of words permitted in between two words of a bigram

using a parameter of NSP.

The bigram kernel is created similarly to the unigram kernel except for the fact that in addition

to using a list of stop words and frequency cut-off values for feature selection, a statistical measure

of association of significance of bigrams is also used to eliminate spurious bigrams that are merely

co-occurrences happening by chance. A statistical measure of association for bigrams determines

to what degree two words are related to each other as opposed to being random co-occurrences.

Applying a cut-off to the value obtained by a statistical measure of association forms a statistical

test of association, which asserts with some degree of confidence the significance of a bigram (i.e.,

it not being a random co-occurrence).

The measure of association that we use is the Log Likelihood (LL) measure, which is available

in NSP. The Log Likelihood score for a bigram [13] compares the actual counts of co-occurrence

of a pair of words in the given corpus to the randomly expected co-occurrence count based on the

frequency count of the individual words of the bigram. Consider a contrived example of a corpus

containing the bigram “star wars,” with frequency values as shown in Table 2.

Table 2 is known as a “contingency table” for a bigram and is interpreted as follows. n11 is the

number of times the words “star” and “wars” occur together in the corpus. n12 is the number of
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times the word “star” occurs with some word other than “wars” in the corpus. n21 is the number

of times the word “wars” occurs with some word other than “star” and n22 is the number of words

other than “star” and “wars.” n1+ is the individual frequency count of the word “star” and n+1 is

the individual frequency count of the word “wars.” n2+ is the number of words other than “star”

and n+2 is the number of words other than “wars” in the corpus. Lastly, n++ is the total number of

words in the corpus. The LL score (G2) of the bigram in such a contingency table is defined as:

G2 =
∑
i,j

2 ∗ nij ∗ log
nij

eij

where eij represents the randomly expected frequency of co-occurrence of the two words in the

bigram, which is calculated using the individual frequency count of each word in the bigram as

follows:

eij =
ni+ ∗ n+j

n++

The LL score defined above can be shown to be distributed with a Chi-Squared (χ2) distribution

with degree of freedom equal to one. We therefore apply a cut-off of 3.842 to the LL score, which

corresponds to 95% confidence in the significance of a bigram. Once the bigram features are identi-

fied, a bigram-by-context matrix D is created similar to the unigram-by-context matrix. Truncated

SVD of D yields a domain matrix DLSA. The context vector for any arbitrary context is created

similar to the unigram LSA kernel, but using bigram features from the new context, and averaging

their corresponding feature vectors from the domain matrix.

The semantic kernel function to evaluate similarity of two arbitrary contexts is again defined as:

Ksemantic(ci, cj) = cos(~ci,~cj)

where ~ci and ~cj are the two context vectors, created from the average of feature vectors as mentioned

above.

The bigram LSA kernel is then defined as the sum of the semantic kernel above and the default

linear kernel of SVMs, that evaluates the dot product of the supervised feature vectors of ci and cj .
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Mathematically, the bigram LSA kernel is defined as:

Kbigram = Klinear(ci, cj) + Ksemantic(ci, cj)

Co-occurrence LSA Kernels Co-occurrences are unordered bigrams. For example the two bi-

grams features “fine wine” and “wine fine” will form just one co-occurrence feature “fine wine.”

Essentially any instance of the bigrams “fine wine” or “wine fine” will be treated as an instance of

the co-occurrence “fine wine.” Also note that since the order does not matter, we could also have

called the co-occurrence feature above “wine fine” as long as we have a consistent and unique way

to refer to it. While taking frequency counts for co-occurrences, 4 occurrences of the bigram “fine

wine” and 1 occurrence of the bigram “wine fine” will count at 5 occurrences of the co-occurrence

“fine wine.”

Apart from the difference mentioned above, co-occurrence kernels are created exactly in the

same manner as bigram kernels, with similar feature selection criteria and kernel function.

3.2.2 Word Association Kernels

Our word association kernels are based on the second-order context representation proposed by

Purandare and Pedersen [49], which makes use of bigram or co-occurrence features.

Bigram Association Kernels Given a corpus of m documents, bigram features are identified for

that corpus using the feature selection criteria mentioned above for bigram LSA kernels. This yields

a list of bigrams and their LL scores of association. For every bigram (wi, wj), its first word wi is

represented along the row of an association matrix D and its second word wj is represented along

the column, with the matrix entry Di,j containing the score of association of the bigram (zero for all

i, j pairs that were not identified as bigram features in the given corpus. The matrix D is therefore

a set of feature vectors corresponding to the words from the corpus, showing what other words

they co-occur with and their corresponding score of association. For example, for the set of five

unlabeled contexts of the word immunosuppression shown earlier for unigram LSA kernels, if we

choose bigram features where at most one word is permitted in between the two words of a bigram,
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Table 3: A word-by-word association matrix created using bigram features

graft pancreatitis ischemia cancer tumors

acute 4.0761 4.7322 0.0000 0.0000 0.0000

induce 4.0761 0.0000 0.0000 0.0000 0.0000

graft 0.0000 4.7322 0.0000 0.0000 0.0000

pretransplant 0.0000 0.0000 6.7902 0.0000 0.0000

warm 0.0000 6.7902 0.0000 0.0000 0.0000

skin 0.0000 0.0000 0.0000 5.0875 7.8252

then among several other bigrams, the following bigrams occur as features (with their corresponding

LL score of association shown in parentheses): acute graft (4.0761), induce graft (4.0761), acute

pancreatitis (4.7322), graft pancreatitis (4.7322), pretransplant ischemia (6.7902), warm ischemia

(6.7902), skin cancer (5.0875), skin tumors (7.8252). Using these bigram features, the association

matrix D is defined as in Table 3.

The difference from the unigrams LSA kernels introduced earlier is firstly that the words is this

new representation are not unigrams, but the first half of bigrams, and secondly the dimensions of

the feature vectors for these words are not contexts, but other significantly associated words from

the corpus, that is the second half of the bigrams.

For bigrams features, this matrix D can be rectangular (as in our example) since the list of unique

first words and unique second words of all bigram pairs may not be of the same size. Assuming that

n bigrams are identified as features from the unlabeled corpus and that the number of unique first

words is p and the number of unique second words is q, the size of D is p× q, and thus each feature

vector is initially q-dimensional. After applying SVD to the matrix D as in the case of unigram

LSA kernels, these feature vectors are reduced to k dimensions. Using the k-dimensional feature

vectors from the matrix Dk, any context from the labeled data can be represented as the average of

the feature vectors from the rows of Dk, similar to the method used in unigram LSA kernels. The

semantic kernel for any two contexts can be evaluated as the cosine between the two corresponding

context vectors, just as in the case of unigram LSA kernels. The bigram association kernel function
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for two arbitrary contexts ci and cj is then defined as:

KASSOC−bigram = Klinear(ci, cj) + Ksemantic(ci, cj)
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4 Experiments

In this chapter we first describe the medical domain datasets that we have used for our experiments.

Next we describe our experiments including their methodology and results followed by a discussion

for each of the experiments. The goal of our experiments is to initially establish a competitive

baseline using purely supervised learning algorithms and the best combination of features that yield

the highest accuracy using these off-the-shelf algorithms. We then extensively explore the use of

semantic kernels learned from unlabeled data for one of our datasets and compare the performance

of our kernels with that of the off-the-shelf algorithms. Next we apply the best kernel methods from

our first dataset to a second dataset and test the generality of our approach. In our experiments

with abbreviations, we also focus on the feature engineering aspect, by making use of domain

specific features and using a novel flexible window feature extraction approach and evaluating their

contribution to the overall accuracy for abbreviation expansion.

4.1 Experimental Data

This section presents a description of three medical domain datasets for word sense disambiguation

and automatic abbreviation expansion. First, the U.S National Library of Medicine (NLM) Word

Sense Disambiguation (WSD) collection containing 50 ambiguous words; second, the MEDLINE

Abbreviation (MA) collection containing 15 ambiguous abbreviations; and third, the Mayo Clinic

Abbreviation (MCA) collection containing 16 ambiguous abbreviations. We have described the full

datasets in each of the sub-sections below, however we make use of only a particular subset of each

dataset for some of our experiments. The exact choice of a dataset or its subset for every experiment

will be described in the corresponding experiment description.

4.1.1 NLM Dataset

The first dataset and the one that we have used most extensively is the biomedical word sense dis-

ambiguation test collection developed by Weeber et al., [54]. This WSD test collection is available
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from the National Library of Medicine (NLM)13. It contains 50 words that correspond to 50 am-

biguous concepts from the UMLS [52] that are most frequently encountered in the 1998 collection

of article abstracts in MEDLINE [36].

The UMLS consists of three knowledge sources related to biomedicine and health: First, the

meta-thesaurus of biomedical and health related concepts such as names of diseases or agents caus-

ing them, for example Chronic Obstructive Airway Disease and Virus. Second, the UMLS includes

a semantic network which provides a classification of these concepts and relationships among them.

The relationships can be hierarchical as in “Acquired Abnormality IsA Anatomical Abnormality”,

which means that “Acquired Abnormality” is a type of “Anatomical Abnormality” or associative as

in “Acquired Abnormality affects Cell Function.” Third, the UMLS includes a SPECIALIST lexi-

con containing biomedical terms with their syntactic, morphological, and orthographic information.

