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Abstract

The development of automatic natural language un-
derstanding systems remains an elusive goal. Given
the highly ambiguous nature of the syntax and se-
mantics of natural language, it is often impossible to
develop rule-based approaches to understanding even
very limited domains of text. The difficulty in speci-
fying rules and their exceptions has led to the rise of
probabilistic approaches where models of natural lan-
guage are learned from large corpora of text. These
models usually serve as simple classifiers for partic-
ular subtasks such as word sense disambiguation or
discourse segmentation. While successful in these lim-
ited roles, it is unclear that multiple classifiers can be
combined to create comprehensive natural language
understanding systems.

Instead, we believe that recent advances in modeling
and reasoning with uncertain information offer an ap-
propriate framework for building such systems. We
are developing and evaluating new algorithms that
learn Bayestan belief networks from large corpora of
text. These networks will integrate multiple natural
language processing subtasks in a single model and
will support inferencing mechanisms that go beyond
simple classification. We are also developing and eval-
uating novel sets of features that will allow us to rep-
resent and reason with the inherent relationships that
exist among natural language processing subtasks.

Introduction

Natural language processing has undergone a trans-
formation in the last decade due to the availability of
annotated corpora such as the Brown Corpus and the
Penn TreeBank. These are large bodies of online text
that have been manually augmented with syntactic and
semantic information and can therefore serve as reli-
able sources of training data for statistical approaches
that learn probabilistic models from large corpora of
text.

In general, these approaches cast natural language
processing subtasks as classification problems. The
learned probabilistic models indicate the most likely
value for a variable that represents the membership

category or classification of an event, given the values
of other feature variables that represent the context
in which that event occurs. For example, in part—of—
speech tagging the classification variable represents the
part—of-speech of a particular word and the context
in which it occurs is represented by feature variables
whose values are the part—of—speech of the immedi-
ately preceding words in the sentence. Classification
methodologies have been widely applied in natural lan-
guage processing; word sense disambiguation, parsing,
and document classification are but a few examples.

The assumption underlying these approaches is that
natural language understanding is decomposable into
subtasks that can be independently resolved and
merged back together to form larger components. We
refer to this as a bottom—up model of language un-
derstanding. Since each subtask is usually treated in-
dependently, interacting and supporting subtasks are
assumed to have been resolved before a subtask will
be performed. For example, probabilistic classifiers
that perform word sense disambiguation usually as-
sume that syntactic ambiguity has been resolved be-
fore semantic disambiguation takes place. Likewise,
classifiers that segment discourse into coherent blocks
often assume that the semantic ambiguity of words
has already been resolved. These assumptions result
in a bottom—up sequential model of language process-
ing such that syntactic issues must be resolved before
semantic processing, which in turn must be resolved
before performing discourse—level tasks. This is il-
lustrated in Figure 1, where syntactic, semantic, and
discourse level processing are all treated separately.
Each box represents a subtask and each enclosed graph
represents the relevant features and their interactions
within that subtask. Note that the subtasks only inter-
act in a sequential fashion and proceed from low—level
syntactic processing to the higher level semantic and
discourse processes.

However, in the real world of online text, it is likely
that a combination of syntactic, semantic, and dis-
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Figure 1: Bottom—up Sequential Language Processing

course level features will be available simultaneously
or in an unexpected sequence. For example, if an arti-
cle is found in the online archives of the baseball sec-
tion of the sports pages of a newspaper, it seems likely
that the general topic of the article is baseball. This
information is immediately known and resolves the dis-
course level subtask of document classification which
could then be utilized by other subtasks, given that
there is a means to propagate this evidence to them.
For example, discourse level information can impact
syntactic processing. If baseball is the topic of a docu-
ment, bats can be used as either a noun or a verb (e.g.
Aluminum bats will never be used in major league base-
ball versus He bats fifth in the lineup). Topic informa-
tion can also impact semantic processing (e.g., bats is
unlikely to refer to a mammal if the topic is baseball).

