
Proceedings of SemEval-2016, pages 1346–1350,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

UMNDuluth at SemEval-2016 Task 14:
WordNet’s Missing Lemmas

Jon Rusert & Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN USA

{ruse0008,tpederse}@d.umn.edu

Abstract

This paper presents a solution to Semeval
2016 Task 14 which asks for a system that is
able to insert new lemmas into WordNet. Our
system aims to do this by overlapping words in
the definitions of the to-be-inserted lemma and
all senses in WordNet. This paper includes
the results of our system and also includes the
baseline provided by Task 14, with our system
scoring higher than the random baseline, and
lower than the first word baseline.

1 Introduction

Semeval 2016 Task 14 called for a system that
could help enrich the WordNet taxonomy with new
words and their senses. This translates to inserting
new lemmas and senses that were previously not in
WordNet into their (human perceived) correct place.
The system was also to determine whether a sense
would merge into the chosen synset or attach itself
as a new hyponym. Task 14 allowed for one of two
types of systems:

1. A resource-aware system, which could use any
dictionary, or

2. Constrained, which used any resource other
than a dictionary.

We opted with the former, resource-aware. While
any dictionary could be used, we chose to use the
definitions provided in the data set from Wiktionary,
along with definitions from WordNet.

2 Methods

Our system solves the given problem in four steps:

1. Pre-processing: Acquire all necessary data
from WordNet and store it in one step. The
data needed includes each word’s definitions,
hypernyms, hyponyms, and synsets.

2. Overlaps: Score each sense on how well it
matches each new lemma.

3. Refining chosen sense: Verify that the sense
chosen in overlaps was more deserving than the
other senses of the same lemma.

4. Determining attach or merge: Decide whether
or not the new lemma should be attached to the
synset of the chosen sense, or merged into it.

2.1 Pre-processing

As the implementation of our system was underway,
it was clear that the system would be making a large
amount of calls to WordNet. As we accessed more
and more data from WordNet1, our program took
longer to finish each time which created a problem
for testing out changes quickly. In response, the pre-
processing method was created.

Pre-processing aims to consolidate all calls to
WordNet in the beginning of the program, so no
duplicate calls need to be made. It does this by
first obtaining all nouns and verbs from WordNet
and storing them in their respective arrays (one ar-
ray for nouns and one for verbs). Pre-processing

1http://search.cpan.org/dist/WordNet-
QueryData/QueryData.pm

1346



then iterates through each word and retrieves each
sense of each word, since the senses are what will
determine which synset the new lemma will be
merged or attached to later on. The senses are
stored in a separate array, which is iterated through,
one by one, in the Overlap step to obtain a score
for each sense. Next, it iterates through each
sense and obtains that senses gloss. Pre-processing
cleans each gloss by making all letters into lower-
case, removing punctuation, and also removing this
list of common stop words (the—is—at—which—
on—a—an—and—or—up) from each gloss. This
list of stop words was determined by finding com-
mon, less helpful words in the trial/test data. These
stop words were found by outputting what words
were being overlapped, and these appeared the most
frequently even though they rarely added positively
to the overlaps scores. It then stores the cleaned
gloss in a hash that maps the gloss to the correspond-
ing sense. Finally, Pre-processing obtains the hy-
pernyms, hyponyms, and synsets for each sense and
stores them in their respective hashes (hypernyms,
hyponyms, and synsets).

2.2 Overlap

The Overlap step is the main step in our system
for determining where the new lemmas would be
inserted into WordNet. Ideas were borrowed from
both (Lesk, 1986) and Extended Gloss Overlaps
(Banerjee and Pedersen, 2003).

2.2.1 Lesk
Lesk overlaps work by comparing two words’

definitions and seeing if words in those definitions
overlap onto one another. Words that share more
overlaps score higher with the Lesk algorithm and
therefore are more similar. However, one weakness
with the Lesk algorithm is that different dictionaries
might define even the same word differently, which
means the number of overlaps is highly dependent
on the dictionary used.

2.2.2 Extended Gloss Overlaps
To address the room for error in the Lesk over-

laps, Extended Gloss Overlaps (EGO) incorporate
not only the definitions of each word being com-
pared, but also the definitions of the hypernyms and
hyponyms of each word. EGOs use WordNet to re-

trieve the hypernyms/hyponyms and their respective
definitions for scoring. It was after EGOs that our
system of scoring and calculating overlaps is based
on.