MEDLINE is a bibliographic database containing abstracts and references of several articles from

journals related to life science. The NLM WSD collection developed by Weeber et al., [54] consists

of 50 frequently encountered ambiguous words in the MEDLINE 1998 collection. While most of

the words appear predominantly in noun form, there are also cases where they appear as adjectives

or verbs. For example, the word Japanese occurs by itself as a noun meaning the Japanese lan-

guage or the Japanese people, but more often as an adjective to describe people as in the Japanese

researchers or the Japanese patients. Some words appear as verbs in their morphological variations,

for example discharge appears as discharged and determination as determined. Each of the words

has 100 randomly selected instances from the abstracts of 409,337 MEDLINE citations. Each in-

stance provides two contexts for the associated word – the sentence from the abstract that contains

the ambiguous word and the abstract of the article. The average size of the sentence context is 26

words and that of the abstract context is 220 words. The data is available in plain text format and

follows some predefined formatting rules. Figure 3 shows a typical instance of an ambiguous term

in the NLM WSD data collection. One of the datasets used by Liu et al., [35] and the dataset used

by Leroy and Rindflesch [31] were subsets of this collection.

In addition to this manually annotated data collection, an unlabeled set of instances for each of

the 50 words was made available by the National Library of Medicine. Each instance is an article
13http://wsd.nlm.nih.gov/
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1|9337195.ab.7|M2 
The relation between birth weight and flow-mediated dilation was not affected by adjustment for childhood body  
build, parity, cardiovascular risk factors, social class, or ethnicity. 
adjustment|adjustment|78|90|81|90|by adjustment| 
PMID- 9337195 
TI  - Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. 
AB  - BACKGROUND: Early life factors, particularly size at birth, may influence later risk of cardiovascular disease,   
but a mechanism for this influence has not been established. We have examined the relation between birth weight  
and endothelial function (a key event in atherosclerosis) in a population-based study of children, taking into account  
classic cardiovascular risk factors in childhood. METHODS AND RESULTS: We studied 333 British children aged 9 to 11  
years in whom information on birth weight, maternal factors, and risk factors (including blood pressure, lipid fractions,  
preload and postload glucose levels, smoking exposure, and socioeconomic status) was available. A noninvasive  
ultrasound technique was used to assess the ability of the brachial artery to dilate in response to increased blood  
flow (induced by forearm cuff occlusion and release), an endothelium-dependent response. Birth weight showed a  
significant, graded,positive association with flow-mediated dilation (0.027 mm/kg; 95% CI, 0.003 to 0.051 mm/kg;  
P=.02). Childhood cardiovascular risk factors (blood pressure, total and LDL cholesterol, and salivary cotinine level)  
showed no relation with flow-mediated dilation, but HDL cholesterol level was inversely related (-0.067 mm/mmol;  
95% CI, -0.021 to -0.113 mm/mmol; P=.005). The relation between birth weight and flow-mediated dilation was not  
affected by adjustment for childhood body build, parity, cardiovascular risk factors, social class, or ethnicity.  
CONCLUSIONS: Low birth weight is associated with impaired endothelial function in childhood, a key early event in  
atherogenesis. Growth in utero may be associated with long-term changes in vascular function that are manifest by  
the first decade of life and that may influence the long-term risk of cardiovascular disease. 
adjustment|adjustment|1521|1533|1524|1533|by adjustment| 
 

Figure 3: A typical instance of an ambiguous term in the NLM WSD data collection. The

example above shows an instance of the term adjustment.

abstract containing the ambiguous word. The number of instances per word varies from as low

as 402 for the word mosaic to 28,256 for the word determination. There are a total of 419,136

unlabeled instances for the 50 ambiguous words and the average size of an instance is 217 words.

Tables 4 and 5 show the distribution of different senses for each word in the collection and

also the number of unlabeled instances available for each word. M1 through M5 are different sense

labels for the senses of a word as defined in the UMLS repository. The last-but-one column with

the sense label None stands for any sense other than those corresponding to labels M1 through M5.

The number of senses in the second column counts None as one of the senses and includes senses

defined in UMLS even if they do not occur in the set of 100 labeled instances. A few salient features

that can be observed from the distribution are as follows. Not every word has five senses defined

in UMLS. Most of them have just two. A sense frequency count of zero in the table means that no

instances of the corresponding sense were found in the set of 100 instances, but the sense is defined

in UMLS. A ’-’ for some sense label for a word means that the sense label is not defined for the
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Table 4: The sense distribution for the ambiguous terms in the NLM WSD collection, the sense
frequencies are out of 100. The last column shows the number of unlabeled instances available
for each word.

Word # Senses Sense tag frequency # Unlabeled
M1 M2 M3 M4 M5 None instances

adjustment 4 18 62 13 - - 7 1772
association 3 0 0 - - - 100 12182
blood pressure 4 54 2 44 - - 0 4767
cold 6 86 6 1 0 2 5 1417
condition 3 90 2 - - - 8 19384
culture 3 11 89 - - - 0 15398
degree 3 63 2 - - - 35 17694
depression 3 85 0 - - - 15 4335
determination 3 0 79 - - - 21 28256
discharge 3 1 74 - - - 25 3056
energy 3 1 99 - - - 0 5723
evaluation 3 50 50 - - - 0 11523
extraction 3 82 5 - - - 13 7092
failure 3 4 25 - - - 71 10049
fat 3 2 71 - - - 27 5940
fit 3 0 18 - - - 82 2426
fluid 3 100 0 - - - 0 6759
frequency 3 94 0 - - - 6 12157
ganglion 3 7 93 - - - 0 1184
glucose 3 91 9 - - - 0 5896
growth 3 37 63 - - - 0 20794
immunosuppression 3 59 41 - - - 0 954
implantation 3 17 81 - - - 2 2302
inhibition 3 1 98 - - - 1 13557
japanese 3 6 73 - - - 21 1662

word. For example, cold has 6 senses, and one of them (corresponding to the label M4) does not

occur even once in the set of 100 labeled instances, whereas adjustment has only four senses, M4

and M5 are not defined for it. Every word has None as one of the possible senses, which means

that while manually tagging the data instances, an instance which cannot be categorized into any of

the known concepts as defined in UMLS can be assigned this default sense. This sense therefore

actually represents the “unknown” sense, which is not present in UMLS. However we adhere to

the sense tag “None” used by Weeber et al., [54]. Although the machine learning methods will see

all the instances of an ambiguous word with the sense tag “None” as having the same sense, the
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Table 5: The sense distribution for the ambiguous terms in the NLM WSD collection (contin-
ued from Table 4). The word mosaic has two senses that are very closely related and were
assigned the same label M2. The last column shows the number of unlabeled instances avail-
able for each word.

Word # Senses Sense tag frequency # Unlabeled
M1 M2 M3 M4 M5 None instances

lead 3 27 2 - - - 71 7088
man 4 58 1 33 - - 8 3852
mole 4 83 1 0 - - 16 1797
mosaic 4 45 52 * 0 - 3 402
nutrition 4 45 16 28 - - 11 2637
pathology 3 14 85 - - - 1 3217
pressure 4 96 0 0 - - 4 8410
radiation 3 61 37 - - - 2 4386
reduction 3 2 9 - - - 89 15853
repair 3 52 16 - - - 32 3960
resistance 3 3 0 - - - 97 8814
scale 4 0 65 0 - - 35 5719
secretion 3 1 99 - - - 0 7228
sensitivity 4 49 1 1 - - 49 21304
sex 4 15 5 80 - - 0 6522
single 3 1 99 - - - 0 22447
strains 3 1 92 - - - 7 6741
support 3 8 2 - - - 90 16849
surgery 3 2 98 - - - 0 14767
transient 3 99 1 - - - 0 5526
transport 3 93 1 - - - 6 5527
ultrasound 3 84 16 - - - 0 3082
variation 3 20 80 - - - 0 7781
weight 3 24 29 - - - 47 14121
white 3 41 49 - - - 10 4467

features present in such instances will often be an entirely random mixture representing multiple

other unknown senses. This effect will be more pronounced in the cases where the None sense

covers almost 50 percent of the instances or greater. These instances introduce significant noise into

the data. Therefore, for such words the performance of machine learning methods might degrade.

The majority sense for an ambiguous word is the sense that occurs most frequently in a given set

of labeled data. Half of the words in the NLM dataset have a majority sense that covers 80 percent

of the instances, making their sense distribution highly skewed. Finally, a note regarding the word
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Table 6: The sense distribution for the ambiguous abbreviations in the MEDLINE Abbrevia-
tion dataset.

