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Abstract

As the Internet keeps growing, the number of Web pages indexed by commercial search engines such

as Google increases rapidly. Currently, Google reports that they index over 8 billion Web pages. The type

of information available through the Web is very diverse, from publications to electronic encyclopedias

to information about products. In short, the Web is vast and huge. Until recently, the Web has not been

used to acquire information about words in order to better understand Natural Language. However, we

believe that there is a need to develop methods that take advantage of the huge amount of information on

the Web. Hence, this thesis focuses on finding sets of related words by using the World Wide Web.

This thesis presents three new methods for using Web search results to find sets of related words.

We rely on the Google API to obtain search engine results, but in principle these methods can be used

with any search engine. They rely on pattern matching techniques in addition to various measures or

relatedness that we have developed.

In addition to finding sets of related words, we also explore the problem of Sentiment Classification.

This was motivated by a desire to find a practical application for the sets of related words we discover. As

such we extend the Pointwise Mutual Information - Information Retrieval (PMI-IR) measure described

in (Turney, 2002) to be used with Google in order to discover sets of related words. These sets are then

used as seeds in our Sentiment Classification algorithm.
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1 Introduction

The overall goal of this thesis research is to use the World Wide Web as a source of information to identify

sets of words that are related in meaning. As an example of a set of related words, consider the words

Toyota and Ford. These names are related to each other as automobile manufacturers. Hence, if we take

Toyota and Ford to be our input set, an expanded set of related words would be the set that includes names

of other automobile manufacturers such as Nissan, GM, Honda and Chevy. As another example, consider

the the initial set to be January, February and May. In this case, an expanded set of related words would

be a set containing the names of the other months in a calendar year. Hence, a set containing March, April,

June, July and other months would be the most related set of words. The goal here is to retrieve relevant

information from the web, via a search engine such as Google, and extract enough information from the

retrieved content to find sets of related words.

Since our research is very much dependant on both the quantity and quality of the Web content that is used

to group words that are related in meaning, we used a commercial search engine such as Google to gather

information about words from the Web. Google has a very effective ranking algorithm called PageRank

which attempts to give more important or higher quality web pages a higher ranking [9]. One additional

reason for selecting Google over any other search engine is based on the fact that Google has a very easy to

use API that allows programs to interact with it’s database of web pages. In addition, Google also indexes

more than 8 billion web pages.

Using the World Wide Web (WWW) as a source of information has many advantages. As mentioned earlier,

the information available in the web is vast, and the information is dynamic. The dynamic nature of the web

can be advantageous. When experiments were conducted using the algorithms developed in this thesis a very

interesting result was observed. Different periods of times produced different sets of related words. Often,

these sets of related words reflected the current news associated with the given input set. As an example,

when the search terms George Bush and Bill Clinton were used as input during the month of January 2005,

the kind of words returned by the Google Hack was heavily induced by the unfortunate tsunami disaster

in South East Asia. Words such as relief and aid were among the dominant terms. When the same search

terms were issued a couple of months later, the sets of words changed to a more intuitive set of words such

as Jimmy Carter, President, Republican and Democrat.
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Sets of related words that are predicted based on information retrieved from the WWW can be used in

many ways to identify the sentiment associated with certain text, and commercial products. For example,

a brand such as Toyota or Ford can use sets of related words to identify the kind of words associated with

their products [1]. For example, if for an input set such as Toyota Corolla, Toyota Camry the set of related

words returned are reliable, affordable, and gas efficient, it can be concluded by a human that there exists a

positive reaction on the web regarding the some of cars produced by Toyota. Another application of sets of

related words would be the extension of the Point wise Mutual Information - Information Retrieval algorithm

described in [10].

The overall contributions of this thesis are outlined as follows.

1. Developed an algorithm based on co-occurrence and frequency counts to identify sets of related words

(Algorithm 1).

2. Developed an algorithm based on co-occurrence, frequency counts and a relatedness measure to iden-

tify sets of related words (Algorithm 2).

3. Developed an algorithm based on co-occurrence, frequency counts, a relatedness measure and log

likelihood score to identify sets of related words (Algorithm 3).

4. Adapted the relatedness measure described in [6] to the WWW. The measure is effective in distin-

guishing noisy words, and is also effective in ranking words according to their relevance to a given

set of search terms.

5. Extended the PMI-IR algorithm to use multiple sets of positive and negative connotations to classify

the sentiment of reviews using Google.

6. Compared the sets of related words predicted by our Algorithms to other programs such as Google

Sets that was developed by Google.

Other contributions of this thesis are as follows.

1. Developed and released an open source PERL package named Google Hack. The package is freely

available through http://search.cpan.org/ prath/WebService-GoogleHack-0.15/

3



2. Developed a web interface through which can be used to interact with Google Hack.
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2 Background

Our research is very much depedant on both the quantity and quality of the Web content that is used to

group words that are related in meaning. Hence, we use the commericial search engine Google to gather

information about words from thr Web. Google has a very effective ranking algortihm called PageRank

which attempts to give more important or higher qualitiy web pages a higher ranking [9, 2]. In addition

to the quality of the results returned by Google, our research is also dependant on interface that allows our

algorithms to interact with a search engine. The Google API is such an interface that allows programs to

interact with the Google search engine. In this section, we will first try give an idea of how PageRank works,

and we will also try to give an idea of the kind of features allowed by the Google API.

2.1 Google and Page Rank

Google uses an algorithm called PageRank to determine the importance of a web page. The basic idea

behind the PageRank algorithm is to use the number of links to a web page as a source for ranking [9, 2].

Highly linked pages are ranked more important than pages that do not have as many links to them. The links

themselves are divided into back links and forward links. Back links are links that refer to a certain page.

Though this is the basic idea behind the algorithm, the number of back-links alone cannot guarantee a good

ranking. The ranking also depends on the rank page that is linking to it. If for example, a web page has only

one back link, but the back link is from a credible or well linked web page such as the Stanford University

homepage, then the web page would be given a high ranking.

A simplified PageRank function R, for a web page u can be defined as,

R(u) = c ∗
∑

v∈Bm

R(v)

Nm

+ cE(u) (1)

Where, Fu is the set of pages that u points to, and Bu is the set of pages that point to u. Let Nu = | Fu | be

the number of links from u and let c be a factor used for normalization. Let E(u) be some vector over the

web pages that corresponds to a source of rank [9, 2].

As can be seen from the function, the rank of a web page is equally divided amongst its forward links. This

ensures that the weights of a web page, is evenly distributed to the pages that it points to. The basic idea

5



behind page rank can be illustrated through the following example. If web pages A, B and C have have

ranks 6, 6, and 9 respectively, a web page D that is linked to by A, B and C would receive an overall ranking

of (6 + 6 + 9) / 3, which is 7.

To implement PageRank, Google uses the services of a web crawler, which constantly crawls through the

web, finding web pages, and downloading them on to the Google servers. Each URL is then converted into

a unique integer ID which can be stored in the Google database along with the hyper-link to the page. These

web pages are then assigned a rank using the PageRank algorithm. Currently, Google has over 8 billion web

pages in its database 1 .

The identity of a web page is often represented through its title. Keeping this fact in mind, Google uses a

PageRank and a title based searching method to find web pages for a user query. When the user enters a

query, Google retrieves web pages whose title matches the queried words. These web pages are then sorted

using PageRank. This way, the search results are ensured high precision and quality.

PageRank is designed to handle common case queries well. An example of a common case query can be

”flower”. Querying for the term ”flower” in Google, will simply return popular commercial sites that allow

you to buy flowers.

In conclusion, PageRank is a simple, but, a very clever algorithm which uses the link structure of the web

to assign importance to web pages. This in turn allows Google to be a very successful and efficient search

engine.The actual method used by Google has evolved considerably since Page Rank was proposed and the

details are not known to us.

2.2 The Google API

The Google API is a simple programming interface through which software developers can query the Google

web page database2 . The API allows programs to retrieve information such as spelling suggestions, number

of hits and cached web pages for queries. The Google API can also be used with various programming

languages such as Java, Perl and VisualStudio.NET. However, the Google API does have a number of

limitations. Firstly, the number of queries allowed per license key per day is a 1000 queries. Furthermore,

1http : //www.google.com
2http : //www.google.com/apis
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each query can at most retrieve 10 web pages at a time. Hence, if a particular query returns a 1000 hits (web

pages), then for a program to retrieve the first 30 web pages, 3 queries must be issued through the API. The

queries have to be structured such that the first query returns the pages ranking from 1 to 10, the second

query returning the pages ranked from 11 to 20, and finally a third query to retrieve the web pages ranked

from 21 to 30. Other than these two limitations, one additional factor that must be considered is the number

of hits returned by the API. According to Google, the Google API returns an estimated number of hits for a

query instead of the actual number of hits. Hence, if a query returns 10000 as the number of hits, the actual

number of hits might be higher or lower than the estimated number.

2.3 Web Stop Words

One of the biggest drawbacks to using the World Wide Web as a source of information is the amount of

noisy data that is present throughout each web page that is used as a result. Specifically, certain words occur

a very large number of times regardless of a relation to the search term, thereby creating noisy data. For

example, words like links, url and www occur in almost every web page, and it was important to identify

these words as not being related to the search terms.

One method of identifying these unrelated terms is to maintain a list of stop words that are specific to the

web. Identifying and removing web stop words played an important role in reducing the noise in the results

of Algorithm 1.

However, using a Web Stop List comes with some disadvantages. Words that occur in the Web Stop List

cannot be used as input terms to the Google Hack Algorithms.

7



3 Methodology

3.1 Algorithm 1

The motivation of Algorithm 1 is to serve as a baseline method that uses direct pattern matching techniques

to identify sets of related words using Google as a source of information. Algorithm 1 is based on the idea

that words related in meaning tend to co-occur within the same context. Hence, the general idea behind the

algorithm is to create various search engine queries to Google based on the given input terms and to retrieve

the content of those web pages returned by Google for each query. The web page content retrieved for each

Google query is then tokenized into list of words and frequencies. Finally, words that occur frequently and

that are common to the different sets of web page content are assumed to be a set of related words to the

input terms.

Pseudocode for Algorithm 1 is given in the following pages. Algorithm 1 is limited to two words in the

initial input set. The Algorithm takes in as arguments the number of web pages to parse numofPages, the

frequency cut off frequencyCutoff, and the number of iterations numIterations. Consider the following

example trace of Algorithm 1. Let the initial input set S1 be {gun, pistol}. Let numofPages be equal to

10, numIterations be equal to 1, and frequencyCutoff be equal to 10. The first step of the algorithm creates

queries to Google based on the different possible permutations of the given two words. Hence, for the given

set S1, the following queries are created:

1. ”gun”

2. ”pistol”

3. ”pistol” AND ”gun”

4. ”gun” AND ”pistol”

Therefore, the initial set of queries QuerySet1 is ”gun”,”pistol”, ”gun AND pistol”,”pistol AND gun”.

As documented by Google, the order of search terms in a query to Google actually matters. For example,

queries 3 and 4 do not always produce the same results. Once the queries have been constructed, they are

issued to Google one at a time. The idea is to retrieve a set of numofPages web page links for each query

8



and traverse the links to retrieve and parse the content of those pages to identify sets of related words. The

set of links retrieved for each is query given in tables 1 through 4. In addition to traversing each link that

Google returns, the Algorithm also parses the content within the particular web pages for more links. These

links are also traversed for text.

Therefore, a set of related words for the query ”gun AND pistol” will be formulated from the text that is

parsed from the top numofPages web pages that Google returns along with the text parsed from the web

pages that are linked to by the top numofPages web pages that are returned by Google. Parsing a web page

is basically removing HTML tags, JAVASCRIPT etc and retrieving only the plain text from the web pages.

Once the web pages have been parsed, the Algorithm removes stop words from the plain text. The stop word

list used in Google Hack consists of the words in the standard Smart Stop List along with stop words that

are specific to web pages.

Once the web pages have been parsed and stop words removed, the plain text is then tokenized into a list

of words and a frequency of occurrence count of each word is also maintained. Words that occur less than

the given frequency cutoff frequencyCutoff are discarded, where in this example words occurring less than

10 times are discarded. Table 5 shows the list of words for the query “gun AND pistol” after discarding the

low frequency words. It can be seen from column 4 of Table 5 that only words occurring at least 10 times

are maintained in the list.

This process is repeated for each query in QuerySet1. This would result in four individual sets of words,

with each set representing the set of related words for a particular query. Table 5 shows the 4 sets of words

retrieved for the current example. The next step in the algorithm is to find the set of intersecting words

between these four individual sets. Let the four sets of related words be A, B, C and D. Hence, if a word

occurs in set A, B, C or D and it occurs in at least one other set A, B, C, or D other than the set itself, the

word is considered to be a related word. Formally, the first set of related words intersectingWords1 would

be:

intersectingWords1 = (A ∩ B) + (A ∩ C) + (A ∩ D) + (B ∩ C) + (B ∩ D) + (C ∩ D)

Hence, if a word occurs in set A with frequency x, and the same word occurs in set D with frequency y, the

frequency of that particular word in Word1 would be x+y. Also note that if a word had occurred in set A with

frequency x, and set B with frequency y, where both x and y are greater than the frequency cut off, and the
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same word occurred in set D, however was discarded because its frequency z was less than the cut off, the

final frequency for that particular word will be x+y+z. The set of words resulting from this set operations is

given in Table 6. Let Word1 equal to the set of related words in Table 6. Note that if either of the search terms

occur as a result in either of the four set of words, it is discarded. Hence, the search terms of the current

iteration should not appear as a resulting related word. Since the the number of iteration numIterations had

been set to 1, intersectingWords1 would be the set of related words for ”gun” and ”pistol”.

Now, consider the same the input set with different parameters. Let the number of web pages still remain

10, however, take the number of iterations numIterations to be 2, and the frequency cut off frequencyCutoff

to be 20. The same process mentioned in the previous example is repeated, however, since the frequency

cutoff is now 20, the number of words resulting in intersectingWords1 is reduced to 4 terms. The results of

iteration 1 is given in table 7. Since the number of iterations had been set to 2, the Algorithm continues to

execute. In iteration 2, the Algorithm uses as input set the words in intersectingWords1 which was retrieved

from iteration 1. Hence, for all i > 1, if the iteration number is i, the set of input words would be from the

set t of related words that were identified from the previous iteration i-1, which is intersectingWords i−1 . So

in this example, for iteration 2, the input set S2,

S2 = {shooting, airsoft,guns,cases}

Now, the algorithm goes about creating queries to Google based on the different possible permutations of

the 4 input words. The following set of queries QuerySet2 are created:

QuerySet2 = {shooting, airsoft, guns, cases, shooting AND airsoft, shooting AND guns, shooting AND

cases, airsoft AND shooting, airsoft AND guns, airsoft AND cases , gunsAND shooting, guns AND airsoft,

guns AND cases, cases AND shooting, cases AND airsoft, cases AND guns}

The process of issuing queries to Google, and retrieving web pages from Google is repeated for each query in

QuerySet2. The resulting links are traversed, and plain text is retrieved from these web pages and tokenized

into lists of words in the same format as mentioned earlier. Finally, a second set of related words for gun

and pistol is found by finding the set of intersecting words between all the sets of words for each query in

Query2. The resulting set of related words intersectingWords2 is given in Table 8.
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One important thing to note in iteration 2 is that, if it returns as a set of related words the actual initial input

set, it gives a strong indication that the search terms and the current set of search terms are closely related.

This concept can be generalized such that if the set of related words returned for iteration i actually contains

the search terms of iteration i-1, then the words returned and search terms are tightly related.