2.2.3 Overlap Step
Our Overlap step works by iterating through each

sense obtained from WordNet and creating an ex-
panded sense by adding information from each
sense. The expanded sense is then compared to the
to-be-inserted lemmas creating a score to determine
how alike the terms are. It should be noted that only
corresponding parts of speech were compared as to
improve time and not cause nouns to be mapped to
verbs and vice versa.

For each sense to be compared, the expanded
sense was created. First the sense’s gloss was ob-
tained from the hash initialized in pre-processing.
Next the sense’s immediate hypernyms and their
glosses were retrieved and added to the expanded
sense. Likewise, the sense’s immediate hyponyms
and their glosses were retrieved and added to the
expanded sense. Finally, the sense’s correspond-
ing synset and their corresponding glosses were re-
trieved and added to the expanded sense. Next be-
fore any word overlaps could be processed, the new
lemma’s gloss needed to be cleaned up.

To provide clarity, we will act as if ink (taken from
provided trial data) is being inserted into WordNet.
For reference ink’s provided definition was “Tattoo
work.” The lemma was cleaned up following the
same steps as the WordNet glosses followed in the
pre-processing step. Ink’s definition would now be-
come “tattoo work”, since all letters are made low-
ercase. However, since ink did not contain any stop
words on the list, none were removed.

Now the system steps through each word in
the lemma’s gloss and checks for overlaps in the
glosses of the expanded sense’s gloss, each hyper-
nym’s gloss, each hyponym’s gloss, and finally each
synset’s gloss. If the word being checked is part
of the lemma of each sense, it receives a bonus
score. The bonus score was originally set to (10
* the length of the lemma) but was later changed
to (2 * the length of the lemma). This bonus was
limited to compound words of at most two words.
The decision to limit the length of compound words
was arrived at since larger compounds like Standing-

1347



on-top-of-the-world would score higher than World-
wide just because they were much longer com-
pounds, even though they occur less often.

Since ink’s definition contains the word tattoo,
any sense with tattoo in its lemma will receive the
bonus. This means that tattoo#n#̇.. (i.e. any noun
sense of tattoo) would receive a bonus. The same
holds true for work#n#̇.. (i.e. any noun sense
of work). The overlapping of words were also
weighted by the number of characters present in
those words (or more simply length of those words),
so longer words carried a heavier weight in the score
than shorter ones. As with ink, when the word tat-
too, in the definition of ink, overlaps with another
compared word it adds 6 to the score since tattoo
contains 6 letters, whereas work would only add 4
to the score.

The final score of the sense was calculated by di-
viding the number of overlaps by the total length of
words from the new term.

score = (SenseLaps + HypeLaps

+ HypoLaps + SynsLaps

+ BonusLapsTotal)/GlossLength

(1)

The sense with the highest score at the end was pre-
sumed to be the chosen sense to either attach or
merge to.

Our system determined that ink belonged to tat-
too#n#3 whose definition from WordNet was, “the
practice of making a design on the skin by pricking
and staining”. Since ink had a short definition pro-
vided from Wiktionary, the largest score came from
the fact that tattoo gained the bonus score from over-
lapping with the definition. The correct answer pro-
vided in the key was tattoo#n#2, the reason for the
differences was most likely the fact that our system
did not identify present participle words, since tat-
too#n#2 contained the word “tattooing”.

2.3 Refining the chosen sense

Now that the sense had been chosen, a new measure
was implemented to make sure that, in fact, the cor-
rect sense had been chosen. This step was added
since it was often the case that the first sense of a
word was a better choice, however, a different sense
of the same word would tie causing it to replace

the first sense. When refining the sense, the system
starts by assuming the first sense of the chosen word
was the correct sense. This means that even though
the system chooses tattoo#n#3 for ink, Refine sense
resets it to tattoo#n#1 until evidence shows that tat-
too#n#3 is more deserving.

The system then performs a mini overlap, simi-
lar to the one above, limiting to just the senses of
the chosen lemma and their glosses. If a sense other
than the first one, had more words similar to the new
term than the first one, then it would become the
chosen sense of the word. The chosen sense is then
cemented as the correct sense and the system moves
on to merging or attaching.