Abbreviation Expansions Count Dominance(%)
APC (2310) Antigen Presenting Cells 1356 58.70

Activated Protein C 479 20.74
Adenomatous Polyposis Coli 430 18.61
Aphidicholin 37 1.60
Atrial Premature Complexes 8 0.0035

ASP (141) Aspartate 60 42.55
Antisocial Personality 54 38.29
Asparaginase 17 12.06
Aspartic Acid 8 5.67
Ankylosing Spondylitis 2 1.42

BPD (906) Bronchopulmonary Dysplasia 465 51.32
Biparietal Diameter 233 25.72
Borderline Personality Disorder 208 22.96

BSA (3162) Bovine Serum Albumin 2,808 88.80
Body Surface Area 354 11.20

DIP (112) Distal Interphalangeal 81 72.32
Desquamative Interstitial Pneumonia 31 27.68

FDP (431) Fibrinogen Degradation Product 382 88.63
Flexor Digitorum Profundus 39 9.05
Fructose Diphosphate 8 1.86
Formycin Diphosphate 2 0.0046

LAM (183) Lipoarabinomannan 103 56.28
Lymphangioleiomyomatosis 56 30.60
Lymphangiomyomatosis 22 12.02
Leukocyte Adhesion Molecule 2 1.09

MAS (112) Meconium Aspiration Syndrome 81 72.32
Mccune Albright Syndrome 31 27.68

mosaic: two of its senses are very closely related, M2 (Mosaicism) and M3 (Embryonic Mosaic).

They were therefore assigned the same label M2 during manual sense tagging. This sense covers 52

instances, which are listed in the column M2.

4.1.2 MEDLINE Abbreviation Dataset

The second dataset that we use in our experiments is the one introduced by Liu et al., [35], con-

taining 15 ambiguous abbreviations. This collection contains automatically sense tagged instances
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Table 7: The sense distribution for the ambiguous abbreviations in the MEDLINE Abbrevia-
tion dataset (continued from Table 6).

Abbreviation Expansions Count Dominance(%)
MAC (862) Mycobacterium Avium Complex 535 62.06

Membrane Attack Complex 231 26.80
Macrophage 40 4.64
Mental Adjustment to Cancer 19 2.20
Monitored Anesthesia Care 19 2.20
Macandrew Alcoholism Scale 18 2.09

MCP (461) Monocyte Chemoattractant Protein 185 40.13
Metoclopramide 157 34.06
Membrane Cofactor Protein 102 22.13
Multicatalytic Protease 9 1.95
Metacarpophalangeal Joint 8 1.73

PCA (1553) Patient Controlled Analgesia 507 32.65
Passive Cutaneous Anaphylaxis 376 24.21
Principal Component Analysis 343 22.09
Para Chloroamphetamine 210 13.52
Posterior Cerebral Artery 112 7.21
Posterior Communicating Artery 5 0.0032

PCP (2225) Phencyclidine 1,071 48.13
Pneumocystis Carinii Pneumonia 812 36.49
Pentachlorophenol 341 15.33
P Chlorophenylalanine 1 0.00044

PEG (70) Polyethylene Glycols 52 74.29
Percutaneous Endoscopic Gastrostomy 18 25.71

PVC (571) Polyvinylchloride 473 82.84
Premature Ventricular Contraction 98 17.16

RSV (1954) Respiratory Syncytial Virus 1,335 68.32
Rous Sarcoma Virus 619 31.68

of ambiguous abbreviations from the MEDLINE abstracts. The approach that was used to create

a superset of this dataset is described in Liu et al. [33], where sense tagged data for 35 three-letter

abbreviations was automatically created using the simple yet effective idea of searching for abbre-

viations that followed in a parenthetical expression after one of their possible expansions obtained

from the UMLS. For example, if a MEDLINE abstract contained the fragment “... Atrial Prema-

ture Complexes (APC) ...”, and Atrial Premature Complexes is known to be one of the possible

expansions of APC from the UMLS knowledge base, then the abstract is selected as a sense tagged
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instance of APC and stored after replacing “Atrial Premature Complexes (APC)” with just “APC.”

The subset of 15 abbreviations that we and Liu et al., [35] utilize was chosen after eliminating 18

abbreviations that had a most frequent sense greater than 90% and one abbreviation EMG that had

three very closely related expansions out of four (exomphalos macroglossia gigantism, electromyo-

graphy, electromyographs and electromyogram), where the last three senses are closely related.

Tables 6 and 7 show the sense distribution for the 15 abbreviations in the MEDLINE abbrevi-

ation dataset. The abbreviation and the total number of its instances are shown in the first column,

then its expansions and associated instance counts are shown in the second and third column re-

spectively. We show the dominance of each expansion in the fourth column, which is simply the

percentage of the total instances that have the given expansion.

4.1.3 Mayo Clinic Abbreviation Dataset

The third dataset that we have used consists of 7,738 instances of 16 ambiguous abbreviations

that have been manually disambiguated. This corpus is derived from the Mayo Clinic database of

clinical notes. Nine of the abbreviations were annotated in a previous study by Pakhomov et al., [45]

while the remaining seven were newly annotated for our work presented in Joshi et al., [26]. The

annotation process was similar to the previously reported one by Pakhomov et al., [45] with the

exception that the current process was based on the entire database of 17 million notes spanning

years 1994–2005 instead of a 1.7 million subset only from the year 2002.

Tables 8 and 9 summarize the data for the 16 abbreviations. The abbreviation and the total

number of instances are shown in the first column, and then the top three expansions and associated

instance counts are shown in the second and third column. If there are more than three expansions

for an abbreviation, then we combine the counts of the remaining expansions into a single row. We

show the dominance of each expansion in the fourth column, which is simply the percentage of the

total instances that have the given expansion.

In the next six sub-sections we describe the six different types of experiments we have per-

formed. For each type of experiment we sub-divide the section according to the dataset used for the

experiment and for each dataset we elaborate on the particular subset of the data used, the experi-
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Table 8: The sense distribution for the ambiguous abbreviations in the clinical notes data from
the Mayo Clinic.

Abbreviation Top 3 Expansions Count Dominance(%)
AC (464) Acromioclavicular 146 31.47

Antitussive with Codeine 139 29.96
Acid Controller 109 23.49
10 more expansions 70 15.08

APC (376) Argon Plasma Coagulation 157 41.76
Adenomatous Polyposis Coli 94 25.00
Atrial Premature Contraction 55 14.63
10 more expansions 70 18.62

LE (615) Limited Exam 291 47.32
Lower Extremity 270 43.90
Initials 44 7.15
5 more expansions 10 1.62

PE (519) Pulmonary Embolism 251 48.36
Pressure Equalizing 160 30.82
Patient Education 48 9.24
12 more expansions 60 11.56

CP (578) Chest Pain 321 55.54
Cerebral Palsy 110 19.03
Cerebellopontine 88 15.22
19 more expansions 59 10.21

HD (254) Huntington’s Disease 142 55.91
Hemodialysis 75 29.52
Hospital Day 22 8.66
9 more expansions 15 5.91

CF (710) Cystic Fibrosis 530 74.65
Cold Formula 101 14.22
Complement Fixation 36 5.07
6 more expansions 43 6.06

MCI (344) Mild Cognitive Impairment 269 78.20
Methylchloroisothiazolinone 34 9.88
Microwave Communications, Inc. 18 5.23
5 more expansions 23 6.69

mental methodology, the results and finally a discussion related to the experiment.
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Table 9: The sense distribution for the ambiguous abbreviations in the clinical notes data from
the Mayo Clinic (continued from Table 8).

Abbreviation Top 3 Expansions Count Dominance(%)
ID (574) Infectious Disease 450 78.40

Identification 105 18.29
Idaho 7 1.21
Identified 7 1.21
4 more expansions 5 0.87

LA (488) Long Acting 385 78.89
Person 53 10.86
Left Atrium 17 3.48
5 more expansions 33 6.76

MI (690) Myocardial Infarction 590 85.51
Michigan 96 13.91
Unknown 2 0.29
2 more expansions 2 0.29

ACA (541) Adenocarcinoma 473 87.43
Anterior Cerebral Artery 62 11.46
Anterior Communication Artery 3 0.006

3 more expansions 3 0.006
GE (591) Gastroesophageal 521 88.15

General Exam 40 6.77
Generose 22 3.72
General Electric 8 1.35

HA (509) Headache 470 92.34
Hearing Aid 30 5.89
Hydroxyapatite 6 1.18
2 more expansions 3 0.59

FEN (80) Fluids, Electrolytes and Nutrition 78 97.5
Drug Fen Phen 1 1.25
Unknown 1 1.25

NSR (405) Normal Sinus Rhythm 401 99.01
Nasoseptal Reconstruction 4 0.99

4.2 Baseline Experiments

The first type of experiments that we have performed on all of our datasets are those that will serve as

the baseline for our experiments using semantic kernel methods. This section describes the baseline

experiments for all three of our datasets.
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Note that as of now we have not performed semantic kernel related experiments on our third

dataset, the abbreviation dataset from the Mayo Clinic. However, we have performed some feature

engineering experiments on that dataset, including use of features specific to the clinical notes and

we will present those results as a baseline for future semantic kernel based experiments that we plan

to perform on the Mayo Clinic abbreviation dataset.

The baseline to compare the results obtained in our baseline experiments is the output of the

majority classifier. A majority classifier simply assigns the most frequently occurring sense of a

word to all the instances. For example, referring to Table 4, the majority classifier would classify

all the 100 instances of the word adjustment as belonging to the sense label M2, thus achieving an

accuracy of 62%.

4.2.1 NLM Dataset

This section presents the results from our previous work [28] on the NLM dataset.