The second iteration has considerably increased the number of related words for gun and pistol. It can also

be seen that gun and pistol are returned as one of the top terms in intersectingWords2 . Note also that since

the algorithm depends solely of the frequency of occurrence, iteration 2 has increased the number of noisy

terms in the set of related words. Therefore giving enough motivation to develop Algorithm 2 which can

distinguish between relevant terms and noisy terms by using some sort of relatedness measures.
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Algorithm 1 Algorithm 1
1: function Algorithm1 (searchStrings[], numSearchTerms, numofPages, frequencyCutoff, numIterations)

2: k ← 1

3: for all i← 1 to numSearchTerms do

4: intersectingWords[k][i]← searchStrings[i]

5: end for

6: for all k ← 1 to numIterations do

7: Permute(QuerySet, intersectingWords, k, sizeof(intersectingWords[k]))

8: for all i← 1 to sizeof(QuerySet) do

9: results← GoogleSearch(QuerySet[i])

10: for all j ← 1 to R do

11: content← content + getWebPageContents(results→ url[i])

12: getLinks(linksArray,content)

13: for all n← 1 to sizeof(linksArray) do

14: content← content + getWebPageContents(linksArray[n])

15: end for

16: content← removeHTML(content)

17: content← removeStopWords(content)

18: end for

19: getWordsAndFrequency(content: in, frequencyCutoff: in ,wordSetArray[i][]: out, wordFrequenc-

yArray[i]: out)

20: end for

21: getIntersectingWords( wordSetArray: in, wordFrequencyArray: in, insertSectingWords[k+1]: out)

22: end for

23: return InterSectingWords

24: end function
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1: procedure Permute(QuerySet[], intersectingWords[], numIterations, numofPages, numSearchTerms)

2: if I > 1 then

3: start← numofPages

4: else

5: start← 1

6: end if

7: k ← 1

8: for all i← start to numSearchTerms do

9: for all j ← start to numSearchTerms do

10: if j! = i then

11: QuerySet[k++]← “intersectingWords[i]” AND “intersectingWords[j]”

12: end if

13: end for

14: end for

15: end procedure

13



Table 1: Resulting Top 10 Web Pages for query ”gun”

Set of Links for query “gun”

http : //www.thesmokinggun.com/

http : //www.thesmokinggun.com/archive/1013043mackris1.html

http : //www.gunbroker.com/

http : //www.gunowners.org/

http : //www.doublegun.com/

http : //www.ithacagun.com/

http : //www.imdb.com/title/tt0092099/

http : //www.gunandgame.com/

http : //www.gunaccessories.com/

http : //www.guncite.com/

Set of Links for query “pistol”

http : //www.idpa.com/

http : //www.bullseyepistol.com/

http : //www.zvis.com/dep/dep.shtml

http : //www.crpa.org/

http : //www.nysrpa.org/

http : //www.auspistol.com.au/

http : //en.wikipedia.org/wiki/P istol

http : //www.pistolgrip.net/

http : //hubblesite.org/newscenter/newsdesk/archive/releases/1997/33/

http : //www.pistolpeople.com/

Table 2: Resulting Top 10 Web Pages for query ”pistol”
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Table 3: Resulting Top 10 Web Pages for query ”pistol AND gun”

Set of Links for query “pistol AND gun”

http : //quizilla.com/users/ReverendDeWald/quizzes/What%20Gun%20Are%20Y ou%3F/

http : //www.bullseyegunaccessories.com/

http : //www.greatoutdoors.com/ambackcom/opticssights/pistollasergunsights.html

http : //fit4martialarts.com/store/airsoftberetta92f92fsautopistolgunspringa6200762121.php

http : //fit4martialarts.com/store/airsoftswatsealtacticalpistolautogunlegholstera6200431688.php

http : //www.safetysafeguards.com/site/402168/page/57959

http : //www.docs.state.ny.us/DOCSOlympics/Combat.htm

http : //www.peopleview.net/pistolbbgun.html

http : //www.sail.qc.ca/catalog/detail.jsp?id = 2880&category = 308

http : //www.airgundepot.com/eaa − drozd.html

Table 4: Resulting Top 10 Web Pages doe query ”gun AND pistol”

Set of Links for query “gun AND pistol”

http : //www.usgalco.com/

http : //www.minirifle.co.uk/

http : //www.bullseyegunaccessories.com/

http : //www.gunsworld.com/frenchgunshomeus.html

http : //www.soundrangers.com/category − results.cfm?storeid = 1catid = 0034

http : //www.camping − hunting.com/

http : //www.pelican − case.com/pelguncaspis.html

http : //www.nimmocustomarms.com/

http : //www.panelspecialties.com/guncab.htm

http : //www.mommydreams.com/toy − pistol.html
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Table 5: Algorithm 1 Resulting 4 Sets for Example 1

“gun” “pistol” “pistol AND gun” “gun AND pistol”

accessories,51
¯

bipods,13 shooting,25
¯

main,217 false,15 shooting,124
¯

hobby,18

products,49 outdoor,13 eagle,20 subdesc,161 micon,15 rifle,84
¯

semi,18

knives,42 gear,13 desert,19 category,143 set,13 guns,77
¯

auto,18

cases,33
¯

night,13 dep,16 gray,92 image,13 practical,69 foam,18

control,31 clothing,13 links,15 hunting,88 shopping,12 case,62
¯

pictures,17

grips,30 sporting,12 crpa,15 catalog,88 mac,12 pelican,57 dealers,17

daily,29 sectlevel,12 bullseye,12 normal,61 offset,12 club,56 advertise,16

optics,29 remington,12
¯

ammo,11
¯

family,57 holster,12
¯

toy,51 shot,15

holsters,25
¯

updated,12 safety,10 level,56 settings,12 bullet,42
¯

chelmsford,15

tactical,25 cleaning,11 airsoft,52
¯

items,12 pistols,39 holster,15

systems,24 bullets,11
¯

air,39
¯

accessories,12
¯

ruger,38 blackpelican,15

stocks,23 targets,11 pro,38 match,11 cases,33
¯

custom,14

mounts,21 scopes,11 soft,36 imgcounter,11 cap,31 board,14

rifle,20
¯

amendment,11 guns,34
¯

bullet,11
¯

shoot,31 guest,14

care,20 sights,11 item,31 effect,11 essex,30 bulletin,14

shooting,19
¯

uncle,11 maindesc,29 case,10
¯

sport,28 holsters,14

shotgun,17 ak,11 option,20 defined,10 mini,26 book,14

scope,17 equipment,10 icon,19 hand,10 shotgun,23
¯

british,14

reloading,16 goa,10 paintball,18 small,10 trigger,23 save,14

military,16 guns,10
¯

safety,16 addtab,10 firearms,23 industry,13

protection,15 barrels,10 laser,15 safes,10 ammo,23
¯

chat,13

parts,15 handgun,10 target,23 room,13

sight,14 hearing,10 bullets,23 tuition,12

wood,13 calls,10 ukpsa,22 children,12

recoil,13 , riffles,22 diecast,11

airsoft,20
¯

flashlights,11

vintage,19 accessories,11
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Related Words and Frequency

shooting , 169 air, 50

guns , 124 shotgun,46

rifle, 113 holsters, 46

case, 81 ammo, 37

cases , 74 bullets, 34

accessories, 74 safety, 32

airsoft , 72 holster, 27

products, 68 remington, 22

bullet, 53

Table 6: Algorithm 1 Discussion - Example 1 - Related word set intersectingWords1 from iteration 1 -

Frequency Cutoff - 10

Related Words and Frequency

shooting , 169

guns , 124

cases , 74

airsoft , 72

Table 7: Algorithm 1 Discussion - Example 2 - Related word set intersectingWords1 from iteration 1 -

Frequency Cutoff - 20
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Related Words and Frequency

pistols,227 holster,118 tac,79

firearms,205 fits,118 radio,77

accessories,204 shoot,117 paintball,75

free,192 sport,115 assault,71

holsters,172 hours,109 teflon,70

club,170 usa,109 pouch,69

target,164 ammo,107 number,69

tactical,161 electric,107 shoulder,69

air,158 ships,106 leg,64

practical,152 spring,103 core,62

range,150 articles,96 essex,60

court,149 carry,95 nylon,57

uk,147 ruger,93 flash,55

sports,145 force,92 bullets,53

law,143 mp,90 trigger,50

price,142 remote,90 straps,46

full,140 car,89 helicopter,45

control,140 harlow,88 riffles,44

soft,124 magazines,87 coat,44

military,121 belt,86 ukpsa,44

custom,120 mini,82

Table 8: Algorithm 1 Discussion -Example 2 - Related word set intersectingWords2 from iteration 2 -

Frequency Cutoff - 20
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3.2 Algorithm 2

One of the biggest drawbacks of Algorithm 1 was the fact that it solely depended on frequency counts to

identify sets of related words. This enabled some high frequency, but irrelevant words to be included in

the set of related words. Another restriction of Algorithm 1 was that it can take only two search terms as

input, and these search terms had to be single words. Finally, the algorithm was also limited to single words

as results. Hence, certain 2-word collocations were split into individual words, which was not a desirable

result. Collocations are phrases made up of two or more words that often co-occur, and the number of times

that they co-occur is more than what would be expected by chance. For example the 2-word phrases, United

States or New York would be both considered as collocations. For example, it would have been ideal to

be able to search for Bill Clinton and George Bush and retrieve a related 2-word collocation such as White

House, instead of having to search for Clinton and Bush and retrieve a separate pair of related words such

as white and house. It can also be seen that the search terms Clinton and Bush are not specific enough to get

good results from Google. Hence, Algorithm 2 was a refinement of Algorithm 1, where it accepts more than

two terms as input, accepts bigrams as input, returns single words and bigrams as results, and finally, uses a

relatedness measure to identify the most related words to the input set.

The new features of Algorithm 2 required some additional parameters as input to the Algorithm. Algorithm 2

takes in as arguments the number of web pages to parse numofPages, the frequency cut off frequencyCutoff,

the number of iterations numIterations, the bigram frequency cutoff bigramCutoff, and the score cutoff

relatednessCutoff . Bigrams occur at a much less frequency than individual words, hence, Algorithm 2 takes

a separate argument for the bigram cutoff. In addition to the bigram cutoff, the algorithm also includes a

relatedness measure cutoff which is used to discard words that are above a certain measure. Most of the

new features in Algorithm 2 are self explanatory, however, the relatedness measure needs a little bit more

attention. The formula for calculating the relatedness between two words is given below,

Relatedness(Word1,Word2) = log (hits(Word1))+log (hits(Word2))−2∗log (hits(Word1Word2))

(2)

The relatedness formula is based on the Jiang and Conrath measure [6]. The idea behind this formula is to

find the total number of web pages in which Word1 and Word2 occur individually, and to subtract from that
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total the number of web pages in which Word1 and Word2 occur together. Hence,The following queries to

Google gives the required numbers,

• “Word1”

• “Word2”

• “Word1” AND “Word2”

Note that the number of hits returned for the queries “Word1” AND “Word2” and “Word2” AND “Word1”

vary slightly, hence, only one combination is used for the calculations.

Hence, the best case for this formula would be if two words, Word1 and Word2 have the same number of

hits, and each time they occur, they occur together. These words would then be most related, and would have

a score of 0. For example, let hits(Word1) = 1000 , hits(Word2) = 1000 , and hits(Word2Word2) = 1000.

The relatedness measure for Word1 and Word2 would be,

Relatedness(Word1 ,Word2) = log (1000) + log (1000) - 2 * log (1000)

Relatedness(Word1 ,Word2) = 0

Hence, it can be said that two words Word1 and Word2 tend to be more closely related as the relatedness

score approaches 0. As the scores to go towards zero, the number of times the words co-occur tends to

increase in relation to the number of times the words occur individually. Therefore, a lower score indicates

that the two words are more related. Table 9 gives some example relatedness measures between two words.

One problem with the Relatedness measure calculation is that it requires 3 Google queries for each time a

measure has to be calculated.

It can be seen from Table 9 that the measure works reasonably well in distinguishing and ordering words

that are most related.

In the case of Algorithm 2, the relatedness measure for the word “shooting” with the search terms “gun” and

“pistol” would be calculated using the following formula,
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Table 9: Algorithm 2 - Example Words and Relatedness Scores

Word1 Word2 Relatedness(Word1 , Word2)

knife scissors 18.347

cut 18.8966

butcher 25.2893

weapon 27.842

murder 32.949

measure 34.8966

George Bush Bill Clinton 22.0451

President 30.1983

Texas 31.4737

General 36.4974

Minnesota 44.4027

= (Relatedness(“shooting”, “gun”) + Relatedness(“shooting”, “pistol”)) / 2

This can be generalized such that, for n search terms, the relatedness score between a particular word and

the search terms is the average of the relatedness scores between the word and each search term.

Algorithm 2 essentially follows the same steps as Algorithm 1, however, once it has found a set of related

words, Algorithm 2 calculates the relatedness score between each word in the set of related words with the

search terms, and discards any word whose relatedness measure is greater than the score cut off related-

nessCutoff. In addition, the set of related words are also sorted on the relatedness measure. One distinct

advantage of using a relatedness measure to rank the set of related words is that high frequency words do

not necessarily end up at the top of the list. To illustrate the effectiveness of Algorithm 2, take as an example

the same input set used in Example 1 of the Algorithm 1 discussion. Let the algorithm parameters take the

following values:

numofPages = 10, numIterations = 1, frequencyCutoff = 10, bigramCutoff = 4 and relatednessCutoff = 30

As you can see from the resulting related set of words in Table 10 that Algorithm 2 is not solely biased

towards high frequency words. It can also be seen that reducing the score cutoff relatednessCutoff to around

22, would actually produce a very good set of related words. However, the inclusion of bigrams has also
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caused more noise. Take for example the bigram “gun guns”. This is obviously not a good collocation.

Hence, this new problem introduces requirement for further refinement.

Now, if we had set the number of iterations numIterations to be 2, the search terms resulting from itertaion

1 would be used as the input set as in Algorithm 1. For more results from Algorithm 2, refer to the section

on Experimental Results for Algorithm 2.
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Algorithm 2 Algorithm 2
1: function Algorithm2 (searchStrings[], numofPages, frequencyCutoff, numIterations, bigramCutoff, re-

latednessCutoff)

2: k ← 1

3: for all i← 1 to sizeof(searchStrings) do

4: intersectingWords[k][i]← searchStrings[i]

5: end for

6: for all k ← 1 to numIterations do

7: Permute(QuerySet, intersectingWords, k, sizeof(intersectingWords[k]))

8: for all i← 1 to sizeof(QuerySet) do

9: results← GoogleSearch(QuerySet[i])

10: for all j ← 1 to R do

11: content← content + getWebPageContents(results→ url[i])

12: getLinks(linksArray,content)

13: for all n← 1 to sizeof(linksArray) do

14: content← content + getWebPageContents(linksArray[n])

15: end for

16: content← removeHTML(content)

17: content← removeStopWords(content)

18: end for

19: getWordsBiGramsAndFrequency(content: in, frequencyCutoff: in, bigramCutoff: in, wordSetAr-

ray[i]: out, wordFrequencyArray[i]: out)

20: end for

21: getIntersectingWords( wordSetArray: in, wordFrequencyArray: in, insertSectingWords[k+1][]: out)

22: end for

23: for all k ← 1 to numIterations do

24: calculateRelatednessMeasure(insertSectingWords[k][]: in,searchStrings: in, relatednessCutoff: in,

relatedSet[k][]: out)

25: end for

26: return resultsArray

27: end function
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Table 10: Algorithm 2 - Example Words and Relatedness Scores

Related Words from Algorithm 1 Related Words from Algorithm 2

(Frequency) (Relatedness Score, Frequency)

shooting , 169 shotgun , 16.40, 50

guns , 124 rifle , 18.01, 112

rifle , 113 holster , 19.31, 26

case , 81 ammo , 19.61, 36

accessories , 74 shooting , 22.21, 171

cases , 74 bullets , 22.80, 32

airsoft , 72 air , 24.88, 44

products , 68 holsters , 25.04, 46

bullet , 53 airsoft , 25.79, 69

air , 50 gun cases , 26.02, 43

shotgun , 46 accessories , 26.99 , 69

holsters , 46 guns , 28.42, 119

ammo , 37 equipment , 29.32, 27

bullets , 34 remington , 29.37, 22

safety , 32 case , 30.54, 85

holster , 27 gun accessories , 32.52, 10

remington , 22 safety , 34.14, 65

auto , 34.28, 39

flashlights , 34.95, 36

air soft , 36.01, 40

don hume , 37.77, 8

cases , 38.73, 114

gun guns , 39.47, 23
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1: procedure calculateRelatednessMeasure(insertSectingWords[][],searchStrings,iteration,relatednessCutoff,

relatedSet[][])

2: for all i← 1 to sizeof(intersectingWords[iteration][]) do

3: Total← 0

4: for all k ← 1 to sizeof(searchStrings[]) do

5: results1← GoogleSearch(“searchStrings[k]”)

6: results2← GoogleSearch(“intersectingWords[iteration][i]”)

7: results3← GoogleSearch(“intersectingWords[iteration][i] AND searchStrings[k]”)

8: Score ← log(results1→ hitcount) + log(results2→ hitcount) − 2 ∗

log(results3→ hitcount)

9: Total← Total + Score

10: end for

11: Average← Total/ sizeof(searchStrings[])

12: if Average < relatednessCutoff then

13: relatedSet[iteration][“intersectingWords[iteration][i]′′]← Average

14: end if

15: end for

16: end procedure
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3.3 Algorithm 3

Though the relatedness score approach in Algorithm 2 helped identify and discard noisy or irrelevant terms,

the introduction of 2-word collocations as results introduced a new problem. Some of the bigrams returned

by Google Hack were not actually collocations. Collocations are phrases made up of two or more words that

often co-occur, and the number of times that they co-occur is more than what would be expected by chance.

For example the 2-word phrases, United States or New York would be both considered as collocations. Once

again, consider the example input set gun and pistol. Table 18 of the section Experimental Results shows

the set of words returned by Google Hack for the above input set. One of the bigrams in the related set of

words is guns guns. Obviously, this is not a good collocation.

Consider another example, where one of the bigrams returned for the query maytag and kenmore was ge jenn.

This bigram is the combination of the brand names ge and jenn air. This is obviously not a collocation. The

reason why this particular bigram was not discarded by the relevance measure is because ge and jenn air

are both brand names of appliance manufacturers. Hence, there is a relevance between the search terms and

the result, however, the result as a collocation is not a good one. In this particular example the bigram was

somewhat relevant. However, in many cases the bigrams returned are quite bad. Examples of such bigrams

include forecast text and bulletin fcpn that are returned as results for the input set sunny and cloudy.

