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Abstract

This article presents a method of word sense disambiguation that assigns a target
word the sense that is most related to the senses of its neighboring words. We explore
the use of measures of similarity and relatedness that are based on finding paths in
a concept network, information content derived from a large corpus, and word sense
glosses. We observe that measures of relatedness are useful sources of information
for disambiguation, and in particular we find that two gloss based measures that
we have developed are particularly flexible and effective measures for word sense
disambiguation.
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1 Introduction

Word sense disambiguation is the process of assigning a meaning to a partic-
ular word based on the context in which it occurs. Often the set of possible
meanings for a word is known ahead of time, and is determined by the sense
inventory of a Machine Readable Dictionary or lexical database.

When word sense disambiguation is cast as the problem of selecting a sense
from an existing inventory, there are at least two different methodologies that
can be applied. One option is supervised learning, where a system is trained
with manually created examples of correctly disambiguated words in context.
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While supervised approaches have been very popular in recent years, there
is no clear means of creating the large amounts of sense tagged text they re-
quire to be deployed on a wide scale. Thus, we believe that dictionary based
approaches merit continued attention. These methods treat a dictionary or
similar resource as both the source of the sense inventory as well as a repos-
itory of information about words that can be exploited to distinguish their
meanings in text. This work utilizes the lexical database WordNet, but both
the disambiguation algorithm we introduce and the the measures of related-
ness we describe are well suited for other such resources.

This article presents a method of word sense disambiguation that assigns a
sense to a target word by maximizing the relatedness between the target and
its neighbors. We carry out disambiguation relative to the senses defined in
the lexical database WordNet, and we use both its networked structure and
glosses of word meanings to measure semantic relatedness of word senses. Our
method is not supervised, and does not require any manually created sense—
tagged training examples.

Banerjee and Pedersen [1] began this line of research by adapting the Lesk
algorithm [2] for word sense disambiguation to WordNet. Lesk’s algorithm
disambiguates a target word by selecting the sense whose dictionary gloss
shares the largest number of words with the glosses of neighboring words.
As this work progressed, we noted (as did Resnik [3]), that gloss overlaps
can be viewed as a measure of semantic relatedness. Patwardhan, Banerjee
and Pedersen [4] observed that disambiguation can be carried out using any
measure that is able to score the relatedness between two word senses. This
article represents a generalization and improvement upon that earlier work.

The underlying presumption of our method of disambiguation is that words
that occur together in a sentence should be related to some degree. This is not
a new observation, nor is it likely to stir up much controversy. What remains
unclear is how to best measure semantic relatedness, and which measures will
prove most effective in carrying out word sense disambiguation.

In this article present our algorithm, and evaluate it using nine different mea-
sures of semantic relatedness, including those of Lesk [2], Wu and Palmer [5],
Leacock and Chodorow [6], Hirst and St. Onge [7], Resnik [3], Jiang and Con-
rath [8], Lin [9], Banerjee and Pedersen [10], and Patwardhan and Pedersen
[11].

This article is organized as follows. There is a rich history of dictionary based
approaches, and we review several representative approaches that measure se-
mantic relatedness or carry out disambiguation using dictionary content. Then
we introduce our algorithm that performs disambiguation by maximizing se-
mantic relatedness. We provide a brief introduction to WordNet, the source of



our sense inventory and the knowledge source for the measures of semantic re-
latedness employed. Then we will describe all nine of the measures of semantic
relatedness that we have applied to word sense disambiguation. We present an
extensive experimental evaluation using the Senseval-2 FEnglish lexical sample
data. We believe that our algorithm and its evaluation is noteworthy in that it
separates the relatedness measure from the disambiguation algorithm, mean-
ing that any measure of relatedness can be applied. Ultimately this evaluation
shows that the extended gloss overlap measure of Banerjee and Pedersen fares
well across all parts of speech, although we also observe excellent performance
on nouns and verbs by the information content based measure of Jiang and
Conrath. Finally, we will conclude with some discussion of these results, and
suggestions for future work.

2 Previous Work in Relatedness and Disambiguation

The underlying idea in this article is that semantic relatedness can be used
to determine the meaning of words in text. There is a rich history of research
in two distinct areas that we draw upon. First, there has been work that
exploits glosses of word meanings as found in Machine Readable Dictionaries.
Second, networked or hierarchical arrangements of concept information have
been utilized as sources of information for word sense disambiguation. We have
attempted to merge these two schools of thought into our new gloss based
measures, extended gloss overlaps and gloss vectors, that will be described
shortly.

2.1 Machine Readable Dictionaries

Dictionaries have long been recognized as possible sources of information for
computational methods concerned with word meanings. For example, in the
early to mid 1960’s, Sparck—Jones [12] developed techniques that identified
synonyms by clustering terms based on the content words that occurred in
their glosses.

In the mid to late 1960’s, Quillian [13] described how to use the content
of a machine readable dictionary to make inferences about word meanings.
He proposed that the contents of a dictionary be represented in a semantic
network. Each meaning associated with a word is represented by a node, and
that node is connected to those words that are used to define the concept in
the dictionary. The content words in the definitions are in turn connected to
the words that are used to define them, and so forth, thus creating a large web
of words. Once this structure is created for a variety of concepts, spreading



activation is used to find the intersecting words or concepts in the definitions
of a pair of words, thus suggesting how they are related. For example, in
one of Quillian’s examples he finds that cry and comfort share the word sad in
their glosses, which suggests that they are related to this emotion. As such this
represents an early use of exploiting gloss overlaps (shared words in dictionary
definitions) to make determinations about word meanings.

Due to the limitations of available computing hardware, and the lack of online
dictionaries, progress in exploiting dictionary content automatically was slow
but steady. However, by the 1980’s computing resources were much more pow-
erful, and Machine Readable Dictionaries were becoming more widely avail-
able. The Lesk algorithm [2] may be identified as a starting point for a resur-
gence of activity in this area that continues to this day.

The Lesk algorithm selects a meaning for a particular target word by com-
paring the dictionary definitions of its possible senses with those of the other
content words in the surrounding window of context. It is based on the in-
tuition that word senses that are related to each other are often defined in a
dictionary using many of the same words.

In particular, the Lesk algorithm treats glosses as unordered bags of words,
and simply counts the number of words that overlap between each sense of the
target word and the senses of the other words in the sentence. The algorithm
selects the sense of the target word that has the most overlaps with the senses
of the surrounding words.

For example, suppose we wish to disambiguate bank, in the sentence I sat on
the bank of the lake. Suppose that bank; is defined as financial institution that
accepts deposits and channels the money into lending activities, and banks is
defined as sloping land especially beside a body of water. Suppose that lake is
only defined with one sense, a body of water surrounded by land. There are no
overlaps between bank; and the sense of lake, but there are are two content
words that overlap between lake and banks, body and water. Thus, the Lesk
algorithm would determine that bank, is the appropriate sense in this context.
One of the innovations of our extended gloss overlap measure is that it takes
into account phrasal matches and weights them more heavily than single word
matches.

Lesk’s description of his algorithm includes various ideas for future research,
and in fact several of the issues he raised continue to be topics of research even
today. For example, should the Lesk algorithm be used to disambiguate all the
words in a sentence at once, or should it proceed sequentially, from one word to
the next? If it did proceed sequentially, should the previously assigned senses
influence the outcome of the algorithm for following words? Should words that
are located further from the target word be given less importance than those



that are nearby? Finally, Lesk also hypothesized that the length of the glosses
is likely to be the most important issue in determining the success or failure
of this method.