Data The first set of baseline experiments were conducted on the entire collection of 50 am-

biguous words from the NLM dataset. However, in order to evaluate performance of different

feature representations and different off-the-shelf classifiers, we have considered only 30 words out

of 50. The twenty words association, cold, condition, energy, extraction, failure, fluid, frequency,

ganglion, glucose, inhibition, pathology, pressure, reduction, resistance, secretion, single, surgery,

transient and transport were excluded from analysis since none of the classifiers we used could

achieve an improvement of five percentage points or more over the majority classifier. We believe

that in these cases the algorithms could not achieve considerable improvement over the majority

classifier since most of these words have a majority sense that exceeds 80 percent and therefore has

a very skewed distribution which provides few instances of senses other than the majority sense.

Although the word failure does not have an overly skewed distribution, it has a very high number

of instances belonging to the sense None, which might have degraded the performance of classifiers

due to the reason discussed earlier in Section 4.1.1.
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Methodology For each of the 50 words, 2 formations of the datasets were available, one consisting

of the features based on the sentence contexts and the other consisting of the features based on the

abstract contexts.

We have used five different classifiers from the WEKA data mining suite, with their default set-

tings, as the baseline machine learning algorithms: (1) the Support Vector Machine implementation

in WEKA with the default linear kernel, (2) the naı̈ve Bayes classifier, (3) the J48 decision tree

implementation of the C4.5 decision tree algorithm, (4) the PART decision list algorithm and finally

(5) a classifier ensemble approach in the form of the AdaBoostM1 algorithm, using a DecisionS-

tump (a single node decision tree classifier) as the base weak learner. We have performed one run

of 10-fold cross-validation for each classifier.

The features used in these experiments were unigrams and bigrams in the entire available context

of the ambiguous word, that is the entire sentence or the entire abstract. Feature selection for

unigrams was done based on simple elimination of standard English stop words and a frequency

cutoff ranging from two to five. A frequency cutoff of two rejects any unigram feature that occurs

less than two times in the entire set of instances of an ambiguous word. Our bigram features can

be non-contiguous. The two component words of a bigram could occur within some number of

words of each other (a window). A window of three means zero or one other word can occur in

between the component words of the bigram. Similarly a window of four means zero, one or two

other words can occur in between the component words of the bigram and a window of two means

the component words should be contiguous. We varied this window size from two to five for the

bigrams. For bigram feature selection we used the standard English words stop list in a disjunctive

mode, so that a bigram feature is discarded when either one or both the component words of the

bigram are in the stop list. Additionally a frequency cutoff ranging from two to five was applied. In

order to avoid selecting randomly co-occurring bigrams, we also applied the Log Likelihood test to

eliminate insignificant bigrams. The Log Likelihood cutoff values that we used are 3.841 and 6.635,

which correspond to 95% and 99% confidence in the significance of the bigrams respectively.

Thus, in all we performed 18, 000 experiments (50 words × 2 contexts × 5 classifiers) × (4

unigram type features + 4 × 4 × 2 bigram type features).

Note again however that we provide overall evaluation in the Results section below for only 30

58



significant words, corresponding to 10, 800 experiments.

Results We have presented all of our results in the form of graphs comparing the accuracy of

the methods that we have used for various settings. Accuracy is simply the percentage of correctly

classified instances. For evaluating statistical significance of our results, we have used a paired t–

test with a two-tailed confidence interval of 0.05. While reporting our results, we show the 95%

confidence intervals on our graphs and report the corresponding p-values.

Here we present results pertaining to the overall analysis of the 30 significant words. A best

case analysis and detailed results for each significant word can be found in our previous paper [28].

Figures 4 and 5 show the average accuracy of the five classifiers from WEKA across the 30

chosen words and 36 feature representations, in the abstract and the sentence context respectively.

Figures 6 and 7 show the average accuracy obtained using 36 different feature representations

across 30 significant words and five WEKA classifiers, in the abstract and the sentence context

respectively.

The best feature representation for the abstract context was unigrams with a frequency cutoff of

five and for the sentence context was unigrams with a frequency cutoff of four. The improvement

in performance using unigrams over the best type of bigram features is statistically significant (p <

0.01 for the abstract context and for the sentence context). However, the difference between the top

two unigram performances is not statistically significant (p = 0.522 for the abstract context and

p = 0.848 for the sentence context). Figures 8 and 9 show the classifier performance when the best

feature representation mentioned above are used for each of the contexts.

Discussion The general observations that can be made from these baseline experiments are as fol-

lows. First, from Figures 8 and 9, the performance of all classifiers in abstract context is better than

that in the sentence context. Second, as mentioned before unigram features give better performance

across all classifiers.
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NLM Dataset, Classifier Comparison (Abstract context)
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Figure 4: A comparison of the average performance of five classifiers across 30 words from the

NLM dataset and 36 feature representations, with the abstract context. The graph shows the

average accuracy value for each classifier along with the 95% confidence interval using the

error bars.
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NLM Dataset, Classifier Comparison (Sentence context)
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Figure 5: A comparison of the average performance of five classifiers across 30 words from the

NLM dataset and 36 feature representations, with the sentence context. The graph shows the

average accuracy value for each classifier along with the 95% confidence interval using the

error bars.
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NLM Dataset, Feature Comparison (Abstract context)
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Figure 6: A comparison of the average performance of 36 feature representations across 30

words from the NLM dataset and five classifiers, with the abstract context. The graph shows

the average accuracy value for each feature representation along with the 95% confidence

interval using the error bars.
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NLM Dataset, Feature Comparison (Sentence context)
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Figure 7: A comparison of the average performance of 36 feature representations across 30

words from the NLM dataset and five classifiers, with the sentence context. The graph shows

the average accuracy value for each feature representation along with the 95% confidence

interval using the error bars.
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NLM Dataset, Classifier Comparison 
(Abstract context, Unigram features with frequency cutoff = 5)
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Figure 8: A comparison of the average performance of five classifiers across 30 words from

the NLM dataset, using unigram features with a frequency cutoff of five, with the abstract

context. The graph shows the average accuracy value for each classifier along with the 95%

confidence interval using the error bars.
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NLM Dataset, Classifier Comparison 
(Sentence context, Unigram features with frequency cutoff = 4)
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Figure 9: A comparison of the average performance of five classifiers across 30 words from

the NLM dataset, using unigram features with a frequency cutoff of four, with the sentence

context. The graph shows the average accuracy value for each classifier along with the 95%

confidence interval using the error bars.
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4.2.2 MEDLINE Abbreviation Dataset

This section presents the results of using the best feature representation found in the NLM dataset

experiments with the same five machine learning algorithms, on the MEDLINE abbreviation dataset.

Data The MEDLINE Abbreviation dataset described in Section 4.1.2 does not have an accompa-

nying unlabeled dataset as in the case of the NLM WSD collection. We have therefore randomly

split the instances for each abbreviation into two parts – one containing 75% of the instances and

the other containing the remaining 25%. We treat the portion containing 75% of the instances as

unlabeled data, ignoring the sense annotations present in those instances and the remaining 25% as

labeled data for our experiments. In order to have at least 100 labeled instances of each abbrevia-

tion, we only use a subset of ten abbreviations that have 400 instances or more. The abbreviations

that we use are APC, BPD, BSA, FDP, MAC, MCP, PCA, PCP, PVC and RSV.

Methodology We have one dataset for each of the ten abbreviations, containing the entire abstract

in which the abbreviation appears as the context.

We use the same five WEKA classifiers as for the NLM dataset, with the default settings. How-

ever, we have performed ten runs of 10-fold cross-validation for each of the classifiers. For these

experiments we only use the best type of feature representation found in our NLM dataset experi-

ments for the abstract context, unigrams with a frequency cutoff value of five.

Thus, in all we have performed 500 experiments (10 abbreviations × 1 context × 5 classifiers

× 1 unigram type features × 10 runs of 10-fold cross-validation)

Results Figure 10 shows the accuracy of the five classifiers that we have evaluated, averaged over

the ten abbreviations and ten runs of 10-fold cross-validation.

Discussion The naı̈ve Bayes classifier and the Support Vector Machine are clearly the best per-

formers for the MEDLINE abbreviation dataset. SVMs show higher accuracy on average, with a

very low standard error. However, the difference between the naı̈ve Bayes classifier and SVMs is
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MEDABBR Dataset, Classifier Comparison 
(Unigram features with frequency cutoff = 5)

60

65

70

75

80

85

90

95

100

NAÏVE BAYES DECISION TREES DECISION LIST SVM ADABOOSTM1

Classifier

A
cc

u
ra

cy
 (

%
)

Figure 10: A comparison of the average performance of five classifiers across 10 abbreviations

from the MEDLINE dataset, using unigram features with a frequency cutoff of five. The

graph shows the average accuracy value for each classifier, along with the 95% confidence

interval using the error bars.
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not statistically significant on these set of observations (p = 0.092). Both the naı̈ve Bayes classifier

and SVMs show statistically significant improvement over the next best algorithm, which is the

decision tree learner (p < 0.001 for the naı̈ve Bayes classifier and for SVMs).

4.2.3 Mayo Clinic Abbreviation Dataset

In this section, we present results on the dataset of ambiguous abbreviations from the Mayo Clinic.

The first set of experimental results are those presented in Joshi et al., [26]. The second set of

experiments include the use of features specific to the domain of clinical notes.

Data The data used for the first set of experiments is the entire collection of 16 abbreviations from

the Mayo Clinic database of clinical notes. The second set of experiments are conducted on a subset

of nine acronyms – AC, ACA, APC, CF, HA, HD, LA, NSR and PE.