To solve this problem, there was a need for some sort of measure to indicate if a bigram is a collocation

or not. Hence, the log likelihood measure was slightly modified to adapt to the WWW, and was used to

identify words that occur more often than expected by chance. The basic idea was to use the number of hits

returned for a particular bigram as a means of calculating the log likelihood score. Hence, if the bigram to

be validated is “Word1 Word2”, the following queries are issued to Google, and the respective hit counts are

retrieved.

• “of the”

• “Word1 *”

• “* Word2”

• “Word1 Word2”
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Table 11: Algorithm 3 - Calculation of Observed Values

Word2 Not Word2

Word1 n11 n12 = n1p-n11 n1p

Not Word1 n21 = np1 - n11 n22 = n2p - n21 n2p = npp - n1p

np1 np2 = npp - np1 npp

Table 12: Algorithm 3 - Calculation of Expected Values

Word2 Not Word2

Word1 e11 =(n1p*np1/npp) e12 =(n1p*np2/npp)

Not Word1 e21 =(np1*n2p/npp) e21 =(np2*n2p/npp)

The number of hits returned for the query “of the” serves as the sample size npp. The assumption here is that

“of the” must be one of the, if not, the most common bigram occuring on the web. Also note that the queries

are issued with quotes surrounding the search terms. This ensures that Google searches for the particular

string as a phrase. To get the hit count for the number of times Word1 occured as the first word of a bigram,

the wild card operator “*” was used. Hence, the query “Word1 *” should ideally return the number of times

Word1 occured as the first word in a phrase. Let this value be n1p. Similarly, to find the number of times

Word2 occured as the second word of a 2-word phrase, the query “* Word2” was issued to Google. Let this

value be np1. Finally, the query “Word1 Word2” was issued to find out the number of hits for this particular

phrase. Let this value be n11.

Given the hit counts for these particular queries, the values in Table 11 can be calculated by some simple

algebra. The values calculated here are the observed values for each cell in Tabl 11. Hence, the value in cell

n11 of Table 11 represents the observed value for the number of times the bigram “Word1 Word2” occurred,

whereas n12 represents the number of times Word1 occurred as the first word of a bigram where the second

word of the bigram was not Word2.

Once the values for each cell in table has been calculated, the next step is to calculate the expected values

for each cell. The expected values are calculated as shown in Table 12, where e11, e12, e21 and e22 are the

respective expected values for each cell. The expected value signifies the idea of independence between two

words, where the probability of two words occurring together is equal to the product of the probability of

the words occurring individually.
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Finally, the log likelihood measure can be calculated for the bigram “Word1 Word2”. The use of the log

likelihood measure to predict if two or more words occurred by chance was introduced by [4]. In this case,

the log likelihood score tries to identify if two words occurred together by chance, and are independent, or if

they occur more often than expected by chance. The higher the log likelihood score, the less likely that the

two words occurred together by chance. However, there are some important cases to note here. The number

of hits for the phrase “Word1 Word2”, in this case the value in cell n11 has to be greater than 0. If the value

is 0, then this particular bigram is not a collocation. The next case would be, if the observed value for the

phrase “Word1 Word2” is less than the expected value, that is if n11 is less than e11, then this particular

bigram is also not a collocation. Hence, for a particular bigram to be considered as a bad collocation, one

of the above conditions must be met. The results are first sorted by the relatedness score, and then the log

likelihood score.

Also note that the log likelihood score is calculated only for those bigrams which appear in the final set of

related words.

Algorithm 3 remains similar to Algorithm 2 except for the change in the calculateRelatedness function,

which now calls the calculateLoglikelihoodScore function if a related term is a bigram before calculating

the relatedness measure. Example bigrams and log likelihood scores are given in Table 3.

28



Algorithm 3 Algorithm 3
1: procedure calculateRelatednessMeasure(resultsArray[][],insertSectingWords[][],searchStrings,iteration,cutoff)

2: for all i← 1 to sizeof(intersectingWords[iteration][]) do

3: flag ← 0

4: if isCollocation(“intersectingWords[iteration][i]”) then

5: llscore←calculateLogliklihoodScore(“intersectingWords[iteration][i]”)

6: if llscore == 0 then

7: continue

8: end if

9: end if

10: Total← 0

11: for all k ← 1 to sizeof(searchStrings[]) do

12: results1← GoogleSearch(“searchStrings[k]”)

13: results2← GoogleSearch(“intersectingWords[iteration][i]”)

14: results3← GoogleSearch(“intersectingWords[iteration][i] AND searchStrings[k]”)

15: Score ← log(results1→ hitcount) + log(results2→ hitcount) − 2 ∗

log(results3→ hitcount)

16: Total← Total + Score

17: end for

18: if (results1 → hitcount = 0) OR (results2 → hitcount = 0) OR (results3 → hitcount = 0)

then

19: continue

20: end if

21: Average← Total/ sizeof(searchStrings[])

22: if Average < cutoff then

23: resultsArray[iteration][“intersectingWords[iteration][i]′′]← Average

24: end if

25: end for

26: end procedure
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1: procedure calculateLogliklihoodScore(bigram)

2: word1←getFirstWord(bigram)

3: word2←getSecondWord(bigram)

4: result1← GoogleSearch(“bigram”)

5: n11← result1→ hitcount

6: if n11 == 0 then

7: return 0;

8: end if

9: result← GoogleSearch(“of the”)

10: npp← result→ hitcount

11: result2← GoogleSearch(“word1 *”)

12: n1p← result2→ hitcount

13: result3← GoogleSearch(“* word2”)

14: np1← result3→ hitcount

15: n2p← npp - n1p

16: np2← npp - np1

17: n12← n1p - n11

18: n21← np1 - n11

19: n22← n2p - n21

20: e11← (n1p * np1) / npp

21: e12← (n1p * np2) / npp

22: e21← (n2p * np1) / npp

23: e22← (n2p * np2) / npp
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Table 13: Algorithm 3 - Example Bigrams and log liklihood scores

Bigram log likelihood score n11 e11 Discarded

new york 50395555 63100000 40851146 No

star wars 26776472 6990000 638077 No

george bush 612272 1360000 664288 No

atomic bomb 503856 230000 34156 No

star gazing 12182 39100 21620 No

maytag kenmore 1321 520 60 No

atomic nuclear 0 13500 135873 Yes

appliance parts 0 69300 104550 Yes

fork back 0 1000 456490 Yes

chocolate good 0 2060 404516 Yes

running there 0 27100 Yes

3.4 Sentiment Classification Algorithm

The final addition to this thesis is a Sentiment Classification Algorithm that tries show the value of sets of

related words. This algorithm is simply an extension of the Point wise Mutual Information -Information

Retrieval (PMI-IR) algorithm described in [10]. The purpose of the PMI-IR algorithm was to predict if a

particular phrase has an overall positive or negative orientation. For example, the phrase excellent movie has

a positive semantic orientation, and the phrase horrible movie has a negative semantic orientation or senti-

ment. This algorithm is then used to classify if a review has an overall positive or negative recommendation.

These reviews can be for automobiles, movies, banks and even travel destinations. Certain 2-word phrases

are extracted from a review and the PMI-IR algorithm is used to predict the sentiment of each phrase by

using information retrieved from the WWW. If the sentiment of the extracted phrases lean toward a positive

sentiment, the review is classified as being a positive review, and negative otherwise.

The first step in the PMI-IR algorithm is to run a part-of-speech (POS) tagger to identify words in the review

as being nouns, adjectives or verbs. The POS tagger used in both the PMI-IR algorithm and the Sentiment

Classification Algorithm of Google Hack is the Brill Tagger [10]. Once the text has been POS tagged,

certain two word phrases are extracted from the tagged text. There are particular combinations and rules for
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1: if n11 < e11 then

2: return 0

3: end if

4: llscore← 0

5: if n11 then

6: llscore← llscore + (n11 * log ( n11 / e11 ))

7: end if

8: if n12 then

9: llscore← llscore + (n12 * log ( n12 / e12 ))

10: end if

11: if n21 then

12: llscore← llscore + (n21 * log ( n21 / e21 ))

13: end if

14: if n22 then

15: llscore← llscore + (n22 * log ( n22 / e22 ))

16: end if

17: llscore← llscore * 2

18: return llscore

19: end procedure
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extracting phrases. For example, a phrase which contains a noun as the first word and second word is always

extracted. The idea here is to extract phrases which reveal the most about the Semantic Orientation of the

review. Table 14 identifies the different possible combinations of words that require a phrase to be extracted

from a review. The rules to extract phrases in the Sentiment Classification Algorithm are the same as the set

of rules used in the PMI-IR algorithm. The PMI-IR algorithm then queries the search engine AltaVista with

the combination of positive and negative words with each of these phrases to find the Semantic Orientation

(SO) of that particular phrase. The SO measure is calculated as follows:

SO(phrase) = log2

hits(phrase NEAR “excellent′′) hits(“poor′′)

hits(phrase NEAR “poor′′) hits(“excellent′′)
(3)

In the PMI-IR algorithm, the words “excellent” and “poor” were used as the positive and negative conno-

tations. So, hits(phraseNEAR“excellent′′) is the number of web pages in which the phrase occurred

near the word “excellent”, and hits(phraseNEAR“poor ′′) is the number of web pages in which the phrase

occurred near the word “poor’ . The value of hits(“poor”) and hits(“excellent”) are the number of hits re-

turned for the queries “poor” and “excellent” respectively. Therefore, a phrase is positively oriented if it is

often associated with the positive word “excellent”, and negatively oriented otherwise. A positive SO value

signifies that the phrase is positively oriented, and a negative measure signifies that the phrase is negatively

oriented.

The results from the PMI-IR algorithm are quite good. However, the ambiguity seen when using a polyseme

such as “poor”, which at minimum has two senses, “poor” as in “poverty” and “poor” as in “bad” in turn

affects the SO of a phrase. For example, the word “Hawaii” has a negative sentiment because the “poverty”

sense of “poor” creates a negative association with the word.

To address this problem, Turney and Litman proposed the approach of using multiple pairs of psoitive and

negative connotations. The Sentiment Classification Algorithm extends this approach to use Google instead

of AltaVista, and the Semantic Orientation of a particular phrase is calculated using the following two

equations:

Total SO(phrase) =
n∑

i=1

log2

hits(phrase AND “positiveWord′′

i ) hits(“negativeWord′′i )

hits(phrase AND “negativeWord′′

i ) hits(“positiveWord′′i )
(4)
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SO(phrase) =
Total SO

n
(5)

As it can be seen from the equations, instead of using a single pair of positive and negative connotations

as in (Turney 2002), the Sentiment Classification Algorithm uses a set of positive and negative words as

suggested in (Turney and Littman 2003) [11]. Hence, if a particular positive or negative word takes on the

wrong sense when used as a search term in a search engine query, its effects can be reduced by weighting

the overall SO over multiple pairs of positive and negative words. The most important difference between

the PMI-IR algorithm and the Sentiment Classification Algorithm is the use of the “NEAR”operator in the

PMI-IR algorithm, and the use of the “AND” operator in the Sentiment Classification Algorithm. Google

does not provide the “NEAR” feature that was provided by AltaVista. Google also states that the use of

the “AND” operator is not necessary, however, the “AND” operator is used here as means of clarifying the

query strings.

Phrases and their Semantic Orientation values are given in Table 15 for a movie review which was classified

as being a negative review by Sentiment Classification Algorithm. In this particular example, the words

{{excellent, bad}, {great, awful }} were used as the positive and negative pairs of words. Table 16 gives

a better idea of the difference between using single pairs of positive and negative connotations to multiple

pairs of positive and negative connotations. The review used for Table 16 is a positively oriented review for

an automobile. In this particular example, the words {{excellent, bad}, {great, awful }} were used as the

positive and negative pairs of words for the second column of results, and the words {excellent, bad} were

used for the second column of results. The Sentiment Classification Algorithm classified the automobile

review as positive when used with the multiple pairs of positive and negative words, and it classified the

review as negative with a single pair of positive and negative words.

Eventually, the goal is to use the set of related words predicted by Google Hack as seeds to the Sentiment

Classification Algorithm.

The Sentiment Classification Algorithm is given in the following pages.
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Table 14: Sentiment Classification Algorithm Discussion - Patterns of tags

First Word Second Word Third Word

(Not Extracted)

1. JJ NN or NNS anything

2. RB, RBR, or RBS JJ not NN or NNS

3. JJ JJ not NN or NNS

4. NN or NNS JJ not NN or NNS

5. RB, RBR, or RBS VB, VBD, VBN, or VBG anything

NN - Noun, VB - Verb, and JJ - Adjective (Turney 2002)

Table 15: Sentiment Classification Algorithm - Negative Movie Review

Phrase Semantic Orientation(phrase)

{{excellent, bad}, {great, awful }}

”disconcerting elements” -0.2468

”accidental death” -0.2773

”numbing plot” -0.9334

”poorly written” -1.1067

”brutal killing” -1.5943

”lukewarm reception” -1.8782

”despicable movie” -1.9241

”hapless victims” -2.0050

”embarrassing lines” -2.0792

”bad wardrobe” -2.3723
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Table 16: Sentiment Classification Algorithm - A Positive Car Review with Sentiment Classification Algo-

rithm

Phrase Semantic Orientation(phrase) Semantic Orientation(phrase)

{{excellent, bad}, {great, awful }} {excellent, bad} {great, awful }

”4Matic model” 13.7910 0.1217 27.49

”high performance” 2.1544 1.50 2.72

”standard features” 1.7077 1.1799 1.97

”refined styling” 1.2271 1.18 0.87

”full size” 0.8893 0.3960 0.89

”classical guitar” 0.7539 0.0159 1.31

”high speeds” 0.5058 -0.0390 0.63

”new standard” 0.4136 -2.0948 0.52

”quick maneuvers” 0.2963 0.6811 -0.06

”sophisticated user” 0.1704 -0.15 0.50

”luxurious interior” -0.0052 1.1882 -1.19

”extraordinary comfort” -0.027 0.13 -0.10

”very intuitive” -0.0633 0.1965 -0.41

”electronic glitches” -0.0633 -0.6154 -1.69

”technical sophistication” -0.7824 -0 .02 -1.45

”persistent fault” -0.9381 -0.95 -0.86

”electronically limited” -1.0142 -0.5941 -1.40

”back seat” -1.2352 -0.8376 -1.69
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Algorithm 4 Sentiment Classification Algorithm
1: function predictSemanticOrientation(review, posConnotations[], negConnotations[])

2: numPos← sizeof(posConnotations)

3: numNeg ← sizeof(negConnotations)

4: if numPos! = numNeg then

5: return

6: end if

7: taggedText← runBrillTagger(review)

8: getPhrases(taggedText:in, phrases[]: out)

9: for all i← 1 to numPos do

10: result1← GoogleSearch(“posConnotations[i]”)

11: posCounts[i]← result1→ hitcount

12: result2← GoogleSearch(“negConnotations[i]”)

13: negCounts[i]← result2→ hitcount

14: end for

15: totalSO← 0

16: for all i← 1 to sizeof(phrases) do

17: tempSO ← 0

18: for all k ← 1 to numPos do

19: result1← GoogleSearch(“phrases[i] AND posConnotations[k]”)

20: pos← result1→ hitcount

21: result2← GoogleSearch(“phrases[i] AND negConnotations[k]”)

22: neg ← result2→ hitcount

23: score← (pos * negCounts[k]) / ( neg * posCounts[k])

24: if score > 0 then

25: tempSO ← tempSO + log(score)

26: end if

27: end for

28: totalSO ← totalSO + (tempSO / numPos)

29: end for

30: return totalSO/sizeof(phrases)

31: end function
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4 Experimental Results

4.1 Evaluation Methods

Algorithms 1,2 and 3 were evaluated by using as the gold standard the sets of related words predicted by

Google Sets and the Human Subject experiments. A description of the two sources used to evaluate the

Algorithms are given in sections 4.1.1, and 4.1.2. One of the problems in evaluating the results of Google-

Hack was the notion of a related set of words. Hence, the Algorithms were evaluated by using the results

from Google Sets and the results from the Human Subject experiments as a gold standard.

4.1.1 Human Subject Experiments

The Human Subject Experiments were conducted by prompting human subjects to expand a given set of

words. As mentioned earlier, the idea of a related set of words varied amongst different sources. This was

also reflected in the results attained through the Human Subject experiments. For example, when one human

subject was asked to expand the initial set {bush, clinton }, the human subject predicted the words carter,

reagan, ford, nixon, johnson, kennedy as being in the same set as the words bush and clinton. However, when

another human subject was prompted with the same initial set of words, the set of words predicted by that

human subject was Parliament, President, United States, Senate, war, peace, United Nations, September 11,

India, Iraq, Administration . The first set clearly contains the last names of past American presidents. This

seems quite intuitive given the fact that the input set contains the last names of two American presidents.