Following on this last point, Wilks et. al. [14] were concerned that dictionary
glosses are too short to result in reliable disambiguation. They developed a
context vector approach that expands the glosses with related words, which
allows for matching to be based on more words and presumably result in finer
grained distinctions in meaning than is possible with short glosses. As become
standard for much of the work in the early 1990’s, they used Longman’s Dic-
tionary of Contemporary English (LDOCE). One of the appeals of LDOCE
for gloss matching work is that it has a controlled definition vocabulary of
approximately 2,200 words, which increases the likelihood of finding overlaps
among word senses.

They treat the LDOCE glosses as a corpus, and build a co-occurrence matrix
for the defining vocabulary that indicates how often each of these words occurs
with each other in LDOCE glosses. Each word can then be represented by a
vector where each dimension shows often it occurs with another of the other
words. The intuition here is that words that appear in similar contexts will
be related in meaning. Given such information, a gloss can be expanded to
include those other words that are related to the ones already used in the gloss.
After a gloss is expanded, all of the word vectors are averaged into a single
gloss vector that represents that particular sense. This is somewhat similar
to our own gloss vector measure, although we do not expand the glosses with
similar words and we rely on WordNet as our gloss corpus.

To perform word sense disambiguation, the context in which a target word
occurs is also expanded to include words that are related to those already in
the context. An averaged vector is created from all of the word vectors to
represent the context, and this is the compared with the gloss vectors of the
possible senses of the target word. The sense associated with the gloss vector
that is most similar to the context of the target word is selected. Our method
of disambiguation is distinct, in that Wilks, et. al. measures the relatedness
of the target word’s senses to the context, while we measure relative to the
senses of the words in the context.

Cowie, et. al. [15] suggest that while the Lesk algorithm is capable (in theory)
of disambiguating all the words in a sentence simultaneously, the computa-
tional complexity of such an undertaking is enormous and makes it difficult in
practice. They employ simulated annealing to simultaneously search for the
senses of all the content words in a sentence. If the assignment of senses was
done using an exhaustive search the time involved would be prohibitive (since
each possible combination of senses would have to be considered). However,
simulated annealing can find a solution that globally optimizes the assignment



of senses among the words in the sentence without exhaustive search.

While quite a bit of research has been designed to extend and improve Lesk’s
algorithm, there has also been a body of work that is more directly linked to
Quillian’s spreading activation networks. For example, Veronis and Ide [16]
represent the senses of words in a dictionary in a semantic network, where
word nodes are connected to sense nodes that are then connected to the words
that are used to define that sense. Disambiguation is performed via spreading
activation, such that a word that appears in the context is assigned the sense
associated with a node that is located in the most heavily activated part of
the network.

Kozima and Furugori [17] construct a network from LDOCE glosses that con-
sist of nodes representing the controlled vocabulary, and links to show the co-
occurrence of these words in glosses. They define a measure based on spreading
activation that results in a numeric similarity score between two concepts.

Niwa and Nitta [18] compare context vectors derived from co—occurrence
statistics of large corpora with vectors derived from the path lengths in a
network that represent their co—occurrence in dictionary definitions. In the
latter case, they construct a Quillian—style network where words that occur
together in a definition are linked, and those words are linked to the words
that are used in their definitions, and so forth. They evaluate Wilk’s et. al.
context vector method of disambiguation, and find that dictionary content is
a more suitable source of co—occurrence information than are other corpora.

2.2 Concept Hierarchies

The wide availability of WordNet as a concept hierarchy has led to the devel-
opment of a number of approaches to disambiguation based on exploiting its
structure.

Sussna [19] proposes a disambiguation algorithm assigns a sense to each noun
in a window of context by minimizing a semantic distance function among their
possible senses. While this is similar to our approach of disambiguation via
maximizing relatedness, his disambiguation algorithm is based on a measure
of relatedness among nouns that he introduces. This measure requires that
weights be set on edges in the WordNet noun hierarchy, based on the type of
relation the edge represents. His measure accounts for is—a relations, as well as
has—part, is—a—part—of, and antonyms. This measure also takes into account the
compressed edge lengths that exist at higher levels of the WordNet hierarchy;,
where a single link suggests a much greater conceptual distance than links
lower in the hierarchy:.



Agirre and Rigau [20] introduce a similarity measure based on conceptual
density and apply it to the disambiguation of nouns. We refer to this as a
measure of similarity since it is based on the is—a hierarchy in WordNet, and
only applies to nouns. This measure is similar to the disambiguation technique
proposed by Wilks, et. al. in that it measures the similarity between a target
noun sense and the nouns in the surrounding context.

In order to perform disambiguation, Agirre and Rigau divide the WordNet
noun ¢s—a hierarchy into subhierarchies, where each possible sense of the am-
biguous noun belongs to a subhierarchy. The conceptual density for each sub-
hierarchy describes the amount of space occupied by the nouns that occur
within the context of the ambiguous noun. In effect this measures the degree
of similarity between the context and the possible senses of the word. For each
possible sense the measure returns the ratio of the area occupied by the sub-
hierarchies of each of the context words within the subhierarchy of the sense
to the total area occupied by the subhierarchy of the sense. The sense with
the highest conceptual density is assigned to the target word.

Banerjee and Pedersen [1] suggest an adaptation of the original Lesk algorithm
in order to take advantage of the network of relations provided in WordNet.
Rather than simply considering the glosses of the surrounding words in the
sentence, the concept network of WordNet is exploited to allow for glosses of
word senses related to the words in the context to be compared as well. In
effect, the glosses of surrounding words in the text are expanded to include
glosses of those words to which they are related through relations in WordNet.
Pedersen and Banerjee also suggest a scoring scheme such that a match of n
consecutive words in two glosses is weighted more heavily than a set of n one
word matches. The work in this article represents a considerable refinement to
this earlier work, and there are a number of substantial changes both to the
disambiguation algorithm and the measures of relatedness that are employed.

3 Maximum Relatedness Disambiguation

This article introduces an algorithm that uses measures of semantic relatedness
to perform word sense disambiguation. This algorithm finds its roots in the
original Lesk algorithm, which disambiguates a polysemous word by picking
that sense of the target word whose definition has the most words in common
with the definitions of other words in a given window of context. Lesk’s in-
tuition was that related word senses will be defined using similar words, and
there will be overlaps in their definitions that will indicate their relatedness.
We generalize this approach by creating an algorithm that can perform dis-
ambiguation using any measure that returns a relatedness or similarity score
for pairs of word senses.



We denote the words in a window of context as wy, ws,..., w,, where wy,
1 <t < n, is the target word to which a sense must be assigned. Assume that
each word w; has m; possible senses, denoted as s;1, s;2, ..., Sim,. The goal
of any disambiguation algorithm is to select one of the senses from the set
{841, S12, -+, Stm, } @s the most appropriate sense for the target word w;.

Our algorithm performs word sense disambiguation by using a measure of
semantic relatedness that is denoted as relatedness : s;; X s — R, where
si; and sy represent any two senses of the words in the window of context,
and R represents the set of real numbers. In other words, relatedness is a
function that takes as input two senses, and outputs a real number. Further,
the algorithm assumes that this output number is indicative of the degree
of semantic relatedness between the two input senses. In the Lesk algorithm
for instance, the relatedness function would return the number of words that
overlap between the definitions of the two input senses, and the larger this
number, the more related the two senses are.