Methodology In both the set of experiments we have used three WEKA classifiers – the decision

tree classifier J48, the naı̈ve Bayes classifier and the linear kernel SVMs with their default settings,

performing one run of 10-fold cross-validation. For both sets of experiments, we have focused on

the feature engineering aspect for this dataset.

In all the experiments on the Mayo Clinic abbreviation dataset, the bigram features are contigu-

ous (i.e., no other words can be present in between the component words of the bigram).

For the first set of experiments, we have used the following type of features, individually by

themselves and then combining them all together. First, we use unigrams occurring within some

window size of words around the ambiguous abbreviation. The window size we have used is five

words to the left and five words to the right of the abbreviation, not crossing the boundary of the

context for an abbreviation, where the context is one clinical note record in the database (i.e., we

do not use words from previous or following notes). Our windowing approach is a flexible window

approach as we do not physically fix the window to five words, but allow it to be flexible and expand

beyond five positions when the intermediate words are rejected by the unigram selection criteria.

The unigram selection criteria uses a frequency cutoff value of five. Second, we use bigrams within
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a flexible window of five along with a frequency cutoff value of five. Third, we use Parts-of-Speech

tags of two words to the left and to the right of the ambiguous abbreviation as well as the Part-of-

Speech tag of the abbreviation itself as features. Finally, we also use a combination of all of the

above three feature representations.

For the second set of experiments that was conducted on a subset of nine abbreviations out of

16, our aim was first to evaluate if using the flexible window improved performance and second to

make use of features specific to the clinical notes domain and verify if they improved accuracy.

For comparing flexible and fixed window approaches, we make use of unigram features with a

frequency cutoff of five and fixed and flexible window sizes ranging from one through ten. Similarly

for bigrams we use a frequency cutoff of five, a log-likelihood score cutoff of 3.842 (corresponding

to the 95% confidence in significance of bigrams) and fixed and flexible window sizes ranging from

one through ten. Finally, we have combined the unigram and bigram features in the corresponding

window sizes, that is unigrams and bigrams with frequency cutoff of five, and a Log Likelihood

score cutoff of 3.841 for bigrams and fixed and flexible window sizes ranging from one through ten.

For evaluating the impact of features specific to clinical notes, we chose three feature configura-

tions from the above set of flexible window experiments, one corresponding to the best performance

of each of the classifiers. The three configurations were unigrams and bigrams in a flexible window

of two, nine and ten. We have made use of three clinical-notes related features. First is the gender

code of the patient (M/F) associated with the clinical note in which the abbreviation occurs. Second

is the department code from where the clinical note originated. Third is the section identifier inside

the clinical note in which the abbreviation has occurred.

Apart from the clinical note features, we also added Part-of-Speech tags of two words to the

left and right of the abbreviation and that of the abbreviation itself as features in the second set of

experiments.

Results The baseline that we have used for these experiments is the majority classifier accuracy,

which is shown as a dotted line in each of our result graphs for the first set of experiments. Figures

11 through 13 show the accuracy values for the three classifiers for three groups of abbreviations

(based on their average majority sense), for the four feature representations we have used.
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MAYOABBR Dataset, Feature and Classifier Comparison
(AC, APC, LE, PE)
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Figure 11: A comparison of the average performance of three classifiers and four feature repre-

sentations across four abbreviations from the Mayo Clinic dataset, having majority sense less

than 50%. The graph shows the average accuracy for each “classifier-feature representation”

combination.
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MAYOABBR Dataset, Feature and Classifier Comparison 
(CP, HD, CF, MCI, ID, LA)
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Figure 12: A comparison of the average performance of three classifiers and four feature rep-

resentations across six abbreviations from the Mayo Clinic dataset, having majority sense

between 50% and 80%. The graph shows the average accuracy for each “classifier-feature

representation” combination.
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MAYOABBR Dataset, Feature and Classifier Comparison 
(MI, ACA, GE, HA, FEN, NSR)
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Figure 13: A comparison of the average performance of three classifiers and four feature rep-

resentations across six abbreviations from the Mayo Clinic dataset, having majority sense

greater than 80%. The graph shows the average accuracy for each “classifier-feature repre-

sentation” combination.
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MAYOABBR Dataset, Fixed vs. Flexible Window Comparison
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Figure 14: A comparison of the fixed and flexible window approach for window sizes ranging

from one through ten. The graph shows the average accuracy value across a subset of nine

abbreviations from the Mayo Clinic dataset and three classifiers, for each fixed and flexible

window size used.
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MAYOABBR Dataset, Feature Comparison
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Figure 15: A comparison of features specific to clinical notes and Part-of- Speech tag features

with unigram and bigram features. The graph shows average accuracy value for each feature

representation, along with the 95% confidence interval using the error bars.
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For the second set of experiments, Figure 14 shows the comparative performance of the fixed

and flexible windows for sizes ranging from one through ten. The accuracy values are averaged

across all the nine abbreviations and the three classifiers.

Figure 15 shows the comparative performance of clinical notes specific features (indicated by

CF in the graph) and the Part-of-Speech tag features (indicated by POS) in the graph, when they are

introduced in addition to the unigram and bigram features. The accuracy values are averaged across

all the nine acronyms, three classifiers and the three window sizes of two, nine and ten.

Discussion For the first set of experiments on all of the 16 abbreviations, in general all of the

learning algorithms and feature representations improve upon the majority classifier to a significant

degree, unless the Majority classifier already attains an average accuracy of approximately 92%

(Figure 13). In this case, it means that the data for a particular abbreviation is heavily skewed to

one dominant sense, and there are relatively few training examples for the other expansions, making

it difficult to outperform the majority classifier. Among the three classifiers, SVMs show the best

performance with statistically significant improvement over the naı̈ve Bayes classifier (p < 0.005).

Among the most striking results is the relatively high accuracy obtained by simply using Part-

of-Speech tag features. While this does not rival the highest accuracy, this does consistently result

in accuracy that is significantly greater than that of the majority classifier, which is the standard

baseline for supervised learning performance. This suggests that using relatively simple syntactic

information in addition to the lexical features can be an important factor in improving supervised

abbreviation expansion results. Mohammad and Pedersen [40] have employed this idea for the task

of WSD in general English domain.

In the result graphs we also observe that unigrams perform at nearly peak accuracy for all

abbreviations. However the combination of unigrams, bigrams and part of speech features results

in a slightly higher accuracy that is statistically significant for this dataset with p < 0.005. The

combined feature set is dominated by unigram performance, with relatively small improvements

due to the inclusion of the part of speech and bigram features.

When used on their own, bigrams underperformed unigrams and combined features to a sig-

nificant degree. We believe that this might have been due to our reliance on a frequency cutoff to
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identify significant bigrams, which can also be identified using statistical tests of association such

as the Log Likelihood ratio, which might make these features more informative and less noisy.

For the second set of experiments on the subset of nine abbreviations, Figure 14 shows a clearly

significant improvement in the accuracy of bigram features with a flexible window (p < 0.001). The

improvement is also significant for unigram features and the combined unigram and bigram feature

set, with p < 0.001 for both. This demonstrates the general utility of using a flexible window over

a fixed window size.

Finally, the evaluation of features specific to clinical notes does not show significant improve-

ment over the basic unigram and bigram features (p = 0.495) and neither does adding Part-of-

Speech tag features show any significant improvement by itself (p = 0.174). However, combining

these two features in addition to the unigrams and bigrams does show a significant improvement

(p < 0.05).

4.2.4 Baseline Experiments Summary

Overall, we found that using the wider abstract context for the NLM dataset yields better accuracy

than using the smaller sentence context. Unigram features with a frequency cutoff of five was the

best feature representation and SVMs and the naı̈ve Bayes classifier were the best classifiers. We

employed the best feature representation from our NLM dataset experiments on the MEDLINE

abbreviation dataset and have obtained a competitive baseline for our kernel experiments on this

dataset. For our feature engineering experiments on the Mayo Clinic abbreviation dataset, we found

that a combination of unigram and bigram features in a flexible window around the abbreviation,

with Part-of-Speech features and features specific to clinical notes such as gender code, department

code and section identifier obtains the best accuracy.

4.3 Kernel Experiments

In this section we describe the experiments that we have performed on the NLM WSD dataset and

the MEDLINE abbreviation dataset using our semantic kernels. The goal of these experiments is to

compare the accuracy obtained by our semantic kernels with the accuracy of the five classifiers that
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we have used in our baseline experiments.

4.3.1 NLM Dataset

Data For our kernel experiments, we have chosen a subset of the NLM dataset consisting of the

eleven words adjustment, blood pressure, evaluation, growth, immunosuppression, japanese, man,

mosaic, nutrition, radiation and white. These words were selected based on the criteria that the

majority sense of the selected words should not exceed 75% and the None sense of the selected

words should not exceed 25%.

Methodology For the labeled examples in our kernel methods, we have chosen a feature set of 20

feature representations from the 36 feature representations described in the baseline experiments on

the NLM dataset. The 16 feature configurations that were rejected were those of bigram features

with Log Likelihood score cutoff of 6.635 along with all of its window size and frequency cutoff

combinations. This was done because the Log Likelihood cutoff of 6.635 was too strict and rejected

many useful bigram features, thus degrading the performance.