However, the second set is also quite good. The relationship assumed here is not very clear, however, the

words in the set are often associated with the Presidents of the United States. A third subject entered the

following words Elections, Democrats, Republicans ,Second Term, Presidents, White House. It can be seen

here that the set of words predicted by this human subject also contains words that do have a relation with

presidents of the United States. These examples illustrate the fact that the notion of a set of related words

can be defined in a very diverse manner.
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4.1.2 Google Sets

Google Sets is a tool developed by Google that tries to predict sets of related words. However, it is not known

if Google Sets uses information from the WWW or a standard static corpora of text. In fact, the results

returned by Google Sets over time for the same set does not change drastically, suggesting that Google must

be using a more standard form of text. Google Sets has two main features. The first feature allows the user

to retrieve a smaller, more tightly related set of 15 words or less. The second feature allows the user to

retrieve a larger more loosely related set of words. Almost all the experiments conducted for the purpose

of evaluation uses the small set feature feature of Google Sets. The large set feature was used only when

Google Sets was unable to predict a smaller set of related words. In contrast to the manual experiments,

Google Sets was most often able to identify a very clear and intuitive relationship between the input terms.

Google Sets works very well for Proper Nouns in particular. For example, when Google Sets was prompted

with the initial set {bush, clinton} it returned reagan, nixon, ford, eisenhowever, kennedy, johnson as the

expanded small set. The set clearly contains the last names of past American presidents. However, when

Google Sets was prompted with the initial set {jordan, chicago} it returned the results Israel, JOHNSON,

Jackson, Kuwait, JANESVILLE, Iraq, Japan, Lebanon, Egypt, Springfield . The relationship assumed here is

very vague, but the terms returned are either cities from the United States or countries from the Middle East

region. The only exception being Japan. However, for most fans of the sport Basketball, the set {jordan,

chicago} clearly represents Micheal Jordan the basketball player of the NBA basketball team, Chicago Bulls.

Google Sets can be accessed by going to the following link http://labs.google.com/sets.

4.2 Experimental Results of Algorithm 1

The sets of related words predicted by Algorithm 1 are given in Table 18 to Table 28. The caption at the

top of each table gives the input set for which the experiments were run. The columns with the head-

ing GoogleHack(numofPages,frequencyCutoff,numIterations) contain the sets of related words predicted

by Google Hack, where numofPages, frequencyCutoff and numIterations are the number of web pages that

were parsed, the frequency cutoff that was used, and the number of iterations respectively. Each table tries to

emphasize a different type of set of related words, where the input set contains either nouns, proper nouns,

or adjectives. The experiments try to express the strengths and weaknesses of Google Hack, and the ad-
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vantages and disadvantages of using the WWW as a source of information. Each word in the Google Hack

column is accompanied by its frequency of occurrence in the web pages. Hence, the results in this column

are ranked by the highest frequency to the lowest. The column with the heading Google Sets contains the

results returned by Google Sets for the given input set. The order of the words in the Google Sets columns

are represented exactly the way the results were returned by Google Sets. The final column with the heading

Human Subject Experiments contains the set of related words that were retrieved from the Human Subject

experiments. The words in that column are sorted by alphabetical order.

Also note that Algorithm 1 accepts only single words as input terms. Furthermore, Algorithm 1 takes in

only two terms as input.

4.3 Experimental Results of Algorithm 1

The set of related words predicted by Google Hack, Google Sets, and the Human Subject experiments for

the initial set S1 = {gun, pistol} is given in Table 19. The first two columns of Table 19 represent the

performance of Algorithm 1 over different parameters. In both columns, the algorithm parsed only the top

10 web pages and the pages linked to by the top 10 pages. However, the frequency cut off used in the first

run was 10, and the algorithm was run for 1 iteration. The words in the second column represent the set

of words predicted by Algorithm 1 when it was executed with a frequency cutoff of 15 and an iteration

value of 2. As expected, the number of words returned drastically increased from iteration 1 to iteration 2.

The results in the first column seem to be quite good. The only words that seem to be out of place are the

words accessories,72 and products,68. The high frequency counts for both accessories and products could

be explained by the fact that Google is a very commercialized search engine, and a search for words such as

gun and pistol retrieve web pages which sell the two items. Table 16 gives the URLs returned by Google for

the query “gun”. It can be seen from the table that, links 1,3 and 4 are links to web sites that sell guns and

gun accessories.

Table 29 gives the Precision, Recall and the F-measure for all the results from Google Hack for the initial

input sets S1 - S9 in relation to the gold standard. The Precision, Recall and F-measure for the sets were

calculated as follows:
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Table 17: Algorithm 1 Experimental Results - Resulting Top 10 Web Pages for query ”gun”

Web page # Set of Links for query “gun”

1. http : //www.thesmokinggun.com/

2. http : //www.gunbroker.com/

3. http : //www.gunowners.org/

4. http : //www.doublegun.com/

5. http : //www.ithacagun.com/

6. http : //www.imdb.com/title/tt0092099/

7. http : //www.gunandgame.com/

8. http : //www.gunaccessories.com/

9. http : //www.bradycampaign.org/

10. http : //www.guncite.com/

Table 18: Algorithm 1 Experimental Results - Resulting Web Pages for query ”red”

Web page # Set of Links for query “red”

1. http : //www.redhat.com/

2. http : //www.redcross.org/

3. http : //www.redherring.com/

4. http : //www.redmeat.com/

5. http : //www.redbull.com/

Precision =
# Words common to Google Hack and Google Sets

# Words Returned By Google Hack
(6)

Recall =
# Words common to Google Hack and Google Sets

# Words Returned By Google Sets
(7)

Fmeasure =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(8)

It can be seen that the type of words predicted by Google Hack closely matches the type of words in the

manual experiments. However, in this particular example, the results of Algorithm 1 look similar to the type

41



of results returned by Google Sets. Google Sets returned an empty set when it was asked to return a small

set for gun and pistol.

Though the type of words predicted by Google Hack seem similar to the words in Google Sets and the

Human Subject experiments, overall, the f-measure is very low. There are many reasons for this. Firstly,

words such as ammo, paintball, airsoft, bullets that are related words do not appear in either Google Sets

or the Human Subject experiment results. In addition, some of the words returned by Google Sets such as

Trainer, Binocular, Shop Set, Carbine, Bayonet, Kit Mod, Mount, Telescope, Storage Racks, and Gage seem

to be very irrelevant and noisy. This in turn affects the recall for Google Hack, which in turn affects overall

F-measure for Algorithm 1. The second iteration of Google Hack produced more noisy terms than relevant

terms. This emphasizes the fact that raw frequency counts alone would not be sufficient to predict if a word

is relevant or not to the given search terms.

One other interesting thing to note when comparing the results from Google Hack to the results in the gold

standard is the difference due to the singular and plural forms of words. For example, a word such as bullets

returned by Google Hack is not in the set of related words in the Human Subject experiments, however,

the Human Subject experiment does contain the singular form of the word bullet in its set of related words.

Another point to note would be Algorithm 1 is restricted to single words as results. However, a quick glance

at both the gold standard experimental results reveal that a related word can also be a collocation. This

would possibly be one of the improvements for Algorithm 2.

The next input set, S2 = {bush, clinton} tries to show the dynamic nature of Google Hack. The underlying

relationship assumed here is that these are the last names of American presidents. The first column represents

the experiments conducted the 9th of March 2005. At the time of those experiments, the news around the

world was focused on matters such as relief and aid to the people and countries effected by the tsunami.

Furthermore, President George Bush and President Bill Clinton had been trying to aid with the relief as

well. The words such as tsunami, world, disaster, relief and village that were returned by Google Hack

reflect the period in which the experiments were conducted. However, certain words such as president,

presidents, george are obviously words that are related to the words bush, clinton. Another interesting fact

to note here are the words sri and lanka. This is obviously Sri Lanka, one of the South Asian countries that

was affected by the recent tsunami disaster in December 2004.

Comparing these results to the words returned by Google Hack (with the same parameters) on May 6th
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2005, the results changed by quite a bit. In additional to the results changing, there are more noisy terms

than before. However, words such as democratic, election, republican and republicans seem to match with

the set of related words in the Human Subject Experiments column.

Once again, in relation to Google Sets, the set of words predicted by Google Hack is very different. Google

Sets gives a more specific set, with only relation identifying all the terms in the set. All the terms are last

names of presidents of America. However, given the nature of the web, and the particular approach taken to

this problem of identifying sets of related words, the words predicted by Google Hack seem reasonable for

a baseline approach.

Another interesting example to look at would be S4 ={jordan, chicago}. The results given by Google Hack

and Google Sets is very different for these two terms. The relationship assumed by Google Hack should

be very clear for any fan of Basketball. Google Hack correctly identified jordan as being Michael Jordan,

and Chicago as being the city in which Micheal Jordan played basketball. When conducting this particular

experiment, the relationship assumed was the above mentioned relationship. When the same initial set was

input to Google Sets, the resulting set of words were names of cities and countries around the world. The

cities were from the United States, and the countries in the list were from the Middle East. This can be

explained from the fact that Jordan is a country in the Middle East, and Chicago is a city in the United States

of America.

Close examination of the set of words returned by Google Hack for a frequency cutoff of 5, which is the

first column in Table 23 reveals what seems to be a very nice set of related words. The first two words in

the set, Michael, and bulls, are the first name of the basketball player Jordan, and the name of the team that

Michael Jordan used to play for. There are 4 terms in the first list photos, picture,type, and time that seem

to be irrelevant. The second column of Table 23 represents the set of words returned for a slightly higher

frequency cutoff. All the words in the set seem to be very intuitive and good.

The next set of results to look at would be S6 ={yellow, red}. This is one of the harder set to expand. The

two main reasons being, the words in the set are 1) adjectives, and 2) not specific. A search for the terms

red returns the URLs given in Table 18. As it can be scene from the URL’s in Table 10, the resulting web

pages seem to be very diverse. This is one of the problems in using a commercial search engine such as

Google. The results returned are targeted towards commercial products. Hence, it can be seen through Table

24 that the set of words predicted by Google Hack is very noisy except for the two terms, black and blue.
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However, a slight increase of the frequency cutoff to 20 results in the set of words in column 2 of Table 25.

The unfortunate result here is that the two related words black and blue have been discarded.

The results returned by Google Sets for the input set, {yellow,red} is extremely good. The set contains

other colors. The sets of words in the Human Subject Experiments closely match the results in Google Sets,

however, it also contains some words that are not as closely related, such as flower, frequency, pattern etc.

This words are often associated with colors, and the word spectrum which is at the bottom of the list also

makes sense.

The final set to be examined is S7 ={bank, money} (Table 26). Google Hack performed reasonably well for

this input set. However, once again, in comparison to Google Sets, the f-measure seems very low. However,

closer introspection of the set of words predicted by Google Hack seems to have returned some important

words that were missed by both Google Sets, and the Human Subject Experiments. In this particular exam-

ple, Google Sets seemed to have performed poorly in comparison to previous results. Other than the word

Invest, all the other words seem to be quite irrelevant. On the contrary Google Hack returned some really

interesting words such as, account, services, funds, banking, currency, credit and cards. It can also be seen

that the actual collocation credit cards, has been split into credit and cards. The frequency of the two words

also seem to be close enough, that is credit occurred 39 times, and cards occurred 38 times. This also seems

to strongly suggest the inclusion of bigrams in results.
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Table 19: Algorithm 1 Results - S1 = {gun, pistol}

GoogleHack(10,10,1) GoogleHack(10,15,2) Google Sets Human Subject

(Small Set) Experiments

03/09/2005 03/09/2005 05/16/2005 01/01/2005

shooting , 169 pistols,227 holster,118 tac,79 gun air

guns , 124 firearms,205 fits,118 radio,77 pistol ak47

rifle , 113 accessories,204 shoot,117 paintball,75 ordinance arm

case , 81 free, 192 sport,115 assault,71 heavy weapon arms

accessories , 74 holsters,172 hours,109 teflon,70 artillery automatic

cases , 74 club,170 usa,109 pouch,69 machine gun barrel

airsoft , 72 target,164 ammo,107 number,69 launcher Bomb

products , 68 tactical,161 electric,107 shoulder,69 shotgun bullet

bullet , 53 air,158 ships,106 leg,64 rifle bull’s eye

air , 50 practical,152 spring,103 core,62 shooting iron case

shotgun , 46 range,150 articles,96 essex,60 handgun colt

holsters , 46 court,149 carry,95 nylon,57 side arm fire

ammo , 37 uk,147 ruger,93 flash,55 target fire arms

bullets , 34 sports,145 force,92 bullets,53 munitions firearm

safety , 32 law,143 mp,90 trigger,50 repeating firearm hand

holster , 27 price,142 remote,90 straps,46 rocket launcher handgun

remington , 22 full,140 car,89 helicopter,45 arsenal holster

control,140 harlow,88 riffles,44 22 Knives

soft,124 magazines,87 coat,44 scatter gun machine gun

military,121 belt,86 ukpsa,44 armory muzzle

custom,120 mini,82 repeater Police
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Table 20: S1 = {gun, pistol} Continued

GoogleHack(10,10,1) GoogleHack(10,15,2) Google Sets (Large Set) Human Subject Experiments

03/09/2005 03/09/2005 05/16/2005 01/01/2005

torpedo recoil

armoury revolver

broadside rifle

twenty two safe

muzzle loader semi-automatic

auto loader shoot

ordinance stores Terrorism

Trainer thirty-eight

Binocular trajectory

Shop Set Violence

Submachine gun

Carbine

Bayonet

Kit Mod

Mount

Telescope

Storage Racks

Gage
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Table 21: Algorithm 1 Results - S2 = {bush, clinton}

GoogleHack(10,10,1) GoogleHack(10,10,1) Google Sets (Large Set) Human Subject Experiments

03/09/2005 05/06/2005 05/06/2005 01/01/2005

tsunami , 521 president , 1578 reagan adams

world , 315 security , 749 nixon Administration

mr , 195 house , 550 ford carter

sri , 195 national , 473 eisenhower Deomocrats

people , 172 people , 294 kennedy Elections

lanka , 160 april , 224 johnson ford

president , 144 american , 217 India

children , 139 apr , 166 Iraq

disaster , 136 bill , 143 jefferson

aceh , 122 time , 136 johnson

tour , 101 relief , 135 kennedy

men , 87 women , 132 lincoln

relief , 86 ve , 129 nixon

thai , 77 support , 123 Parliament

survivors , 74 don , 116 peace

presidents , 65 pm , 115 president

george , 65 edt , 114 Presidents

affected , 58 good , 112 reagan

village , 57 george , 94 republicans

election , 92 Second Term

money , 71 Senate

presidential , 69 United Nations

vote , 68 United States

political , 67 war

democratic , 66 washington

republican , 66 White house

senator , 46
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Table 22: Algorithm 1 Results - S3 = {toyota, ford}

GoogleHack(10,5,1) GoogleHack(10,10,1) Google Sets (Small Set) Human Subject Experiments

03/09/2005 03/09/2005 05/06/2005 01/01/2005

truck , 66 car, 61 nissan benz

car , 61 sales, 59 honda buick

sales , 59 cars, 35 mazda car

parts , 46 auto .31 subaru chevrolet

vehicles , 45 mitsubishi chrysler

year , 43 dodge dodge

cars , 35 chevrolet fast

auto , 32 jeep ferrari

motors , 30 volvo gasoline

general , 27 buick general motors

company , 24 pontiac honda

honda , 20 suzuki jeep

service , 20 holden mercedes

automotive , 18 mitsubishi

nissan , 18

trucks , 17

consumer , 17

detroit , 13

marketing , 13

volvo , 12

media , 12

buyers , 12

focus , 11
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Table 23: Algorithm 1 Results - S4 = {jordan,chicago }

GoogleHack(10,5,1) GoogleHack(10,10,1) Google Sets (Small Set)

05/06/2005 05/06/2005 05/06/2005

michael , 173 michael , 174 Chicago

bulls , 148 bulls , 148 Jordan

nba , 97 nba , 97 Israel

game , 56 game , 56 JOHNSON

type , 52 jersey , 43 Jackson

team , 46 Kuwait

player , 43 JANESVILLE

jersey , 43 Iraq

time , 35 Japan

points , 30 Lebanon

basketball , 26 Egypt

photos , 25 Springfield

picture , 22
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Table 24: Algorithm 1 Results -S5 = {kenmore, maytag }

GoogleHack(10,15,1) GoogleHack(10,20,1) Google Sets (Small Set)

05/06/2005 05/06/2005 05/06/2005

service , 82 ge , 109 Kenmore

appliance , 75 service , 82 Maytag

appliances , 69 appliance , 75 Whirlpool

volt , 60 appliances , 69 Frigidaire

dishwasher , 54 volt , 60 GE

air , 50 amana , 46 Amana

amana , 46 KitchenAid

electric , 43 Inglis

kitchen , 38 HOTPOINT

general , 37 Westinghouse

frigidaire , 36 Norge

Speed Queen

Magic Chef

General Electric

Gen Electric
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Table 25: Algorithm 1 Results -S6 = {yellow,red}

GoogleHack(10,15,1) GoogleHack(10,20,1) Google Sets (Small Set) Human Subject Experiments