2.4 Merge or Attach
The smallest amount of time (in developing this pro-
gram) was spent on the problem of merging or at-
taching. This was due to the limited amount of time,
and that time being focused more on determining the
correct word over whether it should be merged or
attached. Our system determines whether the term
should be merged or attached by looking at the fre-
quency of the chosen sense as obtained from the
WordNet frequency() function. If the frequency was
low (if it was equal to zero), then it was assumed
to be a rarer sense so the program would attach the
new term. If it was higher (greater than zero), then
the opposite was assumed and merge was chosen.
Our test data results are shown in the following con-
tigency table.

system
merge attach

merge 7 25 32

ke
y

attach 121 447 568
128 472 600

ink was chosen to be attached to tattoo#n#3 which
means the frequency was greater than zero.

3 Results

On the 600 word test data set that was provided for
SemEval Task 14, our system (UMNDuluth Sys 1)
scored as shown in Table 1.

The SemEval14 organizers also included a base-
line score on the data set, which is in the table un-
der baseline. As mentioned in the methods section,

1348



System Wu & Palmer Lemma Match Recall F1
UMNDuluth Sys 1 (2 bonus) 0.3395 0.0984 0.9983 0.5067

UMNDuluth Sys 2 (10 bonus) 0.3857 0.1467 1 0.5567
UMNDuluth Sys 3 (25 bonus) 0.3802 0.2117 1 0.5509
UMNDuluth Sys 4 (50 bonus) 0.3809 0.2100 1 0.5517
UMNDuluth Sys 5 (100 bonus) 0.3735 0.0517 1 0.5439
UMNDuluth Sys 6 (500 bonus) 0.3791 0.2083 1 0.5498
Baseline: First word, first sense 0.5139 0.415 1 0.6789

Baseline: Random synset 0.2269 0 1 0.3699
Median of Task14 Systems 0.5900

Table 1: SemEval Task 14 Scores

originally, our system weighted definitions that over-
lapped with senses’ words as 10 times the length
of the word. This was changed close to the end
of development as it looked as it might give com-
pound words too high of a score to reach with non-
compound words. The 2 times amount was what was
submitted and scored above. However, the 10 times
amount was run against the same data and scored
labeled by UMNDuluth Sys 2.

The Wu & Palmer Similarity, as defined by Se-
mEval16 Task 14 task organizers2, is calculated by
finding the “similarity between the synset locations
where the correct integration would be and where
the system has placed the synset.” This score is be-
tween 0 and 1. The Lemma Match, again defined by
the task organizers, is scored by, “the percentage of
answers where the operation is correct and the cor-
rect and system-provided synsets share a lemma.”
Recall refers to the percentage of lemmas attempted
by the system. If 600 were attempted out of 600,
then recall equals one.

4 Discussion

As the system was being built, we had the idea to
originally use more information from Wiktionary3.
However, when calls to Wiktionary were added in
the system, the system slowed down to a halt, taking
sometimes over 5 minutes per new lemma, even with
the pre-processing. Since it was very impractical to
wait this long, additional calls to Wiktionary were
taken out of the program.

Another functionality that was thought to be used
2http://alt.qcri.org/semeval2016/task14
3http://search.cpan.org/˜clbecker/

Wiktionary-Parser-0.11/README.pod

was the idea of adding in the level of the word in
WordNet to the calculations. The level of each word
in WordNet was thought to be used in the calculation
of merge/attach. Unfortunately, the calls for this in-
formation to WordNet slowed the system to a halt at
times, this meant the same fate as extra Wiktionary
calls.

As seen in Table 1, our submitted system had a re-
call of less than one. This error most likely occurred
because of time constraints. Since the system had to
process 600 words, the 600 word file was split four
ways to allow four instances of the system to process
the data at once. In the splitting of the word file, a
word was most likely lost.

Time constraints also was the reason of the dif-
ference between UMNDuluth Sys 1 and Sys 2. As
stated in the results, Sys 1 had a bonus overlap multi-
plier of two while Sys 2 had a bonus of 10. The two
multiplier was tested only on a small set of words,
and little to no difference appeared between Sys 1
and Sys 2. However, it was discovered after the test
data was turned in that the bonus multiplier scores
higher when it is set to 10 as it is in Sys 2.

When seeing the improvement that occurred be-
tween Sys 1 and Sys 2, more tests were run by in-
creasing the bonus. These are shown in Sys 3-6,
which appear to peak between the 25 and 50 mul-
tiplier.

In the future, it would be interesting to see how