For every supervised feature configuration, we experimented with four types of kernels – LSA

kernels with unigram features, LSA kernels with bigram features, LSA kernels with co-occurrence

features and finally Association kernels with bigram features.

For each of the kernel types, we experimented with the size of the context around the ambiguous

word to use for learning from unlabeled data (called as the training context) and the size of the con-

text to use from the labeled data to evaluate context similarity (called as the test context). We used

training context sizes of 100, 50 and 25 words around the ambiguous word and test context sizes of

10, 5 and 2 words around the ambiguous word, resulting in nine combinations. Additionally we also

trained and tested on the entire contexts, adding one more configuration to the nine combinations.

The unigram features for LSA kernels were selected using frequency cutoff values of 2, 5, 10

and 15. The bigram and co-occurrence features for LSA kernels were selected using frequency

cutoff values of two and five. Finally, the bigram features for the Association kernels were selected

using frequency cutoff values of 2, 5, 10 and 15. Thus, overall we show results for 12 kernels (four
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unigram LSA kernels, two bigram LSA kernels, two co-occurrence LSA kernels and four bigram

Association kernels).

Results Each of the 12 kernels above has been used with all the 20 feature representations of

the labeled data. However, ere we present the result graphs created using only the best supervised

feature representation for the abstract context baseline results, the unigram features with frequency

cutoff of five. The intention is to evaluate how much better the kernel methods can perform beyond

what can be achieved using the best feature configuration for off-the-shelf algorithms.

Figures 16 through 27 present the average accuracy obtained by our 12 kernels across all the

eleven words, when using unigrams with frequency cutoff equals five as the feature set from the

labeled data.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Unigram features, cutoff = 2, various training, test scopes)
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Figure 16: A comparison of the unigram based LSA kernels (frequency cutoff of two) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words in

the NLM dataset, for each unigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Unigram features, cutoff = 5, various training, test scopes)
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Figure 17: A comparison of the unigram based LSA kernels (frequency cutoff of five) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words in

the NLM dataset, for each unigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Unigram features, cutoff = 10, various training, test scopes)
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Figure 18: A comparison of the unigram based LSA kernels (frequency cutoff of ten) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words in

the NLM dataset, for each unigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Unigram features, cutoff = 15, various training, test scopes)
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Figure 19: A comparison of the unigram based LSA kernels (frequency cutoff of 15) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words in

the NLM dataset, for each unigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Bigram features, cutoff = 2, various training, test scopes)
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Figure 20: A comparison of the bigram based LSA kernels (frequency cutoff of two) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each bigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Bigram features, cutoff = 5, various training, test scopes)
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Figure 21: A comparison of the bigram based LSA kernels (frequency cutoff of five) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each bigram LSA kernel and WEKA classifier, along with the 95%

confidence interval using the error bars. Comma separated numbers on the classifier axis

indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Co-occ features, cutoff = 2, various training, test scopes)
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Figure 22: A comparison of the co-occurrence based LSA kernels (frequency cutoff of two)

with the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each co-occurrence LSA kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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NLM Dataset, LSA Kernel Comparison with Baseline results
(Co-occ features, cutoff = 5, various training, test scopes)
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Figure 23: A comparison of the co-occurrence based LSA kernels (frequency cutoff of five)

with the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each co-occurrence LSA kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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NLM Dataset, ASSOC Kernel Comparison with Baseline results
(Bigram features, cutoff = 2, various training, test scopes)
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Figure 24: A comparison of the bigram based association kernels (frequency cutoff of two)

with the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each bigram association kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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NLM Dataset, ASSOC Kernel Comparison with Baseline results
(Bigram features, cutoff = 5, various training, test scopes)
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Figure 25: A comparison of the bigram based association kernels (frequency cutoff of five)

with the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each bigram association kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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NLM Dataset, ASSOC Kernel Comparison with Baseline results
(Bigram features, cutoff = 10, various training, test scopes)
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Figure 26: A comparison of the bigram based association kernels (frequency cutoff of ten)

with the baseline WEKA classifiers. The graph shows average accuracy value across 11 words

in the NLM dataset, for each bigram association kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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NLM Dataset, ASSOC Kernel Comparison with Baseline results
(Bigram features, cutoff = 15, various training, test scopes)
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Figure 27: A comparison of the bigram based association kernels (frequency cutoff of 15) with

the baseline WEKA classifiers. The graph shows average accuracy value across 11 words in

the NLM dataset, for each bigram association kernel and WEKA classifier, along with the

95% confidence interval using the error bars. Comma separated numbers on the classifier

axis indicate the size of the training and test contexts used.
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Figure 28 shows the comparison of accuracy of the best unigram LSA kernel (which uses uni-

gram features from unlabeled data with a frequency cutoff of two and training scope of 100 and test

scope of ten, shown in the graph as “LSA, UNI, cutoff = 2, 100, 10”) and the best bigram Association

kernel (which uses bigram features from the unlabeled data with a frequency cutoff of ten and uses

the entire contexts for the training as well as test scope, shown in the graph as “ASSOC, BI, cutoff

= 10”), for each of the 11 words that we have used for our kernel experiments. We compare them

with the performance of the baseline linear kernel SVM learner (shown in the graph as SVM).

Discussion The best baseline performers for the subset of eleven words are again the SVMs and

the naı̈ve Bayes classifier. In all the results graphs, if we compare the accuracies of the best kernel

combination with each of the naı̈ve Bayes classifier and the baseline SVM, then we see a slight

improvement. However these improvements in general are not statistically significant. The im-

provements come close to being statistically significant in almost all cases (p values close to 0.1),

but do not meet the criterion. One thing to note however is that our baseline estimates have been

derived only from one run of 10-fold cross-validation, however our kernel results are derived from

averaging 10 runs of 10-fold cross-validation. So there is a chance that the baseline estimates are

in fact lower, making the improvement significant. However, this is speculative until established

through experiments.

We can see from Figure 28 that both of our best semantic kernels show significant improve-

ment in accuracy for the words blood pressure evaluation, immunosuppression, mosaic and nutri-

tion (p < 0.05 for both the unigram LSA kernel and for the bigram Association kernel). This

does not correlate to the number of unlabeled instances that we have for each of the words above

(blood pressure has 4,767, evaluation has 11,523, immunosuppression has 954, mosaic has 402 and

nutrition has 2637). We also note that performance has in fact decreased due to semantic kernels for

the word man which has as many as 3,852 unlabeled instances (significantly greater than those for

immunosuppression or mosaic). We therefore conclude that the accuracy of kernel methods based

on unlabeled text depends highly on the quality of the unlabeled data rather than quantity. This is

an intuitive conclusion since the noise in the unlabeled data will determine the quality of semantic

relationships learned from it, which will directly affect performance. However, what we think is

crucial is that even a small amount of high quality unlabeled data can improve performance of SVM
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NLM Dataset, Per Word Comparison of Best LSA and ASSOC kernels 
with Linear SVM Baseline
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Figure 28: A comparison of the best unigram based LSA kernel, the best bigram based As-

sociation kernel and the baseline WEKA SVM learner, for each word in the NLM dataset.

The graph shows the accuracy of each kernel and the WEKA SVM learner for each of the 11

words.
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learners significantly, as shown in case of the words immunosuppression and mosaic.

Another trend that we note is that among the five words for which our semantic kernels have

significant performance improvements, the sense distribution is balanced for four words, except for

the word nutrition. The other four words have two predominant senses in almost equal proportion.

We believe this is might indicate that the unlabeled instances for these words also had a similar

sense distribution as the labeled instances, which helped our kernel methods to learn the distinction

between the predominant senses better.

4.3.2 MEDLINE Abbreviation Dataset

We now present semantic kernel results on the MEDLINE abbreviation dataset. The goal in these

experiments is to evaluate using the MEDLINE abbreviation dataset, the generality of the best

feature configuration and the best kernel methods that we have found from the NLM dataset. Note

that both the NLM dataset and the MEDLINE abbreviation dataset are derived from the MEDLINE

collection of abstracts and therefore we hypothesize that the best configuration from our NLM

dataset experiments will translate well on this dataset as well.

Data We use the same set of ten abbreviations as in the baseline experiments. As mentioned

before, we do not have an unlabeled set of instances for the MEDLINE abbreviation dataset. We

therefore randomly split the instances of an abbreviation into two sets, one containing 75% of the

instances and the other containing the remaining 25% of the instances. These sets are identical

across our baseline and kernel experiments. We utilize the set containing 75% of instances of each

abbreviation as unlabeled instances and the set containing the remaining 25% of the instances as

labeled data.

Methodology For the kernel experiments on the MEDLINE abbreviation dataset, we have only

chosen the best feature configurations for labeled data, that is unigrams with frequency cutoff of

five, and the best unigram LSA kernel and the best bigram Association kernel, based on the average

accuracy value. The kernels chosen were the unigram LSA kernel with frequency cutoff of two,

training scope of 100 and test scope of 10 and the bigram Association kernel with frequency cutoff
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value of ten.

Results Figure 29 shows the comparison of the accuracy of our unigram LSA kernel and the

bigram Association kernel with the baseline classifier accuracies shown earlier in Figure 10.

Figure 30 shows the comparison of the two kernels with the default linear kernel SVM, for each

of the abbreviations in our dataset.