05/06/2005 05/06/2005 05/06/2005 01/01/2005

enterprise , 411 enterprise , 406 Yellow black

software , 257 management , 137 Red blue

solutions , 151 system , 94 Green colors

management , 142 snake , 70 Blue cyan

technology , 141 applications , 67 White flower

system , 96 scarlet , 62 Black frequency

services , 89 touch , 46 Orange green

netherlands , 84 snakes , 38 magenta grey

fellow , 76 florida , 36 cyan leaves

applications , 71 bands , 34 Gray light

snake , 70 Purple orange

performance , 64 Browser pink

scarlet , 62 pattern

design , 52 spectrum

model , 47

service , 47

touch , 46

work , 46

tools , 44

read , 41

order , 39

includes , 38

snakes , 38

florida , 36

bands , 34

coral , 28

black , 28

blue , 27
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Table 26: Algorithm 1 Results -S7 = {bank,money}

GoogleHack(10,10,1) GoogleHack(20,10,1) Google Sets (Small Set) Human Subject Experiments

05/07/2005 05/07/2005 05/07/2005 01/01/2005

currency , 170 state , 312 People cash

collect , 114 state , 312 Shopping Cashier

note , 89 npaper , 216 Maps cent

financial , 83 world , 182 Freebies check

member , 73 currency , 172 Education checking account

selection , 70 select , 170 Invest commercial

banking , 70 financial , 120 Insure Credit

funds , 66 collect , 117 Coupons Credit Card

services , 62 features , 117 Contests credit union

provide , 62 note , 96 currency

account , 55 banking , 95 deposit

canada , 44 services , 90 dollar

market , 43 policy , 87 draft

accounts , 39 years , 86 exchange

credit , 39 privacy , 86 finances

loans , 38 member , 83 loan

banks , 38 account , 82 mortgage

cards , 38 funds , 71 national

business , 35 selection , 71 overdraft

military , 28 credit , 71 penny

check , 27 rate , 69 rupee

service , 26 provide , 69 safe

enc , 20 loans , 65 savings account

accounts , 62 savings and loan

list , 59 sensex
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Table 27: Algorithm 1 Results -S8 = {bank,money} Continued

GoogleHack(10,10,1) GoogleHack(20,10,1) Google Sets (Small Set) Human Subject Experiments

05/06/2005 05/06/2005 01/01/2005

education , 56 sterling

business , 55 stock

banks , 54 Teller

cards , 54 trade

loan , 49 withdraw

market , 48

canada , 47

exchange , 47

savings , 46

check , 43

national , 42

rates , 42

indexof , 42

navigator , 39

card , 38

american , 37

federal , 35

center , 35

service , 33

gold , 33

books , 32

military , 28

annual , 28

checking , 27

status , 26

enc , 20

53



Table 28: Algorithm 1 Results -S9 = {buddhism,islam}

GoogleHack(10,35,1) Google Sets (Small Set)

05/07/2005 05/07/2005

god , 490 Buddhism

life , 328 Islam

al , 268 Christianity

qur , 267 Hinduism

buddhist , 266 Judaism

religion , 257

people , 246

islamic , 207

muslim , 202

world , 192

buddha , 142

allah , 128

prophet , 126

human , 109
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Table 29: Algorithm 1 Results - Precision, Recall and F-measure

Input Set Google Sets (Small Set) Human Subject Experiments

P R F-Measure P R F-measure

S1 = {gun, pistol} 2/17 2/39 0.06 6/17 6/31 0.24

GoogleHack(10,10,1)

S2 = {bush, clinton} 0 0 0 2/19 2/26 0.08

GoogleHack(10,10,1) 01/09/2005

S2 = {bush, clinton} 0 0 0 4/29 4/26 0.14

GoogleHack(10,10,1) 05/06/2005

S3 = {toyota, ford} 3/23 3/14 0.16 2/23 2/13 0.104

GoogleHack(10,5,1)

S4 = {jordan, chicago} 0 0 0 NA NA NA

GoogleHack(10,5,1)

S5 = {kenmore, maytag} 3/11 3/13 0.24 NA NA NA

GoogleHack(10,15,1)

S6 = {yellow, red} 2/31 2/10 0.09 2/31 2/14 0.084

GoogleHack(10,15,1)

S7 = {bank, money} 0 0 0 4/25 4/30 0.14

GoogleHack(10,10,1)

S8 = {buddhism, islam} 0 0 0 NA NA NA

GoogleHack(10,35,1)
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4.4 Experimental Results of Algorithm 2

The sets of results from Algorithm 2 were evaluated similar to the sets of results from Algorithm 1. The

basic idea was to compare the results of the Google Hack algorithms to the results from Google Sets and the

Human Subject Experiments. However, since Algorithm 2 can take in more than two words as input, certain

sets predicted by Algorithm 2 were compared only to the results from Google Sets. Overall, Algorithm 2

performed much better than Algorithm 1. The relatedness measure approach used in Algorithm 2 helped

discard much of the noisy terms. Note that each word in the Google Hack column contains a relatedness

score as well. Some of the sets were compared to the Small Set, and Large Set feature of Google Sets.

The first example input set is S1 = {kenmore, maytag}. The first column of Table 30 shows the set of words

predicted by Algorithm 2 over a frequency cutoff of 10, and bi-gram cutoff of 4, a score cutoff of 30, and

for 1 iteration for the given input set. The resulting set of words are quite good. All the words in the set are

brand names of appliance manufacturers. The results also show that the inclusion of bi-grams has resulted

in the bi-gram ‘jenn air being included in the set of related words predicted by Google Hack. The precision,

recall and f-measure for all th example are given in Table 48. The second and third column of Table 30

represent the results for running Algorithm 2 over 2 iterations, and a frequency cutoff of 15, a relatedness

score.cutoff of 30. Bi-grams were not considered for this particular example. The first iteration results in

whirlpool and ge. The terms frigidaire and kitchenaid which were par to the related set in the first column

have been discarded due to the higher frequency cutoff used in column 2. A higher frequency was used

show.

As expected, iteration was able to get one addition brand, frigidaire in its set of related words. This illustrates

the point that increasing the number of iterations can result in a better set of related words than having just

one iteration. However, in most cases, increasing the number of iterations result in more noise.

Table 31, shows the set of related words predicted by Algorithm 2 for the input set S2 = {toyota, ford} with

a frequency cutoff of 10, and a relatedness score cutoff of 30. Any term with frequency less than 10, or any

term with a relatedness score greater than 30 is automatically discarded. Big rams were not considered as

part of the expanded set for this particular example. Algorithm 2 returned gm, nissan and car as the set of

related words to the input terms toyota, ford. Though the small set predicted by Google Sets does not contain

any of the terms predicted by Google Hack, it is very clear that the terms predicted by Google Hack are in
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fact related. gm and nissan are manufacturers of automobiles. The word car is in the set of words predicted

by the Human Subject Experiments. Though the precision of Google Hack for this particular example is

quite good, the recall is very poor. The number of words returned by Google Hack seems too less. Hence,

to expand the set further, the term nissan was added to the initial input set. This exploits Algorithm 2’s new

feature which allows more than two terms as input. The resulting set of words predicted by Google Hack is

given in the first two columns of Table 32. The score cutoff used in the first column was30, whereas the score

cutoff used in the second column of Table 32 was 40. This slight variation was intentional, since it shows

the kind of words that were discarded by the relatedness score, words which would have otherwise been

included in the set of related words as they pass the frequency cutoff phase. The set predicted by Google

Hack for this input set is extremely good. All the terms in the set are names of automobile manufacturers,

in-fact only the last term in column 1, which is vehicles seems to be out of place. However, even vehicles

can be considered as a related word to S3 = {toyota, ford, nissan} since all the input terms are names of

manufacturers of vehicles. Once again, some of the terms predicted by Algorithm 2 do not exist in the

set predicted by Google Sets, but it is clearly not incorrect. Furthermore, the terms in column 2 that had a

relatedness score greater than 30 are still words that are related to automobile manufacturers. At first glance,

the only word that seems to be out of place in the set is sheehy, however, upon further investigation, sheehy

was found to be an automobile dealer. However, a score cutoff of 30 reveals a much tight set of related

words.

The number of terms predicted by Google Hack for S3 = {toyota, ford, nissan} is much greater than the

number of terms predicted by Google Hack for S2 = {toyota, ford}. This is justifiable result, since the

number of queries to Google increases from 4 queries to 9 queries when moving from an initial set of 2

words to an initial set of 3 words. In turn 50 more web pages are parsed for text. As a result, the set of words

predicted by Google Hack drastically increases. The quality of the terms in the resulting set is also quite

good. This is because, as the number of web pages parsed increases, a clearer relationship can be identified

within the input terms.

Another interesting result that is worth looking at in Table 32 is that, the top two terms returned by Google

Hack are mazda, 19.59 and honda, 19.92. The top two terms in the set predicted by Google Sets is also

honda and mazda. This same result can also be noticed in some of the other result tables.

The next input set to be looked is S4 = {january,february,may}. Table 33 shows the set of words predicted
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by Google Hack for this set. The set of words predicted by Google for this particular input set is very good.

In fact, the precision and recall for this particular set is 1. Google Hack was clearly able to identify that

january, february and may are all months of there year, and this is reflected in the set of words returned

by Algorithm 2. The terms that were discarded by Google Hack, which had a relatedness score greater

than 30 were friday, wednesday , thursday , work , people , bush , year , president , american , house ,

northern and saddam. Other than friday, wednesday , thursday and year, the other words with a relatedness

measure greater than 30 look very random. Hence, this shows that the relatedness measure is quite effective

in pruning out noisy terms.

The next set to be considered is S6 = {red, yellow}, which is one of th most difficult set of input terms. This

is mainly due to the non-specific nature of the terms. Algorithm 1 performed very poorly for this input set,

with the most relevant terms, blue and black appearing at the bottom of the set of related words (Table 25 in

Algorithm 1 Experimental Results). However, with the relatedness measure approach, the words blue and

black have been pushed to the top of the set, and with a score cutoff of 30, almost all non-relevant terms have

been discarded. This can be seen by comparing the results in column 1 to the results inc column 2 of Table

35. Column 1 also shows the words scarlet and coral as being related to red and yellow. This is correct,

since scarlet and coralare colors. Some of the words discarded by the relatedness measure include power,

call, includes and work etc. These are obviously noisy and irrelevant terms. Once again, the precision and

recall for this input set is low. This illustrates the fact that Google Hack performs significantly better with

specific, and topic focused nouns such as brand names, and performs rather poorly with more general terms

like adjectives that are used to describe nouns.

The next set to be examined is S9 = {artificial intelligence, machine learning}. This set illustrates Algorithm

2’s new feature which allows bi-grams to be used as input terms to Google Hack. Overall, the precision,

recall and f-measure calculated for Google Hack over a score cutoff of 40 seems low. However,. examination

of the set reveals a lot of really good terms that are missed by Google Sets. For example, the terms knowledge

discovery and reinforcement learning are obviously terms that are relevant to artificial intelligence and

machine learning where reinforcement learning is a machine learning technique. This particular example

illustrates two more deficiencies of Google Hack. Words such as genetic, algorithms, reasoning, expert,

neural and natural are words that were obviously part of a 2-word or 3-word collocation. For example,

expert from expert systems, and natural from natural language processing. The latter example shows the
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second deficiency. Since Google Hack considers only unigrams and bi-grams, terms such as cased based

reasoning and natural language processing are split into either unigrams or bi-grams or both. The same

type of problem is once again revealed in Table 41, for the input set S10 = {versace,armani}. Words such as

dior and hugo are obviously from the collocations christian dior and hugo boss respectively. Overall, this

results in a lower precision and recall for Google Hack.

The next input set S11 = {sunny,cloudy} reveals a new problem that did not exist in Algorithm 1. This

problem arose due to the inclusion of bi-grams in the Google Hack expanded sets. column 2 of Table 43

contains the set of words predicted by Google Hack for S11 = {sunny,cloudy}. The set contains 4 bi-grams,

of which, two of the bi-grams partly cloudy and partly sunny are good collocations, whereas forecast text

and bulletin fpcn make no sense as collocations. Hence, a possible refinement to Algorithm 2 might be the

inclusion a function to verify if a particular bi-gram is a good collocation or not.

One final point worthy of discussion is the low precision and recall for Google Hack when comparing to

Google Sets in general. Take for example Table 32, where some of the words returned by Google Hack,

specifically bmw,lexus, gmc are names of automobile brands. However, these brand names are not included

in the set returned by Google Sets or the Human Subject Experiments. Now, this arises the question as to

whether the set of related words returned by Google Hack can be compared to a set of gold standard files.

However, for the purpose of this thesis research, the results are compared to Google Sets, and the Human

Subject Experiments.
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Table 30: Algorithm 2 Results - S1 = {kenmore, maytag}

GoogleHack(10,10,4,1,30) GoogleHack(10,15,0,2,30) GoogleHack(10,15,0,2,30) Google Sets (Small Set)

Iteration 1 Iteration 2

whirlpool , 16.04 whirlpool 17.18 frigidaire,20.54 Whirlpool

frigidaire , 19.60 ge , 23.38 Frigidaire

ge , 21.67 GE

jenn air , 22.37 Amana

kitchenaid , 23.70 KitchenAid

Inglis

Hotpoint

Westinghouse

Norge

Speed Queen

Magic Chef

General Electric

Econo Wash
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Table 31: Algorithm 2 Results - S2 = {toyota, ford}

GoogleHack(10,10,0,1,30) Google Sets (Small Set) Human Subject Experiments

05/25/2005 05/25/2005 05/25/2005

gm , 19.09 HONDA benz

nissan , 20.15 MAZDA buick

car , 29.77 SUBARU car

MITSUBISHI chevrolet

DODGE chrysler

CHEVROLET dodge

Jeep fast

Volvo ferrari

Buick gasoline

Pontiac general motors

Suzuki honda

Holden jeep

mercedes
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Table 32: Algorithm 2 Results - S3 = {toyota, ford, nissan}

GoogleHack(10,10,0,1,30) GoogleHack(10,10,0,1,40) Google Sets (Small Set)

05/25/2005 05/25/2005 05/25/2005

mazda , 19.59 mazda , 19.59 HONDA

honda , 19.92 honda , 19.92 MAZDA

chevrolet , 21.37 chevrolet , 21.37 SUBARU

bmw , 22.47 bmw , 22.47 MITSUBISHI

dodge , 22.83 dodge , 22.83 DODGE

lexus , 23.05 lexus , 23.05 CHEVROLET

mitsubishi , 23.17 mitsubishi , 23.17 Jeep

pontiac , 23.89 pontiac , 23.89 Volvo

mercedes , 24.56 mercedes , 24.56 Buick

gmc , 25.14 gmc , 25.14 Pontiac

vehicles , 27.77 vehicles , 27.77 Suzuki

truck , 30.42 Holden

car , 30.71

parts , 30.73

cars , 31.75

auto , 31.84

suv , 32.86

dealer , 33.74

performance , 34.64

prius , 34.99

vehicle , 36.74

sheehy , 36.93

sales , 37.38

rear , 37.58

coupe , 38.18

sedan , 39.56
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Table 33: Algorithm 2 Results - S4 = {january,february,may}

GoogleHack(10,15,0,1,30) Google Sets (Small Set)

june , 22.90 , 215 March

july , 24.39 , 176 April

august , 25.33 , 212 June

september , 25.50 , 260 October

march , 25.71 , 236 November

october , 26.21 , 192 December

november , 27.09 , 214 September

april , 27.49 , 243 July

december , 27.61 , 263 August
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Table 34: Algorithm 2 Results - S5 = {george bush, bill clinton, ronald reagan}

GoogleHack(10,10,0,1,40) GoogleHack(10,10,5,1,30) Google Sets (Small Set)

john , 25.89 federal , 36.49 jimmy carter , 21.95 Jimmy Carter

democratic , 26.49 people , 36.89 john , 25.92 John F Kennedy

republican , 27.50 anti , 37.00 democratic , 26.59 Gerald Ford

congress , 27.63 white , 37.10 vice president , 27.04 Richard Nixon

william , 28.06 civil , 37.24 republican , 27.83 George W Bush

president , 28.21 south , 37.45 president , 28.33 Ross Perot

james , 28.65 war , 37.71 Herbert Hoover

republicans , 29.20 government , 37.74 Hillary Clinton

soviet , 30.61 political , 37.92 Richard M Nixon

democrats , 32.13 great , 38.75 Harry Truman

america , 32.22 today , 38.18 Lyndon Johnson

presidential , 32.59 state , 38.82

iraq , 33.52 durbin , 39.11

nixon , 33.72 world , 39.23

house , 34.08 carter , 39.37

american , 35.04 jefferson , 39.45

freedom , 35.25 washington , 39.50

united , 35.73 elected , 39.67

national , 35.90 ended , 39.67

supreme , 36.22 good , 39.74

won , 36.33 election , 39.77
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Table 35: Algorithm 2 Results - S6 = {red, yellow}

GoogleHack(10,10,0,1,30) GoogleHack(10,10,0,1,40) Google Sets (Small Set) Human Subject Experiments

05/22/2005 05/22/2005 05/22/2005 05/22/2005

blue , 16.77 blue , 16.77 Red black

black , 17.07 black , 17.07 Green blue

scarlet , 24.91 scarlet , 24.91 Blue colors

coral , 28.97 coral , 28.97 White cyan

power , 32.79 Black flower

call , 33.58 Orange frequency

includes , 35.45 magenta green

read , 35.67 cyan green

kill , 35.85 Gray grey

work , 37.21 Purple leaves

kingsnake , 37.59 Browser light

touch , 39.36 orange

post , 39.50 pink

snake , 39.83 spectrum
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Table 36: Algorithm 2 Results - S7 = {bank, money}