Using this notation, we can concisely describe our word sense disambiguation
algorithm using equation 1.

n
argmaz™, Y mazx,’ relatedness(sy, s;i) (1)
j=Ljt

This equation shows that the algorithm computes a score for each sense s;; of
the target word. The output of the algorithm is the index of the sense of the
target word that is most related to the other words in the window of context,
and is therefor considered to be the most appropriate sense.

The algorithm is also described in Figure 1. For every word w; in the window
of context, the algorithm computes the relatedness between s;; and each sense
sjk, K <1 < mj, of word w; and picks the highest such relatedness score. The
algorithm then adds the score from each of the words in the window, and this
becomes the score for sense s, of the target word. That sense with the highest
such score is returned as the appropriate sense of the target word. Note that
it is possible for more than one sense of the target word to have the same
highest score; in this case we report all such tied senses instead of attempting
to choose a single sense from among them.

For example, consider the sentence I put the check in the bank. As described
in section 4, WordNet does not store information on pronouns, prepositions or
determiners, so the only words that have senses in WordNet are put, check and
bank. For simplicity’s sake, assume that the word put has one sense in WordNet
denoted by puty: put into a certain place or abstract location, the word check
has two senses, check,: a written order directing a bank to pay money, and



foreach sense s;; of target word w;

{

set score; = 0
foreach word w; in window of context
{
skip to next word if j ==t
foreach sense s;, of w;

{

temp_score(j] = relatedness(sy;, Sjx)
winning_score = highest score in array temp_score|]
if (winning score > threshold)
set score; = score; + winning_score
return i, such that score; > score;, Vj,1 < j<n,n =
number of words in sentence

Fig. 1. Pseudo Code of Maximum Relatedness Disambiguation

checksy: the bill in a restaurant, and that the word bank has two senses: bank; :
financial institution that accepts deposits and channels the money into lending
activities, and banksy: sloping land especially beside a body of water. Finally
assume that the target word is check.

Our disambiguation algorithm takes as input such a sentence, and also a relat-
edness measure m that takes as input two synsets (like check; and banky for
example) and outputs a real number that is proportional to the degree of re-
latedness between the two input synsets. Given such a measure, the algorithm
computes a score for check; as follows: For each neighboring word, the algo-
rithm uses m to get the relatedness scores between check; and each sense of the
word, and then picks the highest of these scores. For the word put, this amounts
to the single score m(checky, puty), while for the word bank, this amounts to
taking the greater of the scores m(checky, bank;) and m(check;, banks). The al-
gorithm then adds these scores to arrive at the overall score for check;. That is,
score(checky) = m(checky, puty)+ M AX (m(checky, banky), m(checky, banks)).
Similarly, a score is obtained for checks: score(checks) = m(checks, puty) +
M AX (m(checks, banky), m(checks, banks)). Finally, the algorithm compares
score(checky) and score(checks) and reports that sense that has a higher score.

We can apply this algorithm using any measure of semantic relatedness, re-
gardless of how it is computed or what it is based on. In this article, we carry
out disambiguation relative to WordNet senses, so we briefly introduce Word-
Net before going on to describe the various measures of relatedness that we



employ.

4 WordNet

Due to its increasing scope and free availability, WordNet has become a pop-
ular resource for identifying taxonomic and networked relationships among
concepts. Since it also includes glosses for word senses, it is also often used as
a machine readable dictionary, although the WordNet team prefers that it be
known as a lexical database.

WordNet [21] contains information about nouns, verbs, adjectives and adverbs.
It organizes related concepts into synonym sets or synsets. Each synset can
be thought of representing a concept or word sense. For example: {car, auto,
automobile, machine, motorcar} is a synset that represents the sense defined by
the gloss: /—wheeled motor vehicle; usually propelled by an internal combustion
engine. In effect each synset represents a concept or word sense, and we will
use these terms somewhat interchangeably.

In addition to providing these groups of synonyms to represent a concept,
WordNet connects concepts via a variety of relations. This creates a network
where related concepts can be (to some extent) identified by their relative
distance from each other. The relations provided include synonymy, antonymy,
1s—a, and part—of.

Relations in WordNet generally do not cross part of speech boundaries, so
semantic and lexical relations tend to be between concepts with the same
part of speech. However, with the release of WordNet 2.0 in the summer of
2003, there are now links between derived forms of noun and verb concepts,
and there are also domain relations that include noun and verb concepts. The
increased interconnectivity of WordNet will offer interesting opportunities for
future work, although as of this writing we have not yet taken advantage of
this.

For nouns the most common and useful relation is the is—a relation. This exists
between two concepts when one concept is—a—kind—of another concept. Such
a concept is also known as a hypernym. For example, a car is a hypernym of
motor vehicle.

The is—a hierarchy of noun concepts is perhaps the distinguishing characteris-
tic of WordNet. These comprise over 70% of the total relations for nouns. An
1s—a hierarchy also exists for verbs, although it represents is—way—of—doing,
also known as troponomy. As an example, walking is a troponym of mouving.
Each hierarchy (be it for nouns or verbs) can be visualized as a tree that has

10



a very general concept associated with a root node and more specific concepts
associated with leaves. For example, a root node might represent a concept like
entity whereas leaf nodes are associated with carving fork and whisk broom.

We use WordNet 1.7 which contains nine separate noun hierarchies containing
74,588 concepts joined by 76,226 is—a links. In order to allow for paths between
all noun concepts in WordNet, we create an artificial root node that subsumes
the nine given hierarchies. The verb hierarchies provide less information about
similarity between concepts since there are 628 separate hierarchies for the
12,754 verb sense. While these could also be joined by a single root node, the
result would be a tree structure that was very wide and shallow, since most
of these hierarchies have between two to five levels. As a result it would be
hard to differentiate among concepts connected only via that artificial root.
Adjectives are not arranged in a hierarchy, so the issue of having a subsuming
root node does not apply.

5 Measures of Relatedness and Similarity

Thus far we have used the term semantic relatedness fairly freely, and have
sometimes mentioned semantic similarity as well. Before we discuss the various
measures we have studied in detail, we should clarify the distinction between
these two terms.

Two concepts can be related without being similar, so relatedness should be
seen as a more general notion than similarity. For example, two concepts may
be related because they are antonyms, but they are not likely to be considered
similar.

We use the term similarity in a very specific sense, that is it refers to a re-
lationship between concepts that is based on information as found in an is—a
hierarchy. In the case of WordNet, this limits similarity judgments to be be-
tween pairs of nouns or pairs of verbs, since the concept hierarchies in WordNet
do not mix parts of speech. As a practical matter, only the noun hierarchies
are extensive enough to allow for relatively fine grained distinctions among
related concepts.

5.1 Path Based Measures

When given an is—a hierarchy, one means of determining the degree to which
two concepts are related is to count the number of edges between them, or to
find the length of shortest path between two concepts.

11



In principle path based measures can apply to any taxonomy. Thus, in our
experimental evaluation we attempted to employ path length measures (and
information content measures, that will be described shortly) with both nouns
and verbs. In many cases these did not fare well with verbs, which is to be
expected since the verb hierarchies in WordNet are shallow and plentiful. As
a result very few verb concepts actually occupy the same hierarchy and there
will rarely be paths between verb concepts. However, it’s important to note
that this reflects more upon a limitation in WordNet than something inherent
in these measures.

Unfortunately, path lengths are most appropriate when they have a relatively
consistent interpretation throughout the taxonomy or network. This is not
the case with WordNet, since concepts higher in a hierarchy are more general
than those lower in the hierarchy. Thus, a path of length one between two gen-
eral concepts can suggest a large difference whereas one between two specific
concepts may not. For example, mouse and rodent are separated by a path of
length one, which is the same distance that separates fire iron and implement.

The fact that path lengths can be interpreted differently depending on where
they occur in WordNet has led to the development of a number of measures
based on path lengths that incorporate a variety of correcting factors.

5.1.1 Rada, et. al.

Rada, et. al. [22] define the conceptual distance between any two concepts as
the the shortest path through a semantic network. They evaluate this tech-
nique using MeSH, a hierarchical semantic network of biomedical concepts
that (at that time) consisted of about 15,000 terms organized into a nine-level
hierarchy. This measure is similar in spirit to approaches that rely on spread-
ing activation, and works relatively well due to that the fact that the network
consists of concepts consists of broader-than relationships, which includes both
1s—a and part-of relationships. In this technique, the number of edges in the
shortest path between two concepts under consideration gives the measure of
similarity.

5.1.2 Leacock and Chodorow

The measure of Leacock and Chodorow [6] is related to that of Rada, et. al.,
in that it is based on the length of the shortest paths between noun concepts
in an ¢s—a hierarchy. The shortest path is the one which includes the fewest
number of intermediate concepts. This value is scaled by the depth D of the
hierarchy, where depth is defined as the length of the longest path from a leaf
node to the root node of the hierarchy.

12



Thus, their measure of similarity is defined as follows:

simuen(c1, ¢2) = maz[—log(length(cy, c2)/(2 - D))] (2)

where length(cy, ¢o) is the shortest path length (i.e., having minimum number
of nodes) between the two concepts and D is the maximum depth of the
taxonomy. Given that we introduce a hypothetical root node in WordNet that
joins all the noun hierarchies, D becomes a constant of 16 for all noun concepts,
meaning that the path length from this root node to the most distant leaf is
16 in WordNet 1.7.

5.1.3 Wu and Palmer

Wu and Palmer [5] define a measure of similarity that is also based on path
lengths, however, they focus on the distance between a concept to the root
node.

Resnik [23] reformulates their measure slightly, and we follow that presentation
here. This measure finds the distance to the root of the most specific node that
intersects the path of the two concepts in the is—a hierarchy. This intersecting
concept is the most specific concept that the two concepts have in common,
and is known as the lowest common subsumer (Ics). The distance of the lcs
is then scaled by the sum of the distances of the individual concepts to the
node. The measure is formulated as follows:

2 x depth(lcs(cy, ca))

My ) = 3
StMuup(€1,¢2) depth(ci) + depth(cs) )

where depth is the distance from the concept node to the root of the hierarchy.
As will become apparent shortly, this measure can be thought of as a path
based equivalent of the Lin similarity measure. It is interesting to note that
Wu and Palmer describe this measure relative to a verb taxonomy, but in
fact it applies equally well to any part of speech as long as the concepts are
arranged in a hierarchy.

5.1.4 Hirst and St.Onge

Hirst and St. Onge [7] introduce a measure of relatedness that considers many
other relations in WordNet beyond is—a relations. This measure is unique
among those discussed thus far, in that those have all been measures of sim-
ilarity and focus on #s—a hierarchies. The effect of this is that the measure is
able to assess the relatedness between heterogeneous pairs of parts of speech.
For example, it can determine the relatedness between a noun and a verb.
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None of the other path based measures or the information content measures
that will be discussed have this capability.

This measure was originally used to identify lexical chains, which are a series of
related words that maintain coherence in a written text. Since it was originally
intended to find relations among words (and not concepts) we have made a
few adaptations to the measure as originally described.

This measure classifies all WordNet relations as horizontal, upward, or down-
ward. Upward relations connect more specific concepts to more general ones,
while downward relations join more general concepts to more specific ones.
For example, is—a is an upward relation while is—a—kind—of is considered to
be a downward relation. Horizontal relations (such as antonyms) maintain the
same level of specificity.

The Hirst—St. Onge measure has four levels of relatedness: extra strong, strong,
medium strong, and weak. An extra strong relation is based on the surface form
of the words and therefore does not apply in our case since we are measuring
the relatedness of word senses.

Two words representing the same concept (e.g., synonyms) have a strong re-
lation between them. Thus, there is a strong relation between two instances
of the same concept. There are two additional scenarios by which a strong re-
lations can exist. First, if the synsets representing the concepts are connected
via a horizontal relation, as in the case of opposites joined by an antonym
relation. Second, if one of the concepts is represented by a compound word
and the other concept is represented by a word which is a part of the com-
pound, and if there is any kind of synset relation between the two concepts.
For example, racing_car and car are considered to have a strong relation, since
car occurs in both, and they are joined via an is—a relation.

The medium-strong relation is determined by a set of allowable paths between
concepts. If a path that is neither too long nor too winding exists, then there is
a medium—strong relation between the concepts. The score given to a medium—
strong relation considers the path length between the concepts and the number
of changes in direction of the path:

path_weight = C' — path_length — (k x #_changes_in_direction) (4)

Following Budanitsky and Hirst [24], we set C to 8 and k to 1. The value
of strong relations is defined to be 2 * C. Thus, two concepts that exhibit a
strong relation will receive a score of 16, while two concepts with a medium-—
strong relation will have a maximum score of 8, and two concepts that have
no relation will receive a score of zero.
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5.2 Information Content Measures

Information content [3] is a measure of specificity that is assigned to each
concept in a hierarchy. A concept with a high information content is very
specific to a particular topic, while concepts with lower information content
are associated with more general, less specific concepts. Thus, carving fork has
a high information content while entity has low information content.

Information content of a concept is estimated by counting the frequency of
that concept in a large corpus and thereby determining its probability via a
maximum likelihood estimate.The information content of a concept is defined
as the negative log probability of the concept.

IC(concept) = —log(P(concept)) (5)

The frequency of a concept includes the frequency of all its subordinate con-
cepts since the count we add to a concept is added to its subsuming concept
as well. Note that the counts of more specific concepts are added to the more
general concepts, but not from the more general to specific. Thus, counts of
more specific concepts percolate up to the top of the hierarchy, incrementing
the counts of the more general concepts as they proceed upward. As a re-
sult, concepts that are higher up in the hierarchy will have higher counts than
those at lower more specific levels and have higher probabilities associated
with them. Such high probability concepts will have low values of information
content since they are associated with more general concepts.

If sense-tagged text is available, frequency counts of concepts can be attained
directly, since each concept will be associated with a unique sense. If sense—
tagged text is not available it will be necessary to adopt an alternative counting
scheme. Resnik [25] suggests counting the number of occurrences of a word
type in a corpus, and then dividing that count by the number of different
concepts/senses associated with that word.

We have computed information content using SemCor and the British National
Corpus (BNC). SemCor is a 200,000 word sense-tagged sample of text, about
80% of which comes from the Brown Corpus and the remaining 20% comes
from the novel The Red Badge of Courage. Since the sense tags are from
WordNet, the concept counts can be taken directly from the sense tagged
text. BNC is a 100,000,000 word sample of modern British English that is
derived from a variety of sources. It has not been sense tagged, and as such
we adopt Resnik’s method and distribute concept counts across the possible
senses of a word.
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5.2.1 Resnik

The Resnik measure of semantic similarity [3] is based on the information
content of noun concepts as found in the is—a hierarchies of WordNet. The
principle idea behind this measure is that two concepts are semantically re-
lated proportional to the amount of information they share in common. The
quantity of information common to two concepts is determined by the infor-
mation content of their lowest common subsumer. Thus, the Resnik measure
of similarity is defined as follows:

SiMyes(c1, c2) = 1C(les(cq, ¢2)) (6)

We note that this is does not consider the information content of the concepts
being measured, nor does it directly consider the path length between them.
The potential limitation that this poses is that quite a few concepts might
share the same least common subsumer, and will have identical values of simi-
larity assigned to them. For example, in WordNet the concept of vehicle is the
least common subsumer of jumbo jet, tank, house trailer, and ballistic maissile.
Therefore any pair of these concepts would receive the same similarity score.
This is particularly troublesome with verbs in WordNet, since there are a large
number of verb hierarchies, and a pair of verb concepts are not likely to have
any lowest common subsumer, or they are subsumed by some hypothetical
root note that we introduce to link together all of the verb hierarchies. Thus,
the Resnik measure might best be considered as coarse grained measure, and
subsequent measures have attempted to refine it and give it greater ability to
distinguish similarity among concepts.

5.2.2  Jiang and Conrath

Jiang and Conrath [8] define a measure of semantic distance for nouns that
relies on Resnik’s measure. The intuition behind the measure is that the dif-
ference between the information content of the individual concepts and that
of their lowest common subsumer will reveal how similar or different they are.
If the sum of their individual information contents is close to that of their
lowest subsumer, then it suggests that the measures are located close together
in the concept hierarchy. Thus, they take the sum of the information content
of the individual concepts and subtract from that the information content of
their lowest common subsumer:

distjen(c1,02) = IC(c1) + 1C(c2) — 2 x IC(les(c, ¢2)) (7)

Since this is a distance measure, concepts that are more similar have a lower
score than the less similar ones. In order to maintain consistency among the
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measures, we convert this measure to semantic similarity by taking its inverse:
following:

1
) jcn bl - ., 7 N 8
$imen (1, 2) distjen(c1,¢2) (8)

5.2.3 Lin

The Lin measure [9] of similarity measures the ratio of the information content
needed to state the commonality of the two concepts as represented in their
lowest common subsumer to the amount of information needed to describe
them individually.

The commonality of two concepts is captured by the information content of
their lowest common subsumer and the information content of the two con-
cepts themselves. This measure turns out to be a close cousin of the Jiang-
Conrath measure, although they were developed independently:

2 x IC(les(cy, co))
1C(c1) + IC(ca) Y

stMyin (c1, C2) =

Lin points out that this measure is related to the well-known Dice Coefficient,
and that the measure of Wu and Palmer can be thought of as a special case
of the Lin measure.

5.8 Gloss Based Measures

We believe that gloss overlaps are a very promising means of measuring re-
latedness, since they can be used to make comparisons between concepts of
different parts of speech. For example, this might include comparing nouns
with verbs, or verbs with adjectives. Measures that are based on paths in is—a
hierarchies tend to be limited to making comparisons between concepts with
the same part of speech, since these hierarchies do not include multiple parts
of speech. The only other measure capable of mixed part of speech compar-
isons is that of Hirst and St. Onge, which is dependent on the existence of
specific links between concepts.

However, we do recognize that glosses are by necessity short, and may not
provide sufficient information on their own to make judgments about related-
ness. For example, the gloss of canoe is small and light boat pointed at both
ends propelled with a paddle. It has no gloss overlaps with either bank;: fi-
nancial institution that accepts deposits and channels the money into lending
activities, or with banksy: sloping land especially beside a body of water. Thus
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in the sentence The canoe was near the bank, a simple gloss overlap measure
finds no relation between canoe and either sense of bank.

We have developed two different measures to address this issue. In the ex-
tended gloss overlap measure, we also make comparisons between glosses of
words that are related according to WordNet. In the gloss vector measure sim-
plify ideas from both Wilks, et. al. [14] and Schiitze [26] to create a relatedness
measure based on dictionary gloss co—occurrence statistics.

5.3.1 FEaxtended Gloss Overlaps

The extended gloss overlap measure was developed to overcome the limitations
of short definitions [10]. Lesk’s gloss overlaps are adapted to a networked
resource such as WordNet by finding overlaps not only between the definitions
of the two concepts being measured, but also among those concepts to which
they are related.

This is motivated by the idea that semantic relations (such as is—a and has-
part) specified in WordNet do not capture all the possible relations between
concepts. For example, there are no explicit relations between boat: a small
vessel for travel on water, and banks: sloping land especially beside a body of
water. Even the shortest is—a path between them in WordNet is not particu-
larly indicative of their relatedness, since it includes the higher level concept
physical object.

However, despite the lack of a path in WordNet (direct or indirect) we observe
that boat and banks are related. One can launch a boat from a bank, for
example, or run a boat aground on a bank. The glosses of these two concepts
share the word water which hints at their relatedness. The fact that concepts
to which each of these are related also share overlaps adds to that conclusion.
Thus, in general we believe that there are relations between concepts that are
implicit but can be found via gloss overlaps.

For the extended gloss overlap measure, we consider the glosses of all the
concepts that are directly connected to a concept by a relation when finding
overlaps. The process of finding and scoring overlaps can be described as
follows: When comparing two glosses, we define an overlap between them to
be the longest sequence of one or more consecutive words that occurs in both
glosses such that neither the first nor the last word is a function word, that is a
pronoun, preposition, article or conjunction. If two or more such overlaps have
the same longest length, then the overlap that occurs earliest in the first string
being compared is reported. Given two strings, the longest overlap between
them is detected, removed and in its place a unique marker is placed in each
of the two input strings. The two strings thus obtained are then again checked
for overlaps, and this process continues until there are no longer any overlaps
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between them. The sizes of the overlaps thus found are squared and added
together to arrive at the score for the given pair of glosses.

The original Lesk Algorithm compares the glosses of a pair of concepts and
computes a score by counting the number of words that are shared between
them. This scoring mechanism does not differentiate between single word and
phrasal overlaps and effectively treats each gloss as a bag of words. For exam-
ple, it assigns a score of 3 to banksy: (sloping land especially beside a body of
water) and lake: (body of water surrounded by land), since there are 3 overlap-
ping words: land, body, water. Note that stop words are removed, so of is not
considered an overlap.

However, there is a Zipfian relationship [27] between the lengths of phrases
and their frequencies in a large corpus of text. The longer the phrase, the less
likely it is to occur multiple times in a given corpus. A phrasal n—word overlap
is a much rarer occurrence than a single word overlap. Therefore, we assign
an n word overlap the score of n?. This gives an n—word overlap a score that
is greater than the sum of the scores assigned to those n words if they had
occurred in two or more phrases, each less than n words long. This is true
since the square of a sum of positive integers is strictly greater than the sum
of their squares. That is, (ag + ai + ... + a,)* > a2 + a? + ... + a2, where q; is
a positive integer. For the above gloss pair, we assign the overlap land a score
of 1 and body of water a score of 9, leading to a total score of 10.

5.4  Gloss Vectors

Even with extended gloss overlaps we are still concerned that in some cases
the glosses may not contain enough overlaps to make fine grained relatedness
decisions. As a result, we have developed a method that represents concepts
as gloss vectors, and measures the similarity of concepts by finding the cosine
between their respective gloss vectors [11].

Our measure can be fairly viewed as a simplification of Wilks, et. al. [14], since
we build word vectors from gloss co—occurrence data, and then build a gloss
vector from the average of those. However, we do not not expand the glosses
with similar words but simply use those that appear in the gloss. In fact, we
have the capability now to expand the glosses with those of related concepts,
like we do in the extended gloss overlap measure, but those results are not
reported here.

It must be pointed out as well that we draw considerable motivation and
insight from observations made by Schiitze [26]. He describes a similar process
of creating context vectors from word vectors, in fact he represents the context
as an average of these word vectors. However, his work is distinct in that he is
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using large corpora that is not dictionary text, and he employs Singular Value
Decomposition to reduce the dimensionality of his word vectors. Rather than
comparing his context vectors to a vector that represents a dictionary sense,
he simply clusters those context vectors in order to discover senses without
regard to any existing inventory.

However, the significant contribution Schiitze makes to our work is his ex-
planation of what context vectors are capturing, which revolves around the
notion of a second order co—occurrence. This is an indirect relationship be-
tween a pair of words, in that these are words that do not occur together but
both occur with some third word. For example, in product line and telephone
line, product and telephone are first order co—occurrences with line, and they
are second order co—occurrences with each other by virtue of this first order
relationship. Schiitze argues that second order relationships are more represen-
tative of meaning, and tend to be less sparse than first order co—occurrences.

Our gloss vector measure treats the WordNet (version 1.7) glosses as a 1,400,000
word corpus of plain text. The first step in deriving gloss vectors is to build
a co—occurrence matrix of the words that occur in the corpus. This matrix
represents the number of time any two words occur together in a WordNet
gloss. Note that we eliminate certain non-content stop words, as well as words
that occur more than 1,000 times and less than 5 times, which reduces the size
of the corpus to about 1,200,000 words. The resulting matrix is approximately
15,000 x 15,000 and is both symmetric and relatively sparse. Each cell tells
the number of times the words represented by the row and the column occur
together in a WordNet gloss.

To measure the relatedness of a pair of concepts, a vector is constructed for
each of the glosses. First, the row (or column) entry for each word in the gloss
is found in the co—occurrence matrix, and the entire row is treated as a vector.
This will show the number of times that word has occurred in a gloss with all
of the other words that have appeared in WordNet glosses (and have fallen
above and below our frequency cutoffs). After all the words in the gloss are
represented with a vector, we find the average of all these word vectors, and
use this single vector to represent the meaning of the concept. In effect, it is
a second order co—occurrence representation of the words that co—occur with
the words in the gloss.

After the gloss vectors are created for each concept, we compare pairs of
concepts by measuring the cosine of the angle between their corresponding
gloss vectors. Note that two concepts are considered to be related when they
share a set of words that co-occur with the words that occur in their respective
glosses. The idea here is that gloss overlaps may be somewhat unlikely to find
because they are so short. However, if we consider the words that co—occur
with the words in the glosses, this becomes a larger set of a words that can
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be matched in a more refined manner.

For example, the gloss of lamp is an artificial source of visible illumination. The
gloss vector for lamp is created by finding the average of the word vectors of
artificial, source, visible and wllumination. Suppose that this is being compared
with sun, which has the gloss a typical star that is the source of light and heat
for the planets in the solar system. While there is indeed a first order co—
occurrence overlap of source, that is fairly limited evidence upon which to
measure relatedness. However, in the WordNet gloss corpus (or any corpus of
text) llumination and light are likely to be used with a similar set of words,
and their commonality will be captured in their corresponding word vectors.

In fact we could follow Schiitze and create the underlying word co—occurrence
matrix from any corpus. While this remains an avenue for future work, at
present we have focused on only using the WordNet gloss corpus since we are
interested in seeing how well dictionary content alone will fare. In particular,
we want to see how well gloss vectors based on second—order co—occurrences
compare with the more traditional first order co—occurrences as used by the
Lesk algorithm and in the extended gloss overlap measure.

6 Experimental Data

We evaluate our algorithm using the Senseval-2 English lexical sample data
(test portion) [28]. This consists of 4,328 instances each of which contains
a sentence with a single target word to be disambiguated, and one or two
surrounding sentences that provide additional context. There is a gold stan-
dard tagging that was created by human annotators, and we use this only to
evaluate the results of our algorithm.

There are 73 different target words in the sample: 29 nouns, 29 verbs, and
15 adjectives. Table 1 shows the words, their frequency count (or number
of instances), and the number of WordNet senses in which they are used
according to the gold standard data. It should be noted that the degree of
difficulty of this data (as judged by the number of possible senses) is relatively
high. For the 29 nouns, on average they are used in 8.2 sense. The 29 verbs
are used in an average of 12.2 senses, and the 15 adjectives are used in an
average of 7.1 senses.

Disambiguation is carried out by measuring the relatedness between the senses
of each word in the window of context and the possible senses of the target
word. For every instance, the window is defined such that the target word is
at the center (if possible). We experiment with windows of six different sizes:
2, 3,5, 11, 21, and 51. The size of the window includes the target word, and
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Table 1

Experimental Data

Nouns  Count Senses Verbs Count Senses Adjectives Count Senses
art 98 15 begin 280 7 blind 55 6
authority 92 8 call 66 17 | colourless 35 3
bar 151 18 carry 66 20 cool 52 7
bum 45 6 | collaborate 30 2 faithful 23 3
chair 69 8 develop 69 14 fine 70 14
channel 73 11 draw 41 22 fit 29 3
child 64 5 dress 59 12 free 82 13
church 64 5 drift 32 9 | graceful 29 2
circuit 85 16 drive 42 13 green 94 14
day 145 12 face 93 6 local 38 4
detention 32 7 ferret 1 1 natural 103 23
dyke 28 4 find 68 17 | oblique 29 3
facility 58 5 keep 67 20 simple 66 5
fatigue 43 6 leave 66 10 solemn 25 2
feeling 51 6 live 67 9 vital 38 4
grip 51 7 match 42 7
hearth 32 5 play 66 20
holiday 31 5 pull 60 25
lady 53 8 replace 45 4
material 69 10 see 69 13
mouth 60 11 serve 51 11
nation 37 4 strike 54 20
nature 46 7 train 63 8
post 79 10 treat 44 5
restraint 45 9 turn 67 26
sense 53 12 use 76 6
spade 33 6 wander 50 5
stress 39 7 wash 12 7
yew 28 4 work 60 18
Total: 1754  (avg.) 8.2 Total: 1806 (avg.) 12.2 Total: 768 (avg.) 7.1
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the number of words both to the right and left. The window size of 2 indicates
that it includes the target word and one word to the left. A window size of 3
includes the target word and one word to the left and right, and so forth.

The window of context may include more than one sentence, since in the
Senseval-2 data most of the instances are made up of 2-3 sentences. The win-
dow of context consists of words that are known to WordNet. This has the
effect of eliminating quite a few function (stop) words, but a stop list is still
needed to specify words that should be excluded from the window. This is
because some some function and low content words happen to have an un-
usual or infrequently used WordNet sense and would thereby be included in
the window of context. For example, who is known to WordNet as an abbre-
viation for the World Health Organization, and in has three nouns senses: an
abbreviation for inches, the element Indium and the state of Indiana.

We part of speech tagged the Senseval-2 data, but found no particular im-
provement in the accuracy of disambiguation when restricting the senses of a
word in the window to those that belonging to the designated part of speech.
Given the minimal impact this had on the quality of results, we do not use
part of speech information about the words in the window of context. When
using the path based measures and the information content measures, we only
consider the noun senses of these words, regardless of the actual part of speech
in which they are used. When using hso and the gloss based measures, we con-
sider all the possible senses for all the possible parts of speech of a word. In the
Senseval-2 data, each target word is used in only one part of speech, and this
information is provided in the test data as used in that event. Therefore we
also use this information, so the part of speech of the target word is restricted
to what is intended in that context.

The fact that we don’t use part of speech tags nor sentence boundary informa-
tion may raise the concern that we introduce too much noise into the process.
However, an effective measure of relatedness will score unrelated senses very
low, and they will be overwhelmed by the higher scores attained by the more
related senses. Thus, the measure of relatedness can act as its own filter and
remove the noise that unrelated senses bring, whether they be caused by part
of speech differences, sentence boundary overruns, etc.

7 Experimental Methodology

In order to evaluate our algorithm, we conducted an extensive set of experi-
ments using nine different measures of relatedness. In addition, there were two
baseline measures included. One simply generates random relatedness values,
rather than computing them in some principled way. The other employs a sim-

23



ple edge counting method that treats the length of the shortest path between
two concepts as the relatedness value. The random baseline serves as a sanity
check, and attains the accuracy that would be expected by randomly guessing
from the set of possible senses for each instance. The edge measure represents
the simplest and most intuitive approach, and is a useful point of comparison
in that several of the measures we use are intended to correct problems with
simple edge counting.

The measures and the abbreviations by which we will often refer to them are
summarized below.

e Baselines
- Random [random] : guess from set of possible senses
- Path Length [edge] : find shortest path between concepts in is—a hierarchy

e Path Based Measures
- Wu and Palmer [wup] : distance to root in is—a hierarchy, lin without
information content
- Leacock and Chodorow [Ich] : shortest is—a path between concepts, scaled
by depth of taxonomy
- Hirst and St. Onge [hso| : upward, downward, and horizontal paths using
many relations, can compare across parts of speech

e Information Content Measures
- Resnik [res| : Information Content (IC) of shared concept
- Lin [lin] : IC of shared concept scaled by individual concept 1Cs
- Jiang and Conrath [jen] : sum of individual ICs minus shared IC

e Gloss Based Measures (all can compare across parts of speech)
- Original Lesk [lesk-o] : find gloss overlaps between two concepts
- Extended Gloss Overlaps [lesk-€] : find gloss overlaps of two concepts, plus
those to which they are connected in WordNet
- Gloss Vector [vector] : represent a concept as an averaged vector of words
vectors derived from gloss co—occurrence data

8 Experimental Results

We evaluate our algorithm by comparing its results with the human created
gold standard. We compute precision, which is the number of correct answers
divided by the number of answers reported by a system, and recall, the number
of correct answers divided by the number of instances in the same. We report a
summary of these two values known as the F-measure, which is the harmonic
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mean of the precision and recall and is formulated as follows:

2 x precision * recall

F — measure = (10)

(precision + recall)

We use the key and scoring software exactly as provided by the Senseval-2
organizers, and all results we report are based on fine grained scoring, which
requires an exact match between the system output and the manually specified
answer in the gold standard.

It is possible there there be a tie for the most related target word sense, and
in that case all those senses are reported as answers and partial credit is given
if one of them prove to be correct. This can reasonably occur if a word is truly
ambiguous, or if the meanings are very closely related and it is not possible to
distinguish among them. It is also possible that none of the target word senses
will receive a score greater than zero. In this case, no answer is reported by
the algorithm since there is no evidence to choose one sense over another.

We report the results of our experiments first by part of speech, and then
across all parts of speech.

8.1 Nouns

Table 2 shows the F—measure of each of the measures when applied to dis-
ambiguating the 1,754 instances of the 29 nouns. All of the measures are well
defined in relation to nouns, so this represents a fair comparison amongst all
the measures.

The extended gloss overlap measure (lesk-e) and jen-sem attain the highest
F-measures for nouns. lesk-e reach a high score of .412, while jen-sem attained
401. It should be noted that lesk-e was the most accurate measure for every
window size, and in many cases by a large margin. This suggests that the
content of noun glosses is particularly good, and the distinctions that they
draw are fairly clear.

It is interesting to note that jen-bne did not fare nearly as well as jen-sem,
suggesting that the sense-tagged text was in fact helpful to this measure.
While this is not surprising, what is curious is that the Lin measure (lin)
performed at nearly the same levels with and without sense tagged text. It
remains an interesting issue to determine why these two seemingly similar
measures fare rather differently at this task.

A number of measures perform at levels less than random guessing when
given small windows of context. This is due to a large number of unattempted
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Table 2
F-measure (1,754 instances of 29 nouns)

Window Size

Measure 2 3 5 11 21 51

random | .200 .186 .193 .223 .209 .202

edge 197 223 230 242 227 227
Ich 197 0 220 226 237 .226 .200
wup 196 244 272 288  .300 .276
hso 123 145 206 208 .197 188

res-sem | .184 .229 260 285 .291 .2901
res-bnc 184 230 268 293 295 274
lin-sem 190 229 265 290 .292 283
lin-bnc 2212259 287 314 326 317
jen-sem | 127 330 .364 386 .401  .358
jen-bnc | 260 282 305 .332 351  .320

lesk-o 1300 .200 269 280 .281  .269
lesk-e 326 377 .396 .405 .412 .384
vector 284 296 289 303 292 .281

instances for these measures, where no relation was found between the target
word senses and its immediate 1 or 2 neighbors. However, not all measures
are susceptible to this; note that even for the smallest window of context, the
extended gloss overlap measure (lesk-e) does extremely well. This shows that
it is quite robust even when given a limited number of words in the window
of context.

We also note that the measures generally increase in accuracy as the size
of the window increases. This suggests that the method of disambiguation
is relatively resistant to noise, and that increasing context provides better
information to make a judgment about the relatedness of the target word to
the text in which it occurs.

8.2 Verbs

The F—measure results for verbs are shown in Table 3. It must be pointed
out that few of these measures actually advertise themselves as being suitable
for verbs. For example, information content and path based measures have

26



Table 3
F-measure (1,806 instances of 29 verbs)

Window Size

Measure 2 3 5 11 21 51

random | .101 .099 .101 .110 .081 .104

edge .093 124 139 .151 .158 .143
Ich .093 112 125 131 142 133
wup .024  .036 .040 .045 .044 .039
hso 037 .051 .078 .088 .053 .062

res-sem | .025 .043 .052 .054 .039 .032
res-bnc 025 039 .047 .050 .050 .043
lin-sem 028 .046 .055 .064 .058 .052
lin-bnc 029 .046 .055 .061 .062 .058
jen-sem | 127 183 .195 .190 197  .189
jen-bnc | 084 107 .107 .115 121 121

lesk-o 070 100 .119 .131 .134 .133
lesk-e 154 .198 .202 .212 .201 .195
vector 147 163 169 178 189  .167

generally been applied to noun concepts. However, in theory it is at least
possible to compute information content for verbs in WordNet, since they are
arranged in concept hierarchies (albeit small) that can be used to propagate
counts, and paths can indeed be found between concepts. To some extent the
inclusion of these measures in the verb experiment is speculative, and meant
to test their limits.

While the results are generally rather low, there are a few encouraging signs.
The gloss based measures and jen performed at levels greater than random
guessing, which for verbs is non—trivial given the large number of possible
senses that exist for each target word on average. The extended gloss overlap
measure again performed at the highest level for all window sizes, confirming
that it is a versatile measure.

As expected the information content and path based measures generally strug-
gled. This can be largely explained by the fact that the 628 is—a hierarchies
for verbs are very shallow, the vast majority having from two to five levels.
For the nouns there are nine rather deep hierarchies, and then these are joined
together by a single artificial root. This creates a single, rich tree structure
that has a maximum depth of 16 levels. As such, information content and path
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Table 4
F-Measure (768 instances of 15 adjectives)

Window Size

Measure 2 3 5 11 21 51

random | .186 .176 .156 .174 .18 .179

edge .045  .043 .047 .046 .047 .045
hso .044 078 .084 .098 .032 .031
lesk-o .082 133 .1589 185 .175 183
lesk-e 197 245 235 .243  .232 .229

vector .234  .251 240 .243 224 212

based are much more effective for nouns in WordNet.

However, jcn-sem fares reasonably well relative to the other measures. As
was the case with nouns, it is the only information content measure that
performs substantially differently when information content is computed from
the British National Corpus versus SemCor. The lin and res measures do not
demonstrate any particular difference in performance despite using radically
different sources for information content computations.

8.3 Adjectives

Adjectives in WordNet are not arranged in a hierarchy, which prevents path
based and information content measures from being applied. However, ad-
jectives have glosses associated with their senses in WordNet, so gloss based
measures are useful. We show these results in Table 4. By way of comparison,
we have also included the edge measure as a representative of the path based
measure, all of which fared quite poorly due to the structural limitations of
WordNet.

For adjectives we observe that vector and lesk-e perform quite well, with vector
attaining the highest F—measure of .251. These two measures fare substantially
better than edge or hso, which is not surprising given how few relations there
are to and from adjectives. This demonstrates the flexibility of gloss based
measures, in that they do not require that relations be explicitly encoded in
order to perform well.
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Table 5
Overall Results (all 4,328 instances)

Window Size

Measure 2 3 5 11 21 51

random | .156 .147 .147 167 .165 .158
edge 128 150 159 169 166  .163

lesk-o .096 145 174 200 .200 .197
lesk-e 231 .278 .284 .295 .292 .277
vector 217 232 230 241 237 222

8.4 Owerall Results

Only the gloss based measures and hso are designed to measure the relatedness
of nouns, verbs, and adjectives. We have previously observed that hso has
struggled with all parts of speech, so we do not include those overall results
here. We believe that this reflects more upon the somewhat impoverished
relation structure in WordNet, more than it does upon the intrinsic merit of
hso.

We show overall results for the gloss based measures and our baselines in Table
5. These results show that the extended gloss overlaps (lesk-e) is overall our
most effective measure, attaining a maximum F-measure of .295.

We also note that for all parts of speech, the vector measure results in much
higher F-measures than does the traditional gloss overlap measure of Lesk
(lesk-0). This shows the value of measuring relatedness via second—order co—
occurrences, rather than first order ones as lesk-o relies upon.

Since we are using the same data as was used in Senseval-2, it is possible to
make direct comparisons with the results attained by lesk-e, vector, and those
results. The best reported result for the unsupervised English lexical sample
task in Senseval-2 was an overall F-measure of .402. While this is somewhat
higher than our reported best of .295, it is worth nothing that the best reported
Senseval-2 value reflects the combination of two different techniques in a single
approach.

This system (UNED-LS-U [29]) incorporated information from a 277 million
word corpus derived from Project Gutenberg to create a relevance matrix. A
technique based on the relevance matrix was able to disambiguate 3,039 of
the 4,328 instances, and attained precision of .373 and recall of .262, for an
F-measure of .308. This is in fact comparable to our lesk-e value of .295.
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However, the UNED-LS-U system was unable to disambiguate the remaining
1,289 instances and so the system had a back—off strategy such that the unat-
tempted instances were assigned the first listed sense for the target word in
WordNet. This resulted in precision of .467 and recall of .139, or an F—measure
of .214. When these two approaches were combined, the overall results were
quite good. It suggests that we should consider a combination scheme for our
methods, which in fact we propose to do in future work.

The second place system (CL Research-DIMAP) relied on WordNet and
achieved an F-Measure of .293 [30]. It attained F-measure of .354 on ad-
jectives, .338 on nouns, and .225 on verbs. These results are quite similar to
our own overall, although we note that our approach is somewhat better for
nouns, and less so for verbs and adjectives. Again, this suggests the value of
combining systems.

Thus, we believe the results of attained by maximizing semantic relatedness
with lesk-e compare favorably with some of the best previously reported results
for this data. We believe that our approach has the added merit of being
intuitively appealing, and it allows us to easily leverage the considerable body
of work that has gone into developing measures of semantic relatedness. The
disambiguation algorithm is in fact quite simple, so we believe that the results
here suggest that measures of semantic relatedness are powerful sources of
information for disambiguation in general.

9 Future Work

This method of disambiguation depends quite crucially on the quality of the
measures of semantic relatedness that are used. All of the measures could
be tuned and refined in various ways, and we mention a few examples here
to give a flavor of such work. Information content values and co—occurrence
matrices for the gloss vector measure could be calculated from different cor-
pora, and various smoothing methods could be explored. Rather than relying
on frequency counts they could employ measures of association. For the gloss
overlap measures, fuzzy string matching strategies could be explored. It would
be useful to determine which relations contribute the most to the extended
gloss overlap success, rather than simply using all of the immediately available
relations.

In the end it appears that all of these measures offer some unique capability,
and exploring the possibility of combining them into ensembles is perhaps the
most promising area of future work. There is considerable evidence already in
word sense disambiguation that the combination of different knowledge sources
will bring improvements (e.g., [31], [32]) and we see no reason to believe that
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these measures are any exception.

The disambiguation algorithm itself could be refined in various ways. The
contribution of relatedness could be weighted according to the distance from
the target word (or other criteria). The selection of words in the window of
context could be refined such that only the most relevant words are selected.

10 Conclusions

In this article we have introduced a method of word sense disambiguation
that selects the sense of a target word that has the maximum relatedness with
the content words found in a large window of surrounding context. We show
that this algorithm can be used with any measure that computes a relatedness
score between two concepts, and found that in general the performance of this
algorithm improves as the window of context increases. We observed that the
extended gloss overlap measure (lesk-e) is overall the most effective, and the
the gloss vector (vector) measure fared particularly well with adjectives, which
are essentially impossible for path based and information content measures.
When we compare vector with lesk-o, we can quickly conclude that there are
considerable advantages to using second order co—occurrences to carry out
gloss matching versus more traditional first order overlaps. We also observed
that the Jiang—Conrath measure (jen) performs quite well for nouns and verbs,
but only when its information content is computed from the sense-tagged
corpus SemCor.

In general we believe that the results of this work show that measures of
semantic relatedness are a useful and important knowledge source for word
sense disambiguation.

11 Resources

The disambiguation algorithm and all the measures of relatedness described
in this paper are available as freely distributed Perl programs. For these ex-
periments, we used version 0.1 of the SenseRelate package, and version 0.05 of
the WordNet::Similarity package to compute all the measures of relatedness
reported. These can be found at:

e http://www.d.umn.edu/ tpederse/senserelate.html
e http://search.cpan.org/dist/ WordNet-Similarity/
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