Discussion Both the unigram LSA kernel and the bigram Association kernel show significant

improvement over the baseline results and improve upon the best baseline SVM learner (p < 0.005).

Both the kernels have the same average accuracy over the abbreviation dataset. This improvement

in accuracy verifies our hypothesis that the best configuration on the NLM dataset should also show

good performance on the MEDLINE abbreviation dataset which is similar to the NLM dataset in

some respects, since both the dataset originate from the MEDLINE abstracts.

4.4 Summary

The goal of our experiments is to initially establish a competitive baseline for our semantic kernels,

using various off-the-shelf classifiers and the best possible feature representation, and then compare

the accuracy obtained using our semantic kernels with this baseline. We also focus on the feature

engineering aspect of the abbreviation disambiguation task in the domain of clinical notes.

In our baseline experiments we have found that in general a wider context helps in improving

accuracy on the task of WSD. The best feature representation was unigram features with a frequency

cutoff of five. The best classifiers among the five classifiers that we evaluated for the baseline were

the SVMs and the na”ive Bayes classifier.

Our semantic kernel experiments were performed by using the best feature representation found

in our baseline experiments. We found that among the two classes of kernels that we evaluated,

unigram LSA kernels and bigram Association kernels both improve the accuracy of WSD and ab-

breviation expansion. The improvement on NLM dataset is significant for words that have a bal-

anced sense distribution. The improvement is not correlated to the number of unlabeled instances
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MEDABBR Dataset, Comparison of Best LSA and Association Kernels 
with Baseline
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Figure 29: A comparison of the best unigram LSA kernel and the best bigram association

kernel with baseline WEKA classifiers on the MEDLINE abbreviation dataset. The graph

shows the average accuracy of each kernel and the WEKA classifiers across ten abbreviations,

along with the confidence interval using the error bars.
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MEDABBR Dataset, Per Abbreviation Comparison of Best LSA and 
ASSOC kernels with Linear SVM Baseline
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Figure 30: A comparison of the best unigram LSA kernel, the best bigram association kernel

and the baseline WEKA SVM learner, for each abbreviation in the MEDLINE abbreviation

dataset. The graph shows the accuracy of each kernel and the WEKA SVM learner for each

of the ten abbreviations.
96



available for a word.

In our feature engineering experiments on the Mayo Clinic abbreviation dataset we found that

unigram and bigram features in a flexible window, along with Part-of-Speech tag features and fea-

tures specific to clinical notes such as gender code, department code and section identifier gave the

best accuracy. In particular, the flexible window approach showed significant improvement over the

commonly used fixed window approach, for all feature representations.
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5 Related Work

In this chapter we give an overview of previous work in addition to what has been detailed in the

Background section.

We divide this chapter into three sub-sections. First we note related work on semantic kernels.

Then we describe previous work that uses the NLM WSD collection that we have used for most

of our experiments. Finally we include related work with respect to WSD in the general English

domain that uses Support Vector Machines.

5.1 Previous Work on Semantic Kernels for WSD

Gliozzo et al., [19] have presented domain kernels for word sense disambiguation. Their key notion

is to make use of domain knowledge while performing word sense disambiguation. An example

they discuss is the ambiguity of the word virus. A virus can mean “a malicious computer program”

in the domain of computers or “an infectious agent which spreads diseases” if we switch to the

domain of medicine. Gliozzo et al. propose a domain matrix (with words along the rows and

domains along the columns) that consists of soft clusters of words in different domains. A word

can belong to multiple domains with different probabilities – thus representing word ambiguity,

whereas a domain can contain multiple words – thus representing its variability. They make use

of the fully unsupervised approach of Latent Semantic Analysis (LSA) to automatically induce a

domain matrix from raw text corpus. This domain matrix is used in transforming the conventional

term by document vector space model into a term by domain vector space model, where the domains

are the ones induced by LSA. This is called the domain vector space model. They define a domain

kernel function which evaluates distances among two words by operating upon the corresponding

word vectors obtained from this domain vector space model. Traditionally these vectors are created

using Bag Of Words (BOW) or Part-of-Speech (POS) features of words in surrounding context.

The kernels using these traditional vectors are referred as the BOW kernel and the POS kernel

respectively. Using the domain kernels, Gliozzo et al. have demonstrated significant improvement

over BOW and POS kernels. By augmenting the traditional approach with domain kernels, their

results show that only 50 percent of the training data is required in order to attain the accuracy

98



offered by purely traditional approaches, thus reducing the knowledge acquisition bottleneck to a

great extent.

Our work differs from Gliozzo et al., [19] in that we have proposed a generalization of their

domain kernels based on different types of features used to create the domain matrix. Additionally

we have used a word co-occurrence data representation proposed by Purandare and Pedersen [49]

to develop Association kernels.

5.2 Previous Work on NLM WSD Collection

The National Library of Medicine (NLM) WSD collection is a set of 50 ambiguous medical terms

collected from medical journal abstracts. It is a fairly new dataset and has not been extensively

explored. Following is related work connected to this collection.

Liu et al., [35] evaluate the performance of various classifiers on two medical domain datasets

and one general English dataset. The classifiers that they have considered include traditional de-

cision lists, their adaptation of the decision lists, the naı̈ve Bayes classifier and a mixed learning

approach that they have developed. Their features included combinations of: (1) unigrams in vari-

ous window sizes around the ambiguous word with their orientation and distance information and

(2) two-word collocations (word co-occurrences) in a window size of two on either side of the am-

biguous word, and not including the ambiguous word. The general biomedical term dataset that they

used is a sub-set of the NLM WSD data collection that we have used for our experiments. They

achieved the best results for the medical abbreviation dataset using their mixed learning approach

and the naı̈ve Bayes classifier. No particular combination of features, window size and classifiers

provided stable performance for all the ambiguous terms. They therefore concluded that the various

approaches and feature representations were complimentary in nature and as a result their mixed

learning approach was relatively stable and obtained better results in most of the cases.

Our work differs from the work of Liu et al., [35] in two respects. First we have made use of a

different subset of the NLM dataset and the MEDLINE abbreviation dataset. Second, we focus on

the semi-supervised learning aspect of the WSD problem to make use of unlabeled data instances

in improving accuracy on WSD, unlike the purely supervised approach take by Liu et al., [35].
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Leroy and Rindflesch [31] explore the use of symbolic knowledge from the UMLS ontology for

disambiguation of a subset of the NLM WSD collection. The basic features of the ambiguous word

that they use are: the status of the ambiguous word in the phrase, whether it is the main word or

not, and its part of speech. Unlike many BOW approaches which use the actual words in context as

features, they make use of just the semantic types of words in the context as features. Additionally

they also use semantic relations among the semantic types of non-ambiguous words. Finally, they

also make use of the semantic relations of the ambiguous type with its surrounding types. The

semantic types and their relations are derived from the UMLS ontology. Using the naı̈ve Bayes

classifier from the Weka data mining suite [55], their experiments were performed with incremental

feature sets, thus evaluating the contribution of new features over the previous ones. They achieved

significant improvements over the majority sense baseline in some cases, but observed degradation

of performance in others. In general it was not the case that a maximum set of features yielded

the best results. However, semantic word features in context and their relationship with the various

senses of the ambiguous word were useful along with the information about whether the ambiguous

word was the main word or not. Therefore this approach can possibly be used in combination with

the conventional BOW approaches to improve the results.

Our approach differs from that of Leroy and Rindflesch [31] with respect to the source of ex-

ternal knowledge that has been used and also in the approach that uses this external knowledge.

Leroy and Rindflesch [31] use a medical ontology to augment the feature set for the naı̈ve Bayes

classifier. We make use of unsupervised methods that derive semantic relationships from purely

unlabeled corpora, and use these relationships to define semantic kernels for SVMs. Also, creation

of a medical ontology involves significant manual effort, which is not required for raw text corpora.

5.3 Previous Work on SVMs and WSD in the General English Domain

In the last several years, a number of researchers have explored the use of Support Vector Machines

in general English word sense disambiguation.

Cabezas et al., [7] present a supervised word sense tagger using Support Vector Machines. Their

system was designed for performing word sense disambiguation independent of the language of

lexical samples provided for the SENSEVAL-2 task. A lexical sample for an ambiguous word is a
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corpus containing several instances of that word, having multiple senses. Their system identified

two types of features: unigrams in a wider context of the ambiguous word, and up to three words on

either side of the ambiguous word with their orientation and distance with respect to the ambiguous

word. The second feature captures the collocations containing the ambiguous word, in a narrow

context around the word. Cabezas et al. use the term collocations to mean word co-occurrences

unlike the more conventional linguistic sense which defines collocations as two or more words that

occur together more often than by chance. These features were weighed according to their relevance

for each ambiguous word, using the concept of Inverse Category Frequency (ICF) where the ICF

score of a feature is higher when it is more representative of any particular sense. For multi-class

classification of words having more than two senses, they employed the technique of building a

“one against all” classifier for each of the senses. In this method, the classifier for a given sense

categorizes all the instances into two classes:- one that represents the given sense and the other that

represents anything that does not belong to the given sense. For any ambiguous word, the sense that

is assigned is the one whose classifier voted for that sense with highest confidence. Their results

show a convincing improvement over baseline performance.