GoogleHack(10,10,5,1,30) GoogleHack(10,10,5,1,40) Google Sets (Small Set) Human Subject Experiments

05/22/2005 05/22/2005 05/22/2005 05/22/2005

banking , 21.16 banking , 21.16 Bank cash

credit , 21.62 credit , 21.62 Money Cashier

financial , 25.15 financial , 25.15 People cent

credit cards , 25.79 credit cards , 25.79 Shopping check

currency , 26.58 currency , 26.58 Maps checking account

loans , 28.81 loans , 28.81 Freebies commercial

business , 29.40 business , 29.40 Education Credit

account , 31.47 Invest Credit Card

canada , 31.55 Insure credit union

accounts , 32.14 Coupons currency

services , 33.47 Contests deposit

note , 34.68 dollar

msn money , 38.58 draft

center , 39.84 exchange

finances

loan

mortgage

national

overdraft

penny

rupee

safe

savings account

savings and loan

sensex
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Table 37: Algorithm 2 Results - S8 = {buddhism, islam}

GoogleHack(10,15,5,1,30) GoogleHack(10,15,5,1,40) Google Sets (Small Set)

05/22/2005 05/22/2005 05/22/2005

christianity , 14.89 christianity , 14.89 Buddhism

buddha , 21.44 buddha , 21.44 Islam

muslims , 21.48 muslims , 21.48 Christianity

tibetan , 21.79 tibetan , 21.79 Hinduism

islamic , 23.21 islamic , 23.21 Judaism

buddhist , 23.68 buddhist , 23.68

muslim , 23.74 muslim , 23.74

buddhists , 24.00 buddhists , 24.00

god , 25.70 god , 25.70

religion , 25.99 religion , 25.99

women , 26.10 women , 26.10

religions , 26.23 religions , 26.23

peace , 26.50 peace , 26.50

human , 26.59 human , 26.59

jesus , 27.35 jesus , 27.35

death , 27.45 death , 27.45

muhammad , 28.87 muhammad , 28.87

teachings , 28.93 teachings , 28.93

life , 29.29 life , 29.29

quran , 29.32 quran , 29.32

worship , 29.38 worship , 29.38

allah , 29.43 allah , 29.43

jihad , 29.72 jihad , 29.72

world , 30.06

india , 30.16

faith , 30.22

qur , 30.37

prophet , 30.62

love , 31.0367



Table 38: Algorithm 2 Results - S8 = {buddhism, islam} Continued

GoogleHack(10,15,5,1,30) GoogleHack(10,15,5,1,40) Google Sets (Small Set)

05/22/2005 05/22/2005 05/22/2005

west , 31.38

history , 31.48

living , 31.78

people , 31.89

give , 32.00

central asia , 32.40

called , 32.51

al , 32.72

belief , 32.73

followers , 32.74

holy , 32.77

earth , 32.82

buddhism islam , 32.87

central , 32.91

man , 33.05

law , 33.24

basic , 33.62

al insan , 33.82

insan al , 33.82

dalai lama , 33.97

means , 34.39

good , 34.53

beliefs , 34.76

al kamil , 34.88

children , 35.10

mind , 35.83

truth , 35.98

great , 36.21

human beings , 36.98

guide , 37.22

books , 37.44
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Table 39: Algorithm 2 Results - S9 = {artificial intelligence, machine learning}

GoogleHack(10,15,0,1,30) GoogleHack(10,15,5,1,40) Google Sets (Large Set)

05/22/2005 05/22/2005 05/22/2005

robotics , 21.14 neural networks , 20.88 , 25 Neural Networks

neural , 21.60 robotics , 21.14 Robotics

expert , 24.24 neural , 21.60 Knowledge Representation

reasoning , 24.40 data mining , 22.84 Natural Language Processing

intelligent , 25.68 expert systems , 22.90 Pattern Recognition

knowledge , 25.89 expert , 24.24 Machine Vision

logic , 26.18 genetic algorithms , 24.30 Programming Languages

data , 26.21 reasoning , 24.40 Data Mining

natural , 26.23 logic programming , 24.40 Genetic Programming

genetic , 26.33 natural language , 24.87 Vision

applications , 26.60 intelligent , 25.68 Natural Language

computer , 27.91 knowledge , 25.89 Intelligent Agents

ai , 29.16 logic , 26.18 People

language , 31.44 data , 26.21 Publications

software , 31.64 natural , 26.23 Philosophy

programming , 32.01 genetic , 26.33 Qualitative Physics

game , 32.22 applications , 26.60 Speech Processing

algorithms , 32.44 computer , 27.91 Expert Systems

reinforcement , 32.68 knowledge discovery , 28.91 Genetic Algorithms

lisp , 33.57 ai , 29.16 Computer Vision

prolog , 34.05 case based , 29.83 Computational Linguistics

agents , 34.22 computer science , 30.21 Cognitive Science

aaai , 35.06 reinforcement learning , 31.17 Fuzzy Logic
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Table 40: Algorithm 2 Results - S9 = {artificial intelligence, machine learning} Continued

GoogleHack(10,15,0,1,30) GoogleHack(10,15,5,1,40) Google Sets (Large Set)

05/22/2005 05/22/2005 05/22/2005

research , 35.44 language , 31.44 Knowledge Acquisition

games , 36.38 software , 31.64 Artificial Life

systems , 36.47 , programming , 32.01 Knowledge Based Systems

recognition , 37.05 game , 32.22 Case Based Reasoning

analysis , 37.08 algorithms , 32.44 Image processing

discovery , 38.13 reinforcement , 32.68 Software engineering

networks , 38.56 lisp , 33.57 Planning and Scheduling

system , 38.62 prolog , 34.05 Information Retrieval

machines , 39.01 agents , 34.22 Virtual Reality

science , 39.05 research , 35.44 Automated Reasoning

methods , 39.15 ai programming , 36.19 Speech recognition

iit , 39.585 games , 36.38 Knowledge Engineering

java , 39.67 systems , 36.47 Model based Reasoning

discovery , 38.13 Speech

ai magazine , 38.22 Agents

system , 38.62 Dynamical systems

morgan kaufmann , 38.87 Fuzzy Systems

machines , 39.01 Expert system

science , 39.05 ALGORITHMS

methods , 39.15 Computer Graphics

iit , 39.58 Complexity Theory

learning systems , 39.62 Fuzzy Sets

java , 39.67 Logic Programming

AI Magazine

Neural Nets
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Table 41: Algorithm 2 Results - S10 = {versace,armani}

GoogleHack(10,15,0,1,30) GoogleHack(10,15,5,1,40) Google Sets (Small Set) Google Sets (Large Set)

prada , 18.17 prada , 18.17 GUCCI Gucci

moschino , 18.45 moschino , 18.45 Ferragamo Chanel

gucci , 18.60 gucci , 18.60 Chanel Calvin Klein

dkny , 19.00 dkny , 19.00 Valentino Prada

valentino , 19.72 valentino , 19.72 , Prada Dolce Gabbana

chanel , 19.93 chanel , 19.93 Biagiotti Fendi

gianni , 20.12 gianni , 20.12 Calvin Klein Hugo Boss

calvin , 21.97 hugo boss , 20.17 Hugo Boss Christian Dior

dior , 22.37 calvin klein , 20.29 Dolce Gabbana Hermes

yves , 22.62 gianni versace , 20.46 Moschino

hugo , 23.06 dolce gabbana , 21.76 Donna Karan

fendi , 24.12 calvin , 21.97 Ralph Lauren

giorgio , 24.64 yves saint , 22.10 Valentino

boss , 30.00 dior , 22.37 Louis Vuitton

yves , 22.62 Giorgio Armani

giorgio armani , 23.04 DKNY

hugo , 23.06 Escada

fendi , 24.12 Tommy Hilfiger

71



Table 42: Algorithm 2 Results - S10 = {versace,armani} Continued

GoogleHack(10,15,0,1,30) GoogleHack(10,15,5,1,40) Google Sets (Small Set) Google Sets (Large Set)

giorgio , 24.64 Tiffany

christian dior , 24.86 Givenchy

Cartier

Ferragamo

Vivienne Westwood

Elizabeth Arden

Estee Lauder

Miu Miu

Salvatore Ferragamo

Guess

Carolina Herrera

Pucci

Joop

Coach

DIESEL

Dana Buchman

Cour Carre

Bally

David Hayes

Bernini

Agnes b

ADIDAS

Davidoff

Aramis

OAKLEY
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Table 43: Algorithm 2 Results - S11 = {sunny,cloudy}

GoogleHack(10,10,0,1,40) GoogleHack(10,15,4,1,30) Google Sets (Small Set)

clear , 24.35 , 68 clear , 24.35 , 38 partly cloudy

partly , 25.88 , 87 partly cloudy , 25.85 , 56 Sleet

light , 27.33 , 166 forecast text forecast , 26.66 , 11

showers , 28.62 , 303 partly sunny , 26.92 , 21 Freezing Rain

wind , 28.84 , 209 light , 27.33 , 128 Dew Point

cloud , 29.11 , 61 bulletin fpcn , 28.33 , 11 Hail

winds , 29.22 , 121 wind , 28.84 , 115 Heavy Snow

low , 30.11 , 308 winds , 29.22 , 96 Clear

moderate , 30.77 , 164 Weather Warning

midnight , 31.23 , 43 Partly Sunny

high , 31.30 , 621 windy

fog , 31.36 , 52 Foggy

fpcn , 31.90 , 40 rainy

upper , 32.38 , 35

tonight , 33.29 , 240

clearing , 33.94 , 32

chance , 34.00 , 291

lower , 34.40 , 33

clouds , 34.67 , 52

today , 34.80 , 283
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Table 44: Algorithm 2 Results - S12 = {atomic, nuclear}

GoogleHack(10,15,4,1,40) Google Sets (Small Set) Human Subject Experiments

nuclear weapons , 29.28 , 35 Particle Bohr

energy , 31.06 , 117 Condensed Matter bomb

bomb , 33.61 , 48 High Energy bond

weapons , 34.25 , 45 Astrophysics charge

nuclear weapon , 34.92 , 16 Astronomy chemistry

nuclear power , 35.09 , 49 Undecided Chernobyl

nuclear capabilities , 36.89 , 6 Biomedical compound

atomic bomb , 38.57 , 28 Optics covalent

atomic energy , 37.54 , 15 Mathematical Destruction

nuclear arsenal , 39.48 , 6 environment detonation

robert oppenheimer , 39.50 , 11 chemistry diffusion

nuclear science , 39.72 , 10 Einstein

electron

element

energy

Explosion

facility

Generator

Hiroshima

holocaust

interference

ion

light

mass

Max Planc

molecule

mushroom cloud

Nagasaki

neutron

nucleus74



Table 45: Algorithm 2 Results - S12 = {atomic, nuclear} Continued

GoogleHack(10,15,4,1,40) Google Sets (Small Set) Human Subject Experiments

number

orbit

orbital

particle

periodic

photoelectric

physics

polarization

Power

power plant

quantum

radiation

ratio

shell

spectrum

speed

submarine

table

testing

theory

waste

wave

weapon

weight
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Table 46: Algorithm 2 Results - S13 = {passport, tickets}

GoogleHack(10,10,0,1,40) GoogleHack(10,10,3,1,40) Google Sets (Small Set) Human Subject Experiments

travel , 23.18 , 84 travel , 23.18 , 84 credit cards visa airplane

ticket , 24.96 , 57 ticket , 24.96 , 57 Wallet travel

passports , 27.69 , 51 passports , 27.69 , 51 itinerary visa

details , 31.76 , 55 concert tickets , 31.00 , 14 Money airplane

buy , 32.25 , 35 details , 31.76 , 55 Phone Numbers air

concerts , 32.79 , 31 buy , 32.25 , 35 Reservations aeroplane

nba , 33.20 , 29 las vegas , 32.57 , 8 Vouchers flight

services , 34.10 , 32 concerts , 32.79 , 31 travelers checks security

college , 34.15 , 34 nba , 33.20 , 29 Vaccination Certificate charge

nfl , 34.90 , 27 macys passport , 33.56 , 31 Travel Insurance aerodrome

racing , 35.50 , 34 services , 34.10 , 32 traveler’s checks hostess

includes , 35.82 , 29 college , 34.15 , 34 Medication stewart

sports , 36.28 , 150 nfl , 34.90 , 27 money

day , 36.29 , 98 gift certificates , 35.35 , 11 dollars

service , 37.07 , 163 racing , 35.50 , 34 age

city , 37.21 , 24 sports , 36.28 , 150 information

football , 37.56 , 63 day , 36.29 , 98 photograph
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Table 47: Algorithm 2 Results - S13 = {passport, tickets} Continued

GoogleHack(10,10,0,1,40) GoogleHack(10,10,3,1,40) Google Sets (Small Set) Human Subject Experiments

auto racing , 36.72 , 15 signature

nba basketball , 36.98 , 12 flight

service , 37.07 , 163 travel

city , 37.21 , 24 immigration

football , 37.56 , 63 customs

horse racing , 38.05 , 15 forms

layovers

baggage

carry ons

stewards

Visa

Aeroplane

Luggage

Airport

Foreign

Vacation

Packing

Holidays
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Table 48: Algorithm 2 Results - Precision, Recall and F-measure

Input Set Google Sets (Small Set) Human Subject Experiments

P R F-Measure P R F-measure

S1 = {kenmore, maytag} 4/5 4/13 0.43 NA NA NA

GoogleHack(10,10,4,1,30)

S2 = {toyota, ford} 0 0 0 2/3 2/13 0.24

GoogleHack(10,10,0,1,30)

S3 = {toyota, ford, nissan} 6/11 6/12 0.51 NA NA NA

GoogleHack(10,10,0,1,30)

S4 = {january, february, may} 9/9 9/9 1 NA NA NA

GoogleHack(10,15,4,1,30)

S5 = {george bush, bill clinton, ronald reagan} 1/6 1/11 0.106 NA NA NA

GoogleHack(10,10,5,1,30)

S6 = {red, yellow} 2/4 2/11 0.265 2/4 2/14 0.218

GoogleHack(10,10,4,1,30)

S7 = {bank, money} 0 0 0 4/7 4/25 0.24

GoogleHack(10,10,4,1,30)

S8 = {buddhism, islam} 1/23 1/3 .06 NA NA NA

GoogleHack(10,10,4,1,30)

S9 = {artificial intelligence, machine learning} 7/21 7/48 0.19 NA NA NA

GoogleHack(10,15,5,1,30)

S10 = {versace, armani} 7/18 7/9 0.5 NA NA NA

GoogleHack(10,15,5,1,40)

S11 = {sunny, cloudy} 4/8 4/12 0.39 NA NA NA

GoogleHack(10,15,4,1,30)

S12 = {atomic,nuclear} 0 0 0 2/12 2/61 0.05

GoogleHack(10,15,4,1,40)

S13 = {passport, tickets} 0 0 0 1/17 1/33 0.0375

GoogleHack(10,10,3,1,40)
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4.5 Experimental Results of Algorithm 3

Unlike the Algorithm 1 and Algorithm 2 experimental results discussion sections, this particular section

focuses on one particular feature of Algorithm 3. The only difference between Algorithm 2 and Algorithm

3 is the function that tries to identify if a particular bi-gram is a bad collocation. To do this, 5 input sets from

the Algorithm 2 experiments were chosen, as the results for these input sets contained bi-grams. Specifically,

some of the bi-grams that were included in the set of related words were in fact bad collocations.

Take for example the input set S1 = {sunny, cloudy}. The actual set of related words predicted by Algorithm

3 are given in Table 49. Two particularly noisy terms forecast text and bulletin fpcn that were part of the set

of related words predicted by Algorithm 2 (See Table 43 of Algorithm 2 Experimental Results Section), do

not appear in the set predicted by Algorithm 3. All the input parameters were the same except for the word

frequency cutoff, which does not effect the bi-grams that are considered. Table 50 shows all the bi-grams

that were considered by Algorithm 3 before calculating their respective Log Likelihood scores. The first

column in the table represents the bi-gram that was to be verified, the second column of Table 50 gives the

number of hits returned by Google for that particular bi-gram, the third column gives the expected value for

the given bi-gram, and finally, the fourth column gives the log likelihood score. Note that if for a particular

bi-gram the observed value is 0, that is, if the number of hits for a particular bi-gram is 0, then the log

likelihood score is also 0. Also note that if the observed value for a particular bi-gram is less than the

expected value, the log likelihood score is assumed to be 0. In both these cases, the bi-grams are discarded

from the results before the relatedness measure is calculated.

According to this implementation of the log likelihood score, only 3 bi-grams were considered as not being a

bad collocation. They are partly cloudy, canada word mark, and severe thunderstorm. Note that the number

of hits returned for the bi-gram bulletin fpcn is 0. Also note that the observed value for forecast text is much

less than the expected value 1698201.05. Hence, this bi-gram was also discarded. Overall, out of other

discarded bi-grams the only two questionable discards were meteorlogical service and weather service.

The next example set is S2 = {kenmore, maytag}. The set of words predicted by Algorithm 3 are given in

Table 51. The bi-grams and their respective log likelihood scores are given in Table 52. The results here

seem to be a little bit suspect. A possibly valid big-gram such as magic chef was not considered because

the observed value for magic chef which was 35100, was less than it’s expected value of 39025.57. The
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Table 49: Algorithm 3 Results - S1 = {sunny, cloudy}

GoogleHack(10,30,4,1,30)

partly cloudy , 26.06

showers , 28.80

cloud , 29.30

difference between the two numbers is considerably small, especially with respect to the World Wide Web.

Hence, this particular bi-gram could be considered as a borderline collocations.

The third set to be considered is S3 = {artificial intelligence}. The set of words predicted by Algorithm 3

are given in Table 55. Table 56 shows the bi-grams and their respective log likelihood scores. The bi-grams

that were identified as not being bad collocations are actually very good collocations. However, some valid

collocations have been identified by Algorithm 3 as bad collocations. In addition, some of the bi-grams that

were discarded by Algorithm 3 through the log likelihood score were part of the large set of related words

predicted by Google Sets for S3 = {artificial intelligence}. For example, collocations such as ai magazine,

expert systems and logic programming all failed the test where the observed value is less than the expected

value.

The next set to be considered is S4 = {atomic, nuclear}. Algorithm 3 performed fairly well in identifying

bi-grams, however, once again, some of the discarded bi-grams are possible collocations where the observed

value is less than the expected value. For example, energy commission, full story and nuclear power.

The final set to be considered is S5 = {bank, money}. The bi-gram results for this particular input set is

quite good. Two suspect collocations msn money and paper money were discarded as bad collocations. The

bi-gram credit cards was identified as being a good collocation.

In conclusion, the log likelihood function does a decent job with identifying bad collocations, however, it

needs some fine tuning since it also discards some valid and good collocations.
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Table 50: Algorithm 3 Results - S1 = {sunny, cloudy} Bi-grams

Bi-gram Observed (“word1 word2”) Expected (“word1 word2”) Log Liklihood Score

partly cloudy 808000 14400 5475034.57

canada wordmark 146000 16507.93 571649.16

severe thunderstorm 46500 5045.92 128838.18

additional weather 25500 4642857.14 0

bulletin fpcn 0 0 0

canada weather 112000 3869047.61 0

cloudy periods 10100 26847.79 0

domain graphical 559 231289.24 0

environment canada 258000 6769488.53 0

fog patches 5100 12246.56 0

forecast text 2160 1698201.05 0

graphical standard 719 622529.1 0

meteorological service 64400 506666.66 0

northwest km 3 80317.46 0

office related 39000 34268077.60 0

percent chance 188000 587178.13 0

scheduled forecast 2690 211753.08 0

showers early 8360 123597.88 0

sunny periods 9370 37108.99 0

thunderstorms ending 981 9529.98 0

weather office 33400 9564373.89 0

wind northwest 2590 165523.8 0
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Table 51: Algorithm 3 Results - S2 = {kenmore, maytag}

GoogleHack(10,30,4,1,30)

whirlpool , 17.31

frigidaire , 20.55

ge , 23.40

kitchenaid , 23.70

ebuild , 35.57

dryers , 36.40

refrigerators , 37.27

sq ft , 37.47

appliance , 38.43

Table 52: Algorithm 3 Results - S2 = {kenmore, maytag} Bi-grams

Bi-gram Observed (“word1 word2”) Expected (“word1 word2”) Log Liklihood Score

sq ft 643000 21509.34 3403351.20

ft sq 3830 21461.7283950617 0

magic chef 35100 39025.57 0
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Table 53: Algorithm 3 Results - S3 = {artificial intelligence}

GoogleHack(10,15,5,1,30) Google Sets (Large Set) - Not Complete Set

neural networks , 20.87 Neural Networks

neural , 21.63 Robotics

pattern recognition , 22.89 Knowledge Representation

genetic algorithms , 24.30 Natural Language Processing

reasoning , 24.40 Pattern Recognition

intelligent , 25.67 Machine Vision

knowledge , 25.86 Programming Languages

logic , 26.16 Data Mining

data , 26.17 Genetic Programming

applications , 26.53 Vision

artificial intelligence , 27.36 People

computer , 27.78 Publications

ai , 29.19 Philosophy

Qualitative Physics

Expert Systems

Genetic Algorithms

Expert system

Logic Programming

AI Magazine

Neural Nets
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Table 54: Algorithm 3 Results - S3 = {artificial intelligence, machine learning} Bi-grams

Bi-gram Observed (“word1 word2”) Expected (“word1 word2”) Log Liklihood Score

neural networks 617000 144620.81 954551.64

morgan kaufmann 138000 5067.61 692428.92

pattern recognition 419000 248456.79 102193.35

genetic algorithms 129000 75014.81 32818

grammatical inference 4590 1474.92 4214.81

based learning 861000 13804761.9 0

computer science 12700000 27947089.94 0

ai magazine 99500 340178.13 0

ai programming 8050 197317.46 0

based reasoning 46300 676825.39 0

case based 150000 12690476.19 0

data mining 1160000 1424162.25 0

expert systems 165000 3705114.63 0

intelligence machine 3650 587160.49 0

knowledge acquisition 86100 915590.82 0

knowledge discovery 142000 1722398.58 0

learning methods 136000 3369453.26 0

learning research 87900 22384479.71 0

learning resources 811000 22620105.82 0

learning systems 121000 11899118.165 0

list journals 5250 7086419.75 0

logic programming 126000 403984.12 0

mail comp 771 941111.11 0

natural language 1000000 3786948.85 0

pc ai 2480 204899.470 0

reinforcement learning 39700 91677.77 0

research groups 912000 17466666.66 0

84



Table 55: Algorithm 3 Results - S4 = {atomic, nuclear}

GoogleHack(10,15,4,1,30)

nuclear weapons , 29.41

atomic energy , 37.73

atomic bomb , 38.81

robert oppenheimer , 39.53

Table 56: Algorithm 3 Results - S4 = {atomic, nuclear} Bi-grams

Bi-gram Observed (“word1 word2”) Expected (“word1 word2”) Log Liklihood Score

united states 80900000 20221340.38 231153374.00

los alamos 896000 40034.03 5433736.97

nuclear weapons 1380000 178539.68 3572696.81

atomic bomb 223000 34772.48 469023.03

atomic energy 597000 353333.33 152832.92

north korea 2280000 1787301.58 144903.63

robert oppenheimer 24600 9244.44 18857.95

energy commission 130000 1570811.28 0

full story 4260000 9922398.58 0

interim committee 30200 370589.06 0

nuclear power 1120000 1361269.84 0

Table 57: S5 = {bank, money}

GoogleHack(10,15,5,1,30)

banking , 21.15

credit , 21.69

financial , 25.10

credit cards , 25.92

account , 31.42

note , 34.70
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Table 58: Algorithm 3 Results - S6 = {bank, money} Bi-grams

Bi-gram Observed (“word1 word2”) Expected (“word1 word2”) Log Liklihood Score

credit cards 4050000 1583068.78 3142845.08

msn money 165000 482065.25 0

paper money 152000 3086155.20 0
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4.6 Experimental Results of Sentiment Classification Algorithm

A total of 20 reviews consisting of movie reviews and automobile reviews were classified using the Senti-

ment Classification Algorithm. The reviews were picked from a web site that allows users to enter reviews

such as http : //www.automobilereviews.com/. The reviews were classified using different positive and

negative connotation pairs such as {{excellent, bad } { great , poor }}, {{excellent, poor } { good , bad }},

and {{excellent, poor} {good, bad} {great, mediocre}} as input.

Overall, the Sentiment Classification Algorithm performed well on Negative reviews, it correctly predicted

all 10 negative reviews as being negative. However, it performed rather poorly on positively oriented re-

views. The algorithm was only able to classify 5 out of the 10 positive reviews as being positive. However,

a couple of the reviews were almost neutral. A review is considered barely negative if the overall Semantic

Orientation (SO) score is between 0 and -1.

Tables 61 - 68 show the various phrases extracted form the reviews, and their respective SO scores. The

overall classification is given at the bottom of each table.

Table 61 shows some of the phrases extracted from a negatively classified Movie Review. The phrases are

sorted in ascending order of the SO of the phrase. It can be seen from the table that the most negative phrase

is criminally cruel, which is a good prediction, since the phrase has a sinister and extremely negative feel

to it. Other phrases such as serial killer, lonely martha, technical sloppiness and tasteless things also seem

to have a negative meaning that is correctly identified by the Sentiment Classification Algorithm. However,

certain terms like real person and well balanced which could be positive phrases are given negative SO

values. In addition, for some particular reason, the phrase dumb giveaway has been classified as a positive

phrase. The overall classification is negative, which is correct.

The next table, Table 62 shows the Semantic Orientation scores for a particular movie review over different

positive and negative connotations. The second column of Table 62 represents the SO for each phrase with

the connotations {{excellent, bad } { great , poor }} and the third column represents the SO of phrases with

the connotations {{excellent, poor } { good , bad }}. Overall, the SO score in Column 3 is slightly more

negative than the second column of SO scores, except for the phrases desperate need and urban legends.

One more interesting point worthy of noting is that the 4 phrases amy mayfield, best known, high points, and

thematic successor which have a positive SO score in the first column have negative scores in the second
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column of SO scores. This shows that with the variation of the positive and negative connotations, the SO

score varies. This review was also correctly classified as being a negative movie review.

Next, Table 65 gives the SO orientation of phrases over a positive movie review. Note that not all the

phrases that were extracted from the review are given. This particular example is every interesting in that

it shows that the use of multiple pairs of positive and negative connotations can change the overall SO of a

review. The second column of Table 65 represents the SO of this review with the single pair of connotations

{excellent, poor }. The phrases in this table are sorted on descending order based on the second column. The

resulting SO scores calculated by Sentiment Classification seem to be mixed. The SO of the review based

on the single pair of connotations resulted in the review being incorrectly classified as negative. Terms such

as perfect fit, believable individuals and good balance were given a positive SO score. However, the phrase

perfect fit was given a 0 SO score in the third column. Also note that the phrases believable individuals and

good balance which were correctly identified as being negative in the second column, have been incorrectly

identified as being negative in the multiple connotation pair experiment. However, the term amusing odyssey

received a very high score from the multiple connotation pair experiment. The overall classification by the

Sentiment Classification Algorithm with the single pair of connotations is negative. This is however, an

incorrect classification. The multiple connotation pairs experiment correctly predicted the review as being

positive. Hence, there results from using single pairs of connotations and multiple pairs of connotations can

be very unpredictable at times.

The next review classified by the algorithm is a positive automobile review. The phrases are given in Table

66. The pairs of connotations used are {excellent, poor} and {good, bad}. The algorithm performed well

here, and it correctly classified the review as being positively oriented. Some of the positive phrases include

proportioned qualities, renowned Quattro, aerodynamic masterpiece, overhead cam, audio controls and

technical enhancement. Except for the phrase audio controls, all the other positively classified phrases seem

to signify a positive meaning. The phrase renowned Quattro was assigned a positive SO of 1.24. This is a

very good result since Audi is known for it’s Quattro mechanism. the phrase wise investment was given a

negative SO score of -0.49, which is incorrect. Other than that, the phrase serious contender was also given

a negative SO score, which is also a questionable prediction. However, the phrase can be used as a positive

phrase or as a negative phrase The phrase serious contender as in, “the Audio is a serious contender to the

BMW”, should be considered as a positive thing. However, the same phrase in the sentence “the Audi is a
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Table 59: Sentiment Classification Algorithm Results - Accuracy

Google-Hack Classification Actual Classification

Pos Neg

Pos 5 0 5

Neg 5 10 15

Total # of Reviews 10 10

serious contender for the most unreliable car title”, is definitely not a positive use of the phrase. Hence, this

shows that there exists a certain amount of ambiguity in using 2-word phrases as a means of predicting the

SO of a paragraph of text.

89



Table 60: Phrases from a Negative Movie Review - Sorted Ascending on SO

Phrase SO(phrase)

{{excellent, poor }, { great , bad }}

criminally cruel -3.14

lonely martha -2.08

french kiss -1.85

criminally idiotic -1.75

serial killer -1.57

perfect normalcy -1.45

asinine ending -1.43

fake persona -1.39

as drastic -1.26

total loony -1.09

acceptable development -1.08

technical sloppiness -1.08

dive past -0.91

tasteless things -0.91

initial impetus -0.89

new film -0.87

hot affair -0.86

way underdeveloped -0.84

real person -0.78

first section -0.71

well balanced -0.3

incomparable joan -0.09

dumb giveaway 0.46

Predicted Semantic Orientation Negative
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Table 61: Phrases from a Negative Movie Review - Sorted Ascending on SO

Phrase SO(phrase) SO(phrase)

{{excellent, bad } { great , poor }} {{excellent, poor }, { great , bad }}

poor successor -1.93 -2

startling dearth -1.58 -1.62

instead wallowing -1.57 -1.84

critical revulsion -1.36 -1.52

galling fact -1.32 -1.46

lucrative hitchcock -1.28 12.14

huge stretches -1.22 -1.43

third rate -1.18 -1.36

somebody worthy -1.14 -1.28

just thrown -1.11 -1.25

completely defused -1.09 -1.22

downright embarrassing -1 -1.2

other plot -0.84 -1.03

actually spent -0.84 -1.06

amy protests -0.82 -1.03

potential suspects -0.77 -0.98

teen slasher -0.76 -0.99

desperate need -0.75 -0.7

thoroughly unengaging -0.73 -0.86

urban myths -0.73 -1.03

just used -0.73 -0.78

most notable -0.65 -1.06

first movie -0.63 -0.62

final cut -0.62 -0.89

urban legends -0.62 -0.48

own mystery -0.55 -0.84

brief history -0.25 -0.81

Predicted Semantic Orientation Negative Negative
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Table 62: Phrases from a Negative Movie Review - Sorted Ascending on SO

Phrase SO(phrase)

{{excellent, bad } { great , poor }}

old song -1.12

more scary -1.1

prior conviction -1.08

new meaning -1.08

evil creature -1.06

really stupid -1.04

little horror -0.93

conspicuously absent -0.91

not know -0.88

gruesome conclusion -0.88

old actor -0.87

satanic film -0.81

horrifying jagged -0.8

desolate countryside -0.79

supernatural abilities -0.66

scary movies -0.6

justin long -0.54

bizarre feeding 0.37

Predicted Semantic Orientation Negative
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Table 63: Phrases from a Negative Movie Review - Sorted Ascending on SO

Phrase SO(phrase)

{{excellent, bad } { great , poor }}

bad action -1.97

macabre stories -1.5

human savages -1.35

ridiculous dialogue -1.27

ethical arguments -1.15

dirty apes -1.09

completely absent -0.69

unimaginative narrative -0.64

smart chimps -0.52

predominant themes -0.33

vicious general 0.27

classic novel -0.23

Predicted Semantic Orientation Negative
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Table 64: Phrases from a Positive Movie Review - Sorted Descending on Column 2

Phrase SO(phrase) SO(phrase)

{excellent, poor} {{excellent, poor} {good, bad} {great, mediocre}}

perfect fit 0.35 0

believable individuals 0.1 -0.57

good balance 0.05 -0.29

critically acclaimed -0.09 -0.39

amusing odyssey -0.09 7.79

creative process -0.23 -0.56

dead dog -0.39 -0.52

top notch -0.41 -0.75

aptly named -0.53 -0.53

pleasurable journey -0.58 -0.61

well acted -0.59 -1.34

clearly illustrated -0.59 -0.83

screwball elements -0.61 -0.96

right note -0.71 -1.06

slow moving -0.75 -0.94

overall plot -0.84 -1.74

personal struggles -0.91 -1.63

screwball comedy -0.92 -1.36

melodramatic realism -0.93 -1.14

stereotypical hollywood -0.96 -1.95

new love -1 -0.84

lone exception -1.02 -1.85

sometimes harrowing -1.04 -1.52

final fate -1.06 -1.7

smart movie -1.39 -2.07

hilarious performance -1.48 -2.55

fake gun -1.68 -2.08

Predicted Semantic Orientation Negative Positive
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Table 65: Phrases from a Positive Automobile Review - Sorted Descending on SO

Phrase SO(phrase)

{{excellent, poor }, { good , bad }}

proportioned qualities 12.64

renowned Quattro 1.24

aerodynamic masterpiece 0.78

overhead cam 0.71

audio controls 0.7

interior Audi 0.48

solar sunroof 0.34

other luxury 0.23

technical enhancement 0.21

attractive features -0.25

somewhat customized -0.34

finally available -0.38

remote transmitter -0.4

standard A6 -0.4

new versions -0.49

wise investment -0.49

skeptical buyer -0.52

serious contender -0.7

Predicted Semantic Orientation Positive
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Table 66: Phrases from a Positive Automobile Review - Sorted Descending on SO

Phrase SO(phrase)

{{excellent, poor }, { good , bad }}

remote entry 1.11

Standard equipment 0.87

rear defroster 0.56

good dampening 0.43

antilock brakes 0.41

driver comfortable 0.35

reasonable price 0.2

optional leather 0.11

Interior space 0.08

likable car -0.02

compact sedan -0.11

nice range -0.23

very good -0.32

Resale value -0.45

long trips -0.55

small car -0.68

American cars -0.75

adequate pickup -0.75

entire car -0.81

not exceptional -0.82

not sporty -0.86

far smoother -1.01

rough road -1.02

especially generous -1.04

not bad -1.41

Predicted Semantic Orientation Barely Negative
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Table 67: Phrases from a Positive Automobile Review - Sorted Descending on SO

Phrase SO(phrase)

{{excellent, poor }, { good , bad }}

Superb handling 0.19

automotive pleasure 1.62

automatic climate 1.1

noteworthy selection 0.99

dual zone 0.94

automatic transmission 0.74

Rear passengers 0.63

precise responsiveness 0.15

optional side 0.1

free clutch 0.07

well equipped 0.06

satisfying package -0.18

asthetic beauty -0.21

selective car -0.33

block variable -0.38

Other features -0.44

not overlooked -0.58

joyful experience -0.61

accessible power -0.65

overall competance -0.82

real love -0.98

unusually elevated -1.09

different rpm -1.2

Predicted Semantic Orientation Barely Negative
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5 Related Work

5.1 Finding Sets of Related Words

The purpose of this thesis research is to automatically find sets of related words by using the WWW as a

source of information. Methods have been developed to identify sets of related words, however, almost all

these methods are based on extracting sets of words from a static corpora of text. In the next two sections we

discuss two methods, where the first method is used to identify sets of related words from a static corpora

of text, and the second methods is used to automatically construct a hypernym-labeled noun hierarchy.

5.1.1 CBC (Clustering By Committee [7, 8])

The algorithm known as Clustering By Committee (CBC) tries to ”cluster” words with similar meanings

together to create sets of related words [7, 8]. Take for example the word ”engine”. The word engine has

several possible meanings. For example it could refer to a tool like Google which is a “search engine” or it

can refer to an automobile which is ”run by” an engine. The algorithm will identify sets of words associated

with each of the different senses of engine, for example ”turbine, electric motor” versus ”software, search”.

This way, the CBC algorithm tries to discover concepts from text.

The CBC algorithm works by creating a centroid cluster by averaging the feature vectors of a subset of

cluster members. Take for example a cluster for U.S state names. Some of its features or rather the contexts

in which a U.S state name can appear can be capital, campaign in, governor of, senator for etc. The CBC

algorithm works by representing each word by a feature vector which corresponds to a context in which

a particular word can be used. Take the example ”threaten with ” as a context, if the word ”handgun”

occurred in this context, ”threaten with” is a feature of handgun. The features are assigned values by using

the PMI measure.

The algorithm has three phases. Phase 1 calculates each elements top k similar elements. Phase 2 constructs

a collection of tight clusters. The elements of each cluster form a committee. The CBC algorithm tries to

form as many committees as possible, ensuring that each new cluster is not very similar to any of the existing

clusters. The final Phase assigns each element to its most similar cluster. A parser known as Minipar was

used to parse about 1 GB of newspaper text. The contexts are then collected along with their frequency
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counts. PMI values can then be assigned to these sets.

There are a number of clustering algorithms other than CBC that have been used to cluster concepts. K-

means, Chameleon and Bisecting K-means are examples of other clustering algorithms. However, the CBC

algorithm out performs these algorithms when applied to find concepts.

5.1.2 Automatic Construction of a hypernym-labeled noun hierarchy [3]

The general idea behind the algorithm proposed in [3] to create a hypernym-labeled noun hierarchy lexicon

is based on extracting conjunctions of noun phrases and appositives from any corpus. The goal here is

to create a method that can automatically create a noun hierarchy regardless of the domain of the corpus

on which it is run. In this paper, the corpus used is the Wall Street Journal corpus. As an example of

a noun phrase conjunction, consider the phrase ”executive vice president and treasurer” [3] . Here, the

phrases ”executive vice president” and ”treasurer” could be considered as being semantically related. As an

example of an appositive, consider the phrase ”Northwest, an airline”. Here Northwest and airline can be

regarded as semantically related. Hence, for each noun, a vector is created by identifying all other nouns

that appeared with it as either a conjunction or as an appositive. In addition, the vector for each noun also

maintains the number of times a particular noun occurred as a conjunction or appositive the extracted noun.

Finally, to identify if two nouns are similar, the cosine between their respective vectors are calculated.

Once the vector for each noun has been created, a bottom-up clustering approach is used to create a single

tree structure containing a hierarchy of nouns [3]. The first step here is to treat each noun as an individual

node in the tree. Next, the two most similar nouns are grouped together with a common parent. This process

is repeated until a single common parent has been achieved.

The next step in the algorithm is to assign hypernyms to each node in the tree. This process is also automati-

cally implemented by extracting hypernyms by looking for patterns such as ”X, Y, and other Zs, where Z can

be considered as a hypernym of X and Y. The process of creating a vector for each noun is repeated, however,

in this case, for each noun, the list of hypernyms instead of nouns that appear with it are the dimensions of

the vector. Once these vectors have been created, to assign a hypernym to a node, first a common hypernym

vector is created by adding together the vectors of all its child nodes. Once this common hypernym vector

has been created for a node, the top 3 most common hypernyms in the vector are assigned as hypernyms for
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the node. This process results in a hypernym-labeled noun hierarchy.

5.2 Sentiment Classification

The area of sentiment classification has received a lot of attention in recent times. Initially, a lot of work

was focused on manually identifying words that convey sentiment. That is, a word can either have a positive

sentiment, a negative sentiment or no sentiment at all. For example, the word ”gleeful” has a positive

sentiment, and the word ”sadness” has a negative sentiment. Hence, both these words would be regarded

as affect words. Lexicons such as the Lasswell Value Dictionary and the General Inquirer Dictionary have

been created in order to identify a list of affect words and their dimensions [5].

However, the focus has now shifted into automatically identifying words that carry a sentiment in order

to automatically create a comprehensive lexicon of affect words. In addition to automatically creating a

lexicon of affect words, there has been a fair amount of research focused on automatically classifying a

particular word or text as having a positive or negative sentiment. In this chapter we focus on two papers

that concentrate on using the World Wide Web as a source of information to identify a lexicon of affect

words, and to identify the sentiment or semantic orientation of words.

5.2.1 ”Thumbs up or Thumbs down? Semantic Orientation Applied to Unsupervised Classification

of reviews” [10]

The Point wise Mutual Information - Information Retrieval (PMI - IR) algorithm uses the Semantic Orien-

tation (SO) of phrases to decide if a review has a positive or negative recommendation [10]. These reviews

can be automobile reviews, movie reviews, bank reviews and or even travel destination reviews.

The algorithm works in three steps. First, a part-of-speech tagger is used to identify words in the review

as adjectives, nouns, verbs or adverbs. Next, the algorithm calculates the semantic orientation of each

of the adjectives, nouns, verbs and adverbs extracted from the review by forming phrases out of adjacent

words. The algorithm then queries a search engine with the combination of positive and negative words

with each of these phrases to find the PMI measure, and thereby the Semantic Orientation. The final step is

to calculate the average of the semantic orientation calculated thus far, and assign a value to the review as

”recommended” or ”not recommended”.
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The base for the PMI-IR algorithm is the Pointwise Mutual Information (PMI) measure between two words.

PMI can be defined as the ratio between the probability that word1 and word2 co-occur (p(word1 word2))

and the probability that word1 and word2 occur if word1 and word2 are statistically independent (p(word1)

p(word2)) .

The equation below represents PMI,

PMI(word1, word2) = log
(p(word1 word2))

(p(word1)p(word2))
(9)

From the equation above it can be said that PMI measures the degree of statistical dependence between two

words. In the case of the PMI-IR algorithm for reviews, the Semantic Orientation is calculated by finding

the difference between PMI (phrase, ”excellent”) and PMI(phrase, ”poor”).

Here, the positive inference of a word is represented by ”excellent”. That is, it can be said that a word has a

”good association” when it is mentioned with excellent in the same sentence. The ”NEAR” operator from

the search engine AltaVista serves as the tool to find the probabilities. For example, take the query ”Hawaii”

NEAR ”excellent”. Hawaii is assumed as a travel destination. We find out if ”Hawaii” is a recommended

travel destination by looking at the number of the web pages in AltaVista that mention ”Hawaii” and ”ex-

cellent” in the same sentence or a sequence of 10 words. The same reasoning applies for ”Hawaii” and

”poor”. Hence, it can be seen that if ”Hawaii” is mentioned with ”poor” more often than with ”excellent”,

the semantic orientation will be negative.

Hence the Semantic Orientation for a phrase using the PMI-IR algorithm can be represented by the following

equation,

SO(phrase) = log2

hits(phrase NEAR “excellent′′) hits(“poor′′)

hits(phrase NEAR “poor′′) hits(“excellent′′)
(10)

A positive average of the calculated semantic orientation recommends the subject of the review, and a

negative average does not recommend the subject of the review.

5.2.2 Validating the Coverage of Lexical Resources for Affect Analysis [5]

A lexicon of affect words denoted by hand was created by (Subasic and Huettner 2000) [5]. Each entry

in the lexicon was described by the following 5 fields: a lemmatized word form, a part-of-speech tag, an
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affect class, a weight of centrality to that class, and a weight for the intensity of that word in that class. For

example, the entry for the word ”gleeful” in the lexicon contained the following:

”gleeful” adj happiness 0.7 0.6

”gleeful” adj excitement 0.3 0.6

This entry basically says that the word ”gleeful” is an adjective that belongs to the two affect classes happi-

ness and excitement, and it has a giher centrality or relatedness to the affect class ”happiness”. The last value

0.6 in both entries signifies the intersity of the word ”gleeful”. In order to validate the comprehensiveness of

this lexicon, Grefennn et al proposed the following method of automatically obtaining a list of affect words.

The idea here was certain phrases such as ”appears extremely ” can introduce a positive or negatively

charged word. For example, the sentence ”appears extremely good” introduces the positive word ”good”

and the phrase ”appears extremely bad” introduces the negative word ”bad”. Hence, 105 such patterns were

identified by first creating a list of 21 words such as appear, feel, are is and then identifying 5 words that

commonly follow the 21 words such as almost, extremely, so, too, very to create the input patterns. Once

these patterns were created, queries were issued to the WWW, specifically to the site www.alltheweb.com,

and 4000 snippets of text containing each pattern were extracted.

Once the snippets were extracted, a list of the words following each pattern and the frequency of occurrence

counts of each of these words were established. Around 15,000 unique inflected words were extracted by

these experiments. From this list of words, around 4746 words that at least had a frequency count of 3 were

manually tagged by the authors as being an affect word or not. Of these 4746 words, 2988 words were found

to be affect words. This list of affect words were then used as a gold standard, specifically, the Clairvoyance

Gold Standard.

Next, instead of manually classifying each of these words as being an affect word or not, the authors used

PMI-IR algorithm to classify the sentiment of each word. In this case, the authors used the approach

described in Turney and Littman (2003) where, multiple pairs of positive and negative words were used

to calculate the Semantic Orientation of each word returned earlier by extracting information returned by

www.alltheweb.com.
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6 Conclusions

The overall goal of this thesis research was to find sets of related words by using the World Wide Web as a

source of information. As a result, we developed 3 Algorithms that try to predict sets of related words.

The first algorithm was a simple baseline approach that depended on pattern matching techniques and fre-

quency counts of words to identify sets of related words.This algorithm performed reasonably well, and was

able to identify words that are related in meaning to the input set. However, since we depended on raw fre-

quency counts to rank the words from the most relevant word to the most irrelevant word, certain irrelevant

and noisy words were being pushed to the top. For example, in the set of words returned for the input set red

and yellow, the terms enterprise, software and solutions were regarded as the most relevant, and the terms

black and blue were regarded as the most irrelevant. One additional problem with Algorithm 1 was that it

did not allow bigrams (2-word phrases) as input, or as output. As bigrams were not accepted as input, to

find the set of related words for words such as George Bush and Bill Clinton, the set had to be broken into

Bush and Clinton. In addition, terms such as White House were split into separate words such as White and

house in the set of related words that were returned.

Algorithm 2 developed with the goal of addressing the issues raised above, and was basically an improve-

ment of Algorithm 1. Algorithm 2 allowed more than two words as input, and it also allowed bigrams as

output. In addition, we extended the Jiang and Conrath similarity measure such that it can be applied to hit

counts retrieved from the WWW [6]. This approach performed very well, and the amount of noise seen in

Algorithm 1 was reduced. In addition, the most relevant terms were often ranked higher than the irrelevant

terms. Once again, consider the example input set red and yellow. Algorithm 2 returned the words black

and blue as the most relevant words to red and yellow. The other terms such as enterprise, software and

solutions that were returned as the most relevant by Algorithm 1 were automatically discarded since those

terms did not meet the relevance cutoff score.

The addition of bigrams in the sets of related words introduced a new problem. Most of the bigrams re-

turned by Algorithm 2 were good collocations. However, occasionally the algorithm also returned really

bad collocations as results. For example, for the search terms sunny and cloudy, the bigram forecast text

was returned as a resulting related term. Obviously, this is not a good collocation. This problem lead us to

the development of Algorithm 3. Algorithm 3 was simply an extension of Algorithm 2, where it included a
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function that tries to identify bad collocations. We used the Log Likelihood score as a means of identifying

bad collocations.The results from Algorithm 3 were quite good, and bigrams such as forecast text that were

returned by Algorithm 2, were automatically discarded by Algorithm 3 as being a bad collocation.

Overall, the algorithms perform well for input sets that contain brand names such as toyota and ford in

comparison to more general input sets such as red and yellow. This can easily be explained by the fact that a

search engine such as Google is commercialized. The latter set returns web sites such as www.redlobster.com

and www.redbull.com, which are both commercial entities.

The final addition to this thesis was the extension of the PMI-IR algorithm proposed in (Turney 2003). The

PMI-IR algorithm was extended to include multiple pairs of positive and negative words, and Google was

used as the search engine, instead of AltaVista.

In conclusion, the methods proposed in this thesis research show that the World Wide Web can be used to

process natura language with good accuracy.
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7 Future Work

The three Algorithms developed in this thesis research that try to predict sets of related words by using

the WWW as a source of information show that the WWW can be used for processing text and extracting

valuable information. However, there are still many improvements that can be made to the Algorithms.

Some of the possible refinements and additions are outlined below:

7.1 Proximity Based Ranking

It would be interesting to see the result of adding a proximity score to the words in the set of related words.

The basic idea would be to weight the relatedness score of a word based on how close it appears to the

search terms in the parsed text. The set of words can also be restricted words that occur within a window

size of n words.

7.2 Web Page Rank Based Ranking

Since Google does a very nice job of finding the most relevant information to the search terms, it would

be interesting to see how the results of the set of related words would vary, if we based a particular word’s

ranking on the web pages that it appears on. For example, if we search for Toyota and if the word Honda

appeared on the first, second and fourth web page, it would be assigned an overall ranking of (1+2+4)/3.

The lower the score the higher the ranking for the word. This ranking can then be used to weight the overall

relatedness value.

7.3 Web Page Parser

Consider the use of a different and better web page content parser. Currently we used a freely available PERL

package HTML::TokeParser. This package performs fairly well in removing HTML tags etc, however, there

are occasions in which Java script variable names filter through the parser and appear in the set of related

words. These kind of words are difficult to discard since they occur with high co-occurrence frequencies.
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7.4 Restrict the links that are traversed

Another interesting improvement that is worth considering is restricting the links that are traversed. That is,

when Google Hack retrieves the content of a particular web page, it also traverses and retrieves the content

of the web pages that are linked to by that web page. Though this allows us to retrieve more information, it

can also lead us to a non-related web page. For example, a web page result for the search term “Toyota” can

also link to a bank that does financing of loans. Consider another example, where a particular search terms

retrieves a web page that sells a lot of products. Such a web page can link to many other web pages that sell

different products. For example, if a query for a product such as an I-pod retrieves a commercial web site

such as Amazon, it can easily lead us to many other products that are currently daily deals on Amazon. This

can lead to irrelevant information. Hence, resulting in irrelevant words being included in the set of related

words. Therefore, it would be interesting to develop some sort of technique to distinguish between relevant

and non-relevant links.

7.5 Integrate Multiple Search Engines

One addition refinement to consider for Google Hack would the use of multiple search engines. Yahoo

Incorporated has released a Yahoo API, which like the Google API, allows programs to interact with their

database and retrieve web pages . Hence, by using the Google API and the Yahoo API, the resulting sets can

be compared over slightly different sources of information. One additional advantage to using the Yahoo

API is the query limit by Yahoo is 5 times more than Google. Google restricts the number of queries per

API key to a 1000 queries a day . Whereas, Yahoo allows 5000 queries per day per API key .

7.6 Restrict Web Page Domain

The final suggestion for improvement would the ability to restrict Google’s search to a web site. For exam-

ple, if we restrict Google’s search to sites that contain more academic text rather than commercialized web

pages, the results for certain non-specific input sets might improve.

The improvements suggested in this section are very feasible, and we hope to continue to try and improve

the quality of the sets of related words that are returned by Google Hack.
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