Therefore, we are developing methods of learning
Bayesian belief networks that will integrate multiple
natural language understanding subtasks into a sin-
gle unified model. These models will promote the dis-
covery, representation, and utilization of novel inter-
actions among these subtasks. An example of an in-
tegrated network is shown in Figure 2, where interac-
tions among features are not restricted to bottom—up
relationships but are also top—down, e.g., discourse to
syntax, or mixed, e.g., a single semantic feature in-
teracts with both a discourse feature and a syntactic
feature.
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Figure 2: Integrated Network for Language Processing

Bayesian Belief Networks

A probabilistic model of a natural language subtask
consists of a set of random variables that represent
various lexical, syntactic, semantic, and discourse fea-
tures, each of which can take on particular values with
certain probabilities. The joint distribution assigns

probabilities to every possible combination of feature
variable values. While the joint distribution supports
inferences about any feature in the domain, it becomes
intractably large as the number of feature variables in-
creases. In practice it is usually not feasible to specify
or obtain evidence for all of the probabilities needed to
define a joint distribution.

Bayesian belief networks (Pearl 1988), hereafter sim-
ply belief networks, offer a solution to the problems
caused by large joint probability distributions. They
provide a concise description of joint distributions
based strictly on local causal relationships among vari-
ables. A belief network is conveniently represented by
a graph where the following conditions hold:

1. A set of random variables make up the nodes in the
graph.

2. A set of directed edges connects the nodes. The
directed edges represent causal influences between
variables.

3. Each node has a conditional probability distribution

associated with it that quantifies the effect of all the
causal influences on a node. The causes are those
nodes that have directed edges leading into a node.

4. There are no directed cycles, i.e., it is a directed

acyclic graph.

Figure 3 illustrates a simple Bayesian belief network.
The structure represents qualitative relationships de-
scribing cause and effect relationships among variables;
node A is a cause with effect B, node B is a cause with
effect D, and node C'is a cause with effect B. The con-
ditional distributions associated with this structure are
p(B|A,C) and p(D|B). Nodes A and C have uncondi-
tional distribution p(A4) and p(C) associated with them
since they are only causes but never effects. The proba-
bility of observing each possible combination of values
in these distributions is given by a parameter whose
value can be specified based upon expert or intuitive
knowledge, or learned from training data.

Our objective is to develop new methods for learning
the structure and parameter estimates of belief net-
works for complex and novel integrations of natural
language subtasks.
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Figure 3: Bayesian belief network



Learning Belief Networks

We will develop and evaluate new methodologies that
learn belief networks for natural language processing.
There are two scenarios that we are likely to encounter.
First, when the training sample of text to be learned
from is complete, i.e., when it provides a value for ev-
ery feature of interest for every observation in the sam-
ple, then learning a network structure directly from the
training data is feasible. In this case, estimating the
values of the parameters in the conditional distribu-
tions can be done based strictly on data observed in the
training sample using mazimum likelihood estimation.
However, if the sample of text is incomplete, i.e., val-
ues are not known or missing for some of the features,
then it is usually impossible to learn a network struc-
ture directly from the data. Given incomplete training
data, it is not possible to directly estimate the param-
eter values from the data; instead we employ methods
that impute values for the incomplete data.

Learning Structure Given Complete Data

The objective in learning a belief network is to discover
a network structure that is both a specific representa-
tion of the important relationships among the features
in the training data and yet still able to generalize to
those cases not specifically represented in the training
data. This is a challenging problem since the number
of possible structures is exponential in the number of
features and an exhaustive search of all the possible
networks is usually not tractable. We must develop a
search strategy to guide the learning algorithm through
the space of possible networks and an evaluation crite-
rion to measure the acceptability of a network, usually
in terms of how closely the network characterizes or
fits the training data.

Our previous work ((Pedersen, Bruce, & Wiebe
1997), (Pedersen & Bruce 1997b)) utilized sequen-
tial search strategies and information criteria to select
probabilistic classifiers for word sense disambiguation.
Here we extend those methodologies to learn belief net-
works that will support inference on any variable in the
domain, not just a single classification variable.

Sequential Search Strategies A sequential search
adds (or removes) interactions among features in
steadily increasing (or decreasing) levels of complexity,
where complexity is measured in terms of the number
of interactions in the network. Adding interactions to
simple networks is known as forward inclusion while re-
moving them from complex networks is backward elim-
ination. This research will develop methods of forward
inclusion for learning belief network structures. Back-
ward elimination is problematic since the search strat-
egy begins with complex networks that have large con-

ditional probability distributions with many parame-
ter values to estimate. It is difficult to obtain suffi-
cient evidence from the training sample to support es-
timates for the networks that must be evaluated early
in a backward search.

However, determining the initial structure with
which to begin forward inclusion poses a dilemma.
Forward searches often begin with the model of inde-
pendence, a structure where there are no interactions
among features. Edges are added one at a time until
a structure is found that balances complexity and fit.
However, early in the search the impact of adding in-
teractions to the network are evaluated relative to a
very small number of other interactions which can re-
sult in bypassing more complex interactions that may
not be apparent in the limited contexts available early
in forward search. We will take three approaches to
address the limitations of forward search:

1. Initialize forward searches with a limited amount of
expert knowledge. Begin the search with a structure
that includes interactions that are well supported by
other studies or are commonly acknowledged.

2. Initialize forward searches with fixed structures that
are variants of the Naive Bayesian classifier. This is
a network structure where there are no direct in-
teractions among the feature variables and where
all feature variables interact with a single classifica-
tion variable, i.e., the feature variables are all causal
nodes and the classification variable is the only effect
node in the network.

3. Randomly initialize the network structure with a

fixed number of interactions and then perform a
combination of backward and forward search to ar-
rive at a selected network. This process will be re-
peated a number of times and the results from each
stage will be combined into a composite network.
This is a variation on the idea of model averaging
(e.g., (Madigan & Raftery 1994)), where averaged
or composite networks are learned as opposed to se-
lecting a single best—fitting network.

Information Criteria The degradation and im-
provement in fit of candidate networks relative to the
current network is assessed by an evaluation crite-
rion. We propose to investigate the applicability of
a general class of methods known as the informa-
tion criteria to belief network learning. We will focus
on Akaike’s Information Criteria (AIC) (Akaike 1974)
and the Bayesian Information Criteria (BIC) (Schwarz
1978). These criteria are based on the log-likelihood
ratio G2, a frequently used test statistic that measures
the deviance between what is observed in the data and



what would be expected to be observed, if the network
under evaluation adequately characterizes or fits the
data.

Learning Parameter Estimates Given
Incomplete Data

If the training data is incomplete, then learning a net-
work structure is often not possible. In such cases we
will rely upon expert or intuitive specification of the
structure. However, the task of estimating the param-
eter values of the conditional probability distributions
remains. Generally, if the network structure is given
and there are missing values in the training data, we
can employ methods that will impute values for the
missing data and then make estimates for the param-
eters based on those imputed values.

Two popular methods of imputing values for miss-
ing data are the Expectation Maximization (EM) al-
gorithm (Dempster, Laird, & Rubin 1977) and Gibbs
Sampling (Geman & Geman 1984). We have used both
in our previous work ((Pedersen & Bruce 1997a)) to
learn parameter estimates for Naive Bayesian classi-
fiers that were applied to word sense disambiguation.
Here we extend their use to belief networks for inte-
grated natural language processing.

The EM algorithm formalizes a traditional method
of handling missing data, starting with a guess of the
initial values of the parameters. Thereafter, the follow-
ing steps are performed iteratively: (1) replace missing
data values by their expected values given the guessed
parameters, (2) estimate parameters assuming that the
missing data is given by the expected values, (3) re-
estimate the missing values assuming the new param-
eter estimates are correct, and (4) re—estimate the pa-
rameters assuming the new missing values are correct,
iterating until these estimates converge at a maxima.

Gibbs Sampling can be cast as a stochastic version
of the EM algorithm. A Gibbs Sampler iterates much
as the EM algorithm except that it replaces missing
data values and re—estimates parameters via repeated
sampling from conditional distributions defined by the
network structure whereas the EM algorithm simply
maximizes these distributions. Chains of estimates are
generated during Gibbs Sampling for each parameter.
These chains will eventually converge to a stationary
distribution.

While the EM algorithm is known to converge rather
quickly to parameter estimates associated with missing
data, it is susceptible to getting stuck in local maxima.
Gibbs Sampling is guaranteed not to get stuck in local
maxima but can be very slow to converge. Therefore,
we are developing a hybrid approach that initializes
the Gibbs Sampler with the parameter estimates found

by the EM algorithm. This overcomes the potential
danger of the EM algorithm arriving at a local maxima
while helping speed convergence of the Gibbs Sampler.

Integrated Networks of Natural
Language

In the previous section we outline a methodology for
learning belief networks. Our intention is to develop
belief networks that integrate a variety of natural lan-
guage processing subtasks. In this research we will
focus on the integration of three key subtasks: word
sense disambiguation, subtopic shift identification, and
document classification.

Word Sense Disambiguation

Word sense disambiguation is a central problem in nat-
ural language processing; it is the process of select-
ing the most appropriate meaning for an ambiguous
word, given the context in which it occurs. It is not
yet well understood what constitutes the necessary and
sufficient context to disambiguate a word; in fact, the
representation of context is often the salient difference
among approaches to this problem.

Corpus—based approaches have generally relied upon
a window of surrounding words to provide context. A
window of 100 words was suggested in (Gale, Church,
& Yarowsky 1992), although small windows of one or
two surrounding words have also proven effective (e.g.,
(Ng & Lee 1996)). Another commonly used representa-
tion of context is the so—called bag of words, where each
word that occurs in the training sample is represented
by a feature variable (e.g., (Mooney 1996)). Syntac-
tic structure has also proven useful. For example, the
part—of-speech of surrounding words are common rep-
resentations of context (e.g. (Bruce & Wiebe 1994))
as are verb—object structure (e.g., (Ng & Lee 1996)).

Thus, current approaches to word sense disambigua-
tion generally focus on syntactic and lexical repre-
sentations of context. However, the one—sense—per—
discourse hypothesis (Gale, Church, & Yarowsky 1992)
holds that content words will largely be confined to
one sense when they appear in specific domains. De-
spite the intuitive appeal of this hypothesis, discourse
level features are generally not included in probabilis-
tic word sense disambiguation algorithms. We believe
that this is at least partially due to the bottom—up
sequential methodology that classification based ap-
proaches to language processing seem to impose. We
are optimistic that a belief network that allows ev-
idence from the discourse level to impact semantic
and syntactic processing will result in improved per-
formance at all levels of language processing.



Subtopic Shift Identification

Establishing the boundaries of shifting subtopics in
text is an important area of research in discourse anal-
ysis and information retrieval. The object of this
subtask is to identify and mark locations in a docu-
ment where the subtopic changes to a measurable de-
gree. These markings will form a contiguous, non—
overlapping series of subtopic shifts. However, this
does not include identifying the nature of the subtopic,
just indicating that it has shifted and whether or not
it has returned to a previously mentioned subtopic or
if a new one has been introduced.

A variety of fairly obvious structural features exist
in certain kinds of text such as headings and sub—
headings that serve as markers for subtopic shifts.
However, there are many types of text where this
information is not available and the identification of
subtopic shifts is a non—trivial problem.

The underlying premise to most approaches to this
problem is that changes in the distribution and occur-
rence of content words in a text will signal changes in
subtopic (e.g., (Hearst 1997)). Several well known sta-
tistical tests have been employed to identify significant
changes in vocabulary, among them the log—likelihood
ratio G and the t-test. We also believe that features
from semantic level subtasks such as word sense dis-
ambiguation can be of benefit for subtopic shift iden-
tification.

Document Classification

The ability to divide a collection of documents into
pre—defined subject categories is a very practical and
important application for natural language processing
and information retrieval, particularly given the large
amount of text that is now available online. This
problem is usually approached by training a learn-
ing algorithm with examples of documents that have
been manually categorized into classes or broad topics.
These methods make discrimination decisions based
upon the appearance or distribution of content words
in documents, as well as on various metrics that define
semantic distance between documents.

Perhaps the most common approach is to represent
documents using variants of the bag of words feature
set. Each document is represented by a single vector
where each feature in the vector is a binary variable
indicating the presence or absence of a certain word
from the document or query. This representation of
context has been widely used to create Naive Bayesian
classifiers. Recent approaches require smaller amounts
of training data and do not necessarily include all the
content words in the training sample in the model (e.g.,
(Koller & Sahami 1997)).

A number of other approaches have come from in-
formation retrieval research. For example, the vector
space model (Salton & McGill 1983) has been applied
to document classification. In general, each word in a
document is treated as an axis in a highly dimensional
space. All documents in a training sample that rep-
resent a particular category are plotted in this space,
with the distance along each axis dependent on the
number of times each word occurs in the training sam-
ple. To determine the category membership of a new
document, one calculates the cosine of the angle be-
tween the clusters of points representing the various
categories of documents and the cluster representing
the document to be classified. The category of the new
document will be that which has the cluster of points
that lie closest to the cluster associated with the new
document.

Integration of Subtasks

Our objective is to create integrated belief networks
that represent all of the features and interactions
that exist in and among word sense disambiguation,
subtopic shift identification, and document classifica-
tion. We believe that there are inherent and important
interactions among these subtasks that are not discov-
ered, represented, or utilized by current methodologies.

However, in order to learn integrated models, train-
ing data must be available for all of the subtasks. We
propose to develop large sets of such data by taking ad-
vantage of naturally occurring training examples. On-
line text, especially as found in hyper—linked environ-
ments, contains a great deal of contextual information
that goes beyond what is immediately contained in the
text; documents at Web sites are often organized by
topic, labels on hyper—links can provide important in-
formation as to semantic content, etc.

We will extract articles from freely available sources
such as the online archives of wire services and newspa-
pers where those articles have already been categorized
by topic. This will give us a large and ready-made
source of training data for the document classification
subtask.

Within the document classification training data, we
will identify and save only those articles that have
headings and sub—headings included as a part of the
text. We will treat these not as text but simply as
markers of subtopic shifts. We now have a corpus of
training data that includes a large number of document
classification and subtopic shift examples.

Obtaining training data for word sense disambigua-
tion is more difficult since there are few naturally oc-
curring sources of disambiguated text. While there
are manually sense-tagged corpora available, they are



generally not of sufficient breadth to provide adequate
quantities of training data for document classification
and subtopic shift as well. Therefore, we will create
sense—tagged text using the pseudo—word methodology
((Gale, Church, & Yarowsky 1992), (Schutze 1993)).
Rather than manually annotating different instances of
a word with sense indicators, this approach combines
two unrelated words and creates a new single word
that is ambiguous; the possible meanings are those
of the individual words. For example, all instances
of apple and baseball in a corpus are combined into a
new word, apple—baseball. The pre—combination ver-
sion of the corpus serves as a gold standard by which
the automatic disambiguation of apple—baseball can be
evaluated. This is an efficient means of creating train-
ing data that has the further advantage of providing
a reliable gold standard for evaluation; human disam-
biguation tends to be somewhat unreliable as well as
time—consuming.
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