Lee et al., [30] use Support Vector Machines to perform Word Sense Disambiguation for general

English and for translating an ambiguous English word into its Hindi equivalent. They have made

use of all the features available from the following knowledge sources: (1) Parts Of Speech (POS) of

up to three words around the ambiguous word and POS of the ambiguous word itself, (2) morpho-

logical root forms of unigrams in the entire context, with function words, numbers and punctuations

removed, (3) collocations, that is word co-occurrences consisting of up to three words around the

ambiguity and (4) various syntactic relations depending upon the POS of the ambiguous word. They

make use of all the extracted features and do not perform any kind of feature selection, that is they

do not use any statistical or information gain measures to refine their feature set. Additionally, they

have also used (5) the English sense of ambiguous words as a feature for the translation task, which

improved their system’s performance. They have made use of the SVM implementation available

in the WEKA data mining suite [55], with the linear kernel and default parameter values. This is

the exact configuration that we have used for our experiments. The results that they obtained for the

general English corpus were better than those obtained for the translation task.
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Ngai et al., [43] propose a supervised approach to semantic role labeling. The FrameNet cor-

pus [4] is an ontologically structured lexical database that consists of semantic frames, lexical units

that activate these frames, and a large corpus of annotated sentences belonging to the various seman-

tic frames. A semantic frame is an abstract structure relating to some event or concept and includes

the participant objects of the event or concept. These participant objects are known as frame el-

ements. Frame elements are assigned semantic types wherever appropriate. A lexical unit is any

word in a sentence (often the verb, but not necessarily so) that determines the semantic frame the

sentence belongs to. For example, FrameNet has a semantic frame titled Education teaching, two

of its frame elements being Teacher and Student which have the semantic type Sentient. Some of

the lexical units which activate this frame are coach, educate, education, teach and instruct. Ngai et

al. propose to solve the problem of semantic role labeling of sentence parse constituents by posing

it as a classification task of assigning the parse constituents to the appropriate frame element from

the FrameNet corpus. This is in principle similar to our task where we aim at classifying words

into different concepts as defined in the Unified Medical Language System (UMLS) repository,

which is to some extent more “coarse” than word sense disambiguation in the conventional sense.

They make use of the following types of features: lexical and syntactic features available from the

FrameNet ontology, such as the lexical identity of the target word, its POS tag, syntactic category

and extracted features such as the transitivity and voice of verbs, and head word of the parse con-

stituent. They have tested different machine learning methods including SVMs, Maximum Entropy

classifier, Sparse Network of Winnows (SNOW) and decision lists, individually as well as their

ensembles (i.e., additive learning methods). Their best results from SVMs were obtained with poly-

nomial kernel with degree four. For multi-class classification, they too have used the “one against

all” approach. Although SVMs were not the best individually due to their comparatively lower re-

call scores, they obtained very high precision values and were part of the classifier ensemble that

gave the best results.

The primary difference between all of the three works above and our work is that we make use

of unlabeled data for generating semi-supervised semantic kernels, whereas the three works above

are examples of purely supervised machine learning approaches.

102



6 Future Work

In this chapter we outline some possible future avenues of research based on the work done so far.

We categorize the future directions into two groups. The first group is related to extension of the

kernel methods that we have implemented. The second group is related to the feature engineering

aspect of Word Sense Disambiguation and the abbreviation expansion problem and also general

ideas from Machine Learning.

6.1 Kernel Methods

For our Latent Semantic Analysis kernels, we currently utilize a domain matrix consisting of feature

vectors along the rows and context vectors along the columns. For evaluating the similarity of any

two contexts, we average together those feature vectors from our domain matrix. Another intuitive

way of evaluating similarity of the two contexts would be to compute a vector for each of the two

contexts that consists of the context’s similarity values with each of the documents in the domain

matrix representation. For example, if we generate a domain matrix of n features along the rows

and k “contexts” along the columns (these are not the original contexts, but abstract concepts after

the process of Singular Value Decomposition), then we have n−dimensional feature vectors for

each of the abstract contexts. Given two new contexts to analyze, we should represent them as

n−dimensional feature vectors using the same features along the rows of the domain matrix. Each

of the two new context vectors should then be analyzed for similarity with the k abstract context

vectors. This will yield k similarity values for each of the two new contexts, which can be expressed

as k−dimensional similarity vectors. Once we have these similarity vectors for each of the contexts,

the similarity between those vectors can be evaluated to yield a similarity value for the two contexts.

This similarity value will be the semantic kernel function value for the two contexts.

As of now we simply add the semantic kernel value to the default linear kernel outcome. One

possible extension is to use a different off-the- shelf kernel in the addition, such as adding the

semantic kernel to the polynomial kernel. Another possible extension would be to transform the

semantic kernel using polynomial or Gaussian functions as done by Cristianini et al., [9].
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We would like to develop semantic kernels based on shallow syntactic features obtained from

a shallow parser, in addition to the unlabeled corpora. The idea is to analyze the shallow parses

of the contexts of an ambiguous word for similarity, using the concept of “edit distance”, which

measures the number of changes that one would have to perform in order to convert one shallow

parse representing a context into the other shallow parse representing another context. This is an

attractive option given that shallow parsing can be done with fairly high accuracy and the fact

that Part-of-Speech features by themselves performed very well on the abbreviation disambiguation

dataset from the Mayo Clinic.

6.2 Feature Engineering

As in the case of kernel method improvements, we would like to make use of shallow syntactic

features from the context of an ambiguous word or abbreviation.

For the problem of abbreviation expansion, we believe that there is a good chance that even if

the entire abbreviation expansion does not appear in context, one or more words from the expan-

sion do. For example, for the abbreviation PVC, we have observed that when the correct expansion

is Polyvinyl Chloride, then the word chloride tends to occur in the context of the abbreviation fre-

quently. We would first like to verify the generality of this belief using elementary statistical analysis

and if found valid, would like to make better use of such special features for abbreviation expansion.

From a general Machine Learning perspective, we would like to apply our methods to a bigger

set of data and test their generality. We would also like to compare our approach with a wider

variety of machine learning methods such as Bayes Net learning and Boosting approaches other

than AdaBoostM1.
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7 Conclusions

Word Sense Disambiguation (WSD) is the problem of automatically deciding the correct sense

of an ambiguous word based on its surrounding context. Automatic abbreviation expansion for

abbreviations that have multiple possible expansions can be treated as a WSD problem with the

multiple expansions acting as “senses” for the abbreviation.

The most popular approaches to WSD rely on supervised machine learning methods, where

a machine learning classifier is required to be trained on manually labeled training instances, to

generate a classifier model that can be used to classify future instances. These methods however

face the problem of knowledge acquisition bottleneck, where the amount of labeled data provided

to the classifiers is limited.

The goal of this thesis is to explore kernels for Support Vector Machines developed using unsu-

pervised methods that can learn semantic relationships from unlabeled data. We have applied our

kernel methods to the problems of word sense disambiguation and automatic abbreviation expansion

in texts relating to the medical domain. We have developed two classes of semantic kernels based

on existing unsupervised learning methods and their variations. The first class of Latent Semantic

Analysis (LSA) kernels is a generalization proposed on existing LSA based kernels [9, 19] . The

second class of Word Association kernels is based on existing unsupervised methods [49] that learn

word correlation-ships from unlabeled data.

Additionally we also focus on the feature engineering aspect of the WSD problem for medical

domain, especially for the domain of clinical notes at the Mayo Clinic. We have made use of feature

specific to the domain of clinical notes and introduced a flexible window approach to capture word

features in context of the ambiguous word. The features we have used are the gender code of the

patient corresponding to the clinical note, the department code of the department from where the

clinical note originated and the section identifier of the section of the clinical note in which the

abbreviation occurs.

Based on our semantic kernel experiments on the medical domain datasets, we conclude that

kernel methods based on unlabeled text to incorporate external knowledge into SVM learners are

able to achieve higher accuracy on the task of WSD in the medical domain, provided that the quality
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of the unlabeled data is good. We have found that some words with a small number of unlabeled in-

stances showed significant improvements using kernel methods, whereas words with a large number

of unlabeled instances sometime showed a degradation in performance. This is currently a prob-

lem with our kernel methods and we would like to adapt our methods to prevent degradation in the

baseline performance achieved using standard SVM learners.

We also find that the sense distribution of an ambiguous word or abbreviation is a crucial factor

in improving the accuracy using kernel methods. The best improvement using our kernel methods

is seen for words that have a balanced sense distribution.

We find that our flexible window approach significantly improves accuracy for unigram features

and also for the bigram features. The large boost in bigram performance can be explained based on

the fact that our feature selection criteria for bigrams are stringent and a small fixed window around

the ambiguous word has a smaller chance of containing a significant bigram, and hence allowing

the window to be flexible to include to the significant bigram helps considerably.

The use of features specific to the clinical notes domain does improve performance, but not

significantly. This is also the case with Part-of-Speech tag features used in addition to unigrams and

bigrams. However combining unigrams, bigrams, Part-of-Speech features and features specific to

the clinical notes yields a significant improvement in accuracy.

Overall, we believe that a semi-supervised approach using the unigram LSA kernels and the

bigram Association kernels based on unlabeled data helps in improving the accuracy of WSD and

abbreviation expansion. The use of a flexible window for unigrams and bigrams and the clinical-

note features combined with Part-of-Speech features improve accuracy for abbreviation expansion.
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