Learning High Precision Rulesto Make Predictions
of Morbiditiesin Discharge Summaries

Ted Pedersen, PhD
University of Minnesota, Duluth, MN, USA

Abstract

The Duluth entries in the 2008 12B2 Obesity Challenge
used supervised machine learning techniques that re-
lied on bag of words unigram features found in dis-
charge summaries to predict if a patient is obese or
suffers from any of 15 related co—morbidities. We
found that the RIPPER rule learning algorithm cre-
ated high precision models that exceed the mean pre-
cision of all the participating systems by a significant
degree. It also discovers simple and informative rules
that allow us to better understand the domain. How-
ever, no supervised learning algorithm that we exper-
imented with was able to perform well on the minor-
ity judgments which make up less than 1% of the total
training and test data.

I ntroduction

The 12B2 Challenge for 2008 was to predict if a patient
suffered from obesity or any of 15 other co-morbidities
under two different problem definitions. In the textual
task, the prediction was based strictly on information
found in the patient’'s discharge summary, and in the
intuitive task, expert judgments were combined with
the content of the discharge summary.

The Challenge organizers provided manually anno-
tated training data which consisted of 730 discharge
summaries which had each been annotated with judge-
ments for the two different tasks. Given this training
data, we decided to approach the Challenge as a prob-
lem in supervised learning. Our overall method was
to learn a model for each morbidity from the training
data, and then use that model to predict the morbidi-
ties present in 507 discharge summaries that made up
a held—out test set.

We relied on textual information from the discharge
summaries, where any single word (unigram) that oc-
curred more than one time in the training data was con-
sidered a feature. The position of the unigram in the
discharge summary was not considered, which means
our feature set corresponds fairly closely to the tradi-

tional bag of words often used in text classification

problems. While our method was purely textual, we

applied it to both the textual and intuitive tasks, hy-

pothesizing that expert intuitions are at least in part
triggered by nuanced textual data they encounter while
reviewing the discharge summaries.

Challenge Data

The training data consisted of 730 discharge sum-
maries that were manually annotated with up to 16
judgments indicating the presence of obesity and its
co-morbidities according to both the textual and intu-
itive task guidelines. The test data consisted of 507
discharge summaries that were also manually anno-
tated, but those annotations were used for evaluation
and withheld from participants until after the competi-
tion.

The textual task specified that a system predict one of
four judgments for each of the 16 morbidities for a dis-
charge summaryyes(the presence of the morbidity in
the patient is specifically mentionedp (the absence

of the morbidity is specifically mentionedpuestion-
able (the morbidity is mentioned but it is uncertain if

it affects the patient), anddnmentionedthere is no
mention of the morbidity).

The intuitive task specified that a system output one of
three judgments for each morbiditytes(the patient
suffers from the morbidity)No (the patient does not
suffer from the morbidity), an@Questionablgthe pa-
tient might suffer from the morbidity).

The distribution of the judgments in the intuitive and
textual tasks for both the training and test data are
shown in Tables 1 and 2. Participants knew the dis-
tribution in the training data but not the test data (since
the annotations were withheld until after the evaluation
period). However, we assumed that the training data
was representative of the test data, and this proved to
be the case.

These tables show that the training and test data is
very heavily skewed towards two dominant judgments,

Table 1:Intuitive Task Judgment Distributions

Training Test
Judgment 730 patients 507 patients
No 7,362 (.69)| 5,100 (.69)
Yes 3,267 (.31)| 2,285 (.31)
Questionable 26 (.00) 14 (.00)
Totals 10,655 (1.00)| 7,399 (1.00)

Table 2:Textual Task Judgment Distributions

Training Test
Judgment 730 patients 507 patients
Unmentioned| 8,296 (.71)| 5,770 (.72)
Yes 3,208 (.28)| 2,192 (.27)
No 87 (.01) 65 (.01)
Questionable 39 (.00) 17 (.00)
Totals 11,630 (1.00)| 8,044 (1.00)

which account for more than 99% of the total judg-
ments in both the intuitive and textual task. The poten-
tial effect of this on supervised learning can be quickly
assessed by looking at the number of training exam-
ples available per morbidity. For example, in the intu-
itive task, the average number of training examples per
morbidity for the judgmeniNo is 460, forYesis 204,

and forQuestionablds 2. In the textual task, the av-
erage number of training examples per morbidity for
Undecideds 517, forYesis 201, forNois 5, and for
Questionablés 2.

We were also concerned that a minority judgment ob-
served in the training data for a particular morbidity
might not be observed at all in the test data, or that
a minority judgment found in the test data might not
be observed in the training data. We had these con-
cerns because the minority judgments in the training
data were so small in number, and somewhat unevenly
distributed across the morbidities. In the intuitive task,
6 of the morbidities had nQuestionableexamples,
and in the textual task 7 morbidities had Qoestion-
ableexamples, and 6 morbidities had damentioned
examples. While this is a natural consequence of the
nature of the data, it poses concerns for supervised
learning, where it is essential that the training data be
representative of the test data.

In retrospect, there were only a few minor differences
between the training and test data with respect to the
minority judgments. In the training examples for the
intuitive task there were 2Questionablgudgments
applied to 10 different morbidities, while in the test
data there were 1Questionablgudgments that oc-
curred in just 6 of those 10 morbidities. In the tex-
tual task training examples there were G@estion-
able judgments that occurred in 9 different morbidi-

ties, while in the evaluation data there wereQiues-
tionablejudgments that occurred in those same 9 mor-
bidities. In the textual training examples there were 87
Nojudgments that occurred in 10 different morbidities,
while the evaluation data had 6% judgments which
occurred in 9 of those 10 morbidities. Thus, there were
training examples provided that were essentially irrel-
evant to the test data (since the evaluation data did not
contain some of those judgments). Fortunately there
were no judgments for any morbidities in the test data
that were not also included in the training data. This
would be a far more problematic situation, since the
correct judgment in that case would never have been
seen in any form in the training data, and the learned
model could not know about it.

Based on all of these considerations, we concluded that
it would not be feasible for a supervised algorithm to
effectively learn the minority judgment®(estionable

in the intuitive task, andNo and Questionablen the
textual task) and there would be a risk of fragmenting
the learning process by forcing it to attempt to learn in
cases where the number of training examples is quite
small. As such we decided to exclude the minority
judgments from the training data, and proceed as if this
was a two class problem in both the intuitive and tex-
tual tasks.

This was a calculated gamble, but at the time we were
making this decision we did not know the distribution
of the test data. Thus, we elected to take a fairly cau-
tious approach, and focus on learning high precision
models for the dominant judgments.

The most obvious drawback of this decision was for
our Macro Recall scores. This measure is based on
the average of the recall for each judgment, and by ex-
cluding certain judgements we would guarantee recall
of 0in those cases, which would drive down the macro
score significantly since the number of judgments is
small. For the intuitive task, we would get O recall for
1 of 3 judgments, and 0 recall for 2 of 4 judgments in
the textual task.

Supervised L earning M ethods

We took a textual approach to this problem, and relied
on lexical features found in the discharge summaries in
the training data to represent the training data and build
models for classification. No external sources of infor-
mation were used, and the features were identified with
the Ngram Statistics Packalye During that process
we converted all text to lower case, discarded punctu-
ation, numeric data, and single character strings, and
defined words as being space separated strings that
were not included among the approximately 200 stop
words found in the SMART stop list. We experi-
mented with unigram, bigram, trigram, and 4—gram

features, but found that unigrams that occurred more
than one time in the training data resulted in signif-
icantly more accurate models during cross—validation
studies with the training data. There are approximately
9,000 unigram features per morbidity, although they
vary somewhat with each morbidity since some anno-
tations were withheld from the training data due to low
inter—annotator agreement.

As a part of our studies to determine which features to
use, we also evaluated a wide range of machine learn-
ing algorithms. After a round of preliminary evalua-
tion using many of algorithm supported in the Weka
Machine Learning Toolk#, we focused on the fol-
lowing five: The RIPPER rule learning algoritiim
(JRip in Weka), the C4.5 decision tree learhéi48

in Weka), a Support Vector Machine (SMO in Weka),
a Voted Perceptron (VotedPerceptron in Weka), and
a Naive Bayesian classifier (NaiveBayes in Weka).
These represent a cross section of techniques: JRip
and J48 discover rules that cover or partition the train-
ing examples while SMO, the Voted Percepton, and
Naive Bayes are (to varying degrees) fitting the train-
ing examples to an underlying statistical or mathemat-
ical model.

Somewhat to our surprise, JRip and J48 performed sig-
nificantly better than the other supervised learning al-
gorithms. We had expected a somewhat closer com-
petition between these methods since Support Vector
Machines and Naive Bayesian Classifiers have a long
history of success in text classification problems, and
Voted Perceptrons have been applied to a range of lan-
guage problems in recent years. However, it may be
that the volume of training data was not sufficient to
reliably fit the data to the models that these methods
rely on.

In addition to being more accurate, JRip and J48 both
learn rules that are easy to understand and provide in-
formative feedback about the problem. These methods
are similar in that both attempt to learn rules that ex-
plain or account for as much of the training data as
possible, without over—fitting and simply memorizing
the training examples. However, they take opposite
approaches; JRip is a bottom—up method learns rules
that cover all the examples for each possible judgment,
while J48 is a top—down algorithm that partitions the
training data into relatively pure subsets.

JRip (RIPPER) proceeds by treating all the examples
of a particular judgment in the training data as a class,
and finding a set of rules that cover all the members of
that class. Thereafter it proceeds to the next class and
does the same, repeating this until all classes have been
covered. At no point does it consider all of the train-
ing examples as a whole (which is why we refer to it
as bottom—up). J48 (C4.5) takes a top—down divide—

and—conquer approach. It proceeds recursively by se-
lecting a single feature that best divides the training
examples into classes, where (in the end) each class
is made up of examples of only one judgment (or as
nearly so as possible). The first feature selected is the
root of the decision tree, and the subsequent features
form branches that eventually cover or explain some
subset of the training examples.

Like nearly all machine learning algorithms, both JRip
and J48 must balance over—fitting with generalization.
If the model that is learned too closely characterizes
the training examples, then the model will not fare well
on new data. Both JRip and J48 engage in pruning of
their rules to allow for this generalization. Usually this
pruning is based on the number of training examples
that are covered or explained by a particular rule or
feature, so the rules or features that cover or explain the
small minority judgments are most likely to be pruned
away, leaving the resulting model unable to classify
them.

JRip and J48 search for rules and features in a greedy
fashion, making them vulnerable to locally—optimal
choices early on that do not lead to overall globally—
optimal results. Given this we felt that the meta—
learner AdaBoost was appropriate to use with both
JRip and J48. AdaBoost proceeds iteratively through
the training data, and re—applies the learning algorithm
(either JRip or J48) on training examples weighted
based on how easy or hard they have proven for pre-
vious iterations of the classifier to get correct. While
we did not expect AdaBoost to result in hugely signifi-
cant improvements to our results, we felt that it would
help avoid any obvious problems caused by poor initial
choices by either JRip or J48.

Each participating team was allowed to submit three
sets of results for each task. We found that JRip with
and without AdaBoost and J48 with AdaBoost were
the most accurate of our methods, and so those sys-
tems were used to create our submitted results. The
only difference between the intuitive and textual task
systems was the data upon which they trained. While
they were trained on the same set of discharge sum-
maries, the underlying annotations differ between the
tasks. For each of our three learning algorithms, we
learned an intuitive and a textual classifier for each of
the 16 morbidities, giving us a total 8fx 2 x 16 = 96
classifiers. Each of these was applied to the test data,
and the output was submitted to the appropriate task
of the 12B2 Challenge without any manual review or
modification.

Challenge Results and Discussion

The systems that participated in the Challenge were
scored on precision, recall, and the F-score using

Table 3: Performance % (Intuitive Task): training
data limited to top 2 judgments, results of our official
submissions plus post—evaluation studies

Precision Recall F-Score
Method | mic mac mic mac mic mag¢
M ean 91 78 90 60 90 60
JRip 93 95 93 60 93 61
JRip-AB| 93 95 93 60 93 61
J48-AB | 92 95 92 60 92 60
J48 90 93 90 59 90 59
SMO 88 92 88 55 88 57
\VotedP | 84 88 84 53 84 54
NaiveB | 81 86 81 49 81 50
ZeroR 7 82 77 47 77 48

Table 4: Performance % (Intuitive Task): all train
ing data used, post—evaluation studies

Precision Recall F-Score
Method | mic mac mic mac mic mac¢
Mean 99 78 90 60 90 60
J48-AB | 92 61 92 60 92 60
JRip-AB | 92 61 92 60 92 60
JRip 92 61 92 60 92 60
J48 90 60 90 59 90 59
SMO 88 92 88 55 88 57
NaiveB 81 86 81 49 81 50
ZeroR 77 82 77 47 77 48

Table 5: Performance % (Textual Task): training
data limited to dominant judgments, results of our of-
ficial submissions plus post—evaluation studies

Precision Recall F-Score
Method | mic mac mic mac mic mag
M ean 91 75 91 5 91 56
JRip-AB| 93 96 93 45 93 46
JRip 93 96 93 45 93 46
J48-AB | 93 96 93 45 93 46
J48 91 95 85 42 88 44
SMO 88 94 88 41 88 42
VotedP | 85 91 85 40 85 41
NaiveB | 81 89 81 36 81 37
ZeroR 78 87 78 34 78 35

Table 6:Performance % (Textual Task): all training
data used, post—evaluation studies

Precision Recall F-Score
Method | mic mac mic mac mic mac¢
Mean 99 75 91 5 91 56
J48-AB | 93 48 92 45 93 46
J48 92 48 91 45 92 46
JRip 93 46 93 46 93 46
JRip-AB | 93 71 93 46 92 46
SMO 88 94 88 41 88 42
NaiveB 81 89 81 36 81 37
ZeroR 78 87 78 34 78 35

both macro and micro definitions. The macro defini-
tion computes the score per judgment, and then aver-
ages those scores, while the micro definition computes
overall scores. Thus, the macro definition will reward
systems that fare well on the minority judgments, and
the micro definition will do the same for systems that
perform well on the dominant judgments. The overall
ranking of systems in the Challenge was done accord-
ing to the Macro F-Score.

In Tables 3, 4, 5, and 6, the first entry is the mean value
of the 28 submitted systems for each of the measures.
These scores (and team ranks) were provided by the
Challenge organizers after the evaluation period was
over. The last entry in each table is the results from the
ZeroR classifier. This is a majority classifier that as-
signs the most frequent judgement found in the train-
ing data for a morbidity to each discharge summary
in the test data. A majority classifier provides a lower
bound for the performance that a supervised learning
algorithm should obtain.

Table 3 shows the official results of our three submitted
systems on the intuitive task (in italics), which are de-
signed as J48-AB, JRip-AB, and JRip. An -AB follow-

ing the name of a learning algorithm indicates that Ad-
aBoost was applied. For the intuitive task our Macro
F-scores for all three systems are slightly above the
mean of the 28 participating systems, and our Preci-
sion scores are quite a bit higher. The rank of our
system with the highest F-Macro score (JRip) in the
intuitive task was 17 of 28.

After the evaluation period was over and once the an-
notations for the test data were available, we decided
to re—run our systems, except this time using all of the
available training data, just to see if there would be
any difference in the results. We show the results of
this post—evaluation study in Table 4. It turned out that
our results would be essentially the same in the intu-
itive task with or without the inclusion of the minority
training examples.

Table 5 shows the results of our submitted systems on
the textual task. Here we can see that our results trailed
the mean results by a significant margin. Our best sys-
tem according to the Macro F-score (JRip-AB) ranked
21 out of 28 participating systems. Our Macro Recall
lagged below the mean, while all of the other Precision
and Recall measures were somewhat above the mean

performance.

While the number of minority judgments was still
quite small in the textual task, it was somewhat more
than in the intuitive task. We were again uncertain
if excluding the minority judgments from the training
data might have needlessly hurt our results. We did the
same post—evaluation study as we did in the intuitive
task, where we re—ran our textual systems using all of
the training data and evaluated their performance on
the test data. Table 6 shows the results, where we find
that again there is not a significant difference in the
performance compared to training with just the domi-
nant judgments.

In retrospect, the fact that the minority judgments had
no impact on supervised learning even when included
in the training data is not too surprising, since super-
vised learning algorithms strive to learn a model that
covers or explains the training data as completely as
possible, without over—training. In order to make the
models generalize, there is usually a pruning compo-
nent of some kind after the model has been learned,
and in this case the minority judgments occur so rarely
(just a few times for a given morbidity at the most)
that they are indistinguishable from noise, and so the
supervised learning algorithm simply discards them.

Example of JRip Rules

The following rule set was learned by JRip for Depres-
sion in the intuitive task. While this might appear very
similar to the information in a decision tree, these rules
were constructed in a bottom-up fashion rather than
the top—down method of decision tree learning.

(depression = 1) AND
(catheterization = 0)
(depression = 1) AND
(exercise = 0) =>Y (22.0/7.0)
(wellbutrin = 1) =>Y (4.0/0.0)
(citalopram= 1) => Y (2.0/0.0)

=> Y (87.0/8.0)

(celexa = 1) =>Y (14.0/0.0)
(zoloft = 1) =>Y (11.0/1.0)
(prozac = 1) =>Y (7.0/0.0)
(paxil = 1) =>Y (7.0/1.0)

ELSE => N (543.0/5. 0)

These rules have an intuitive interpretation. For ex-
ample, the first rules statesf the string depression
occurs in the discharge summary and catheterization
does not, then Depression is present §&ach rule is
considered in turn, and if none of the Y conditions are
met, then the output will be N, indicating that depres-
sion is not present.

The numbers in parenthesis indicate how many of the
training examples were covered successfully by this
rule. For example, for the first rule, 87 examples were

covered by this rule correctly, and 8 were not (they
met the conditions but had a judgment of N). This set
of rules resulted in a Macro F-Score of 91%.

Conclusion

Our approach to the 12B2 Obesity Challenge was to
treat this as a problem in supervised learning, where
we learned a classifier for each morbidity based on
the unigrams that appear in the discharge summaries.
These classifiers were learned with Ripper/JRip and
C4.5/J48, where JRip was run with and without Ad-
aBoost, and J48 was run with AdaBoost. We ignored
the very small number of minority judgments present
in each task and did not include those examples in the
training data. Subsequent analysis after the release of
the test data showed that our results would have been
approximately the same whether we included the mi-
nority judgments or not.

Acknowledgments

The author would like to thank the 12B2 Challenge Or-
ganizers for their efforts in creating the training and
evaluation data, and for the very professional manner
in which the Challenge was conducted.

Addressfor Correspondence

Ted Pedersen, University of Minnesota, Department
of Computer Science 1114 Kirby Drive, Duluth, MN
55812-2496, USA

tpederse@d.umn.edu

References

1. S. Banerjee and T. Pedersen. The design, imple-
mentation, and use of the Ngram Statistics Package.
In Proceedings of the Fourth International Con-
ference on Intelligent Text Processing and Compu-
tational Linguistics pages 370-381, Mexico City,
February 2003.

2. |. Witten and E. Frank.Data Mining - Practical
Machine Learning Tools and Techniques with Java
Implementations Morgan—Kaufmann, San Fran-
cisco, CA, second edition, 2005.

3. W. Cohen. Fast effective rule induction. Rro-
ceedings of Twelfth International Conference on
Machine Learning pages 115-123, Tahoe City,
CA, July 1995.

4, J. Quinlan. Induction of decision tree$lachine
Learning 1:81-106, 1986.

5. Y. Freund and R.E. Schapire. Experiments with
a new boosting algorithm. IfProceedings of
Thirteenth International Conference on Machine
Learning pages 148-156, Bari, Italy, 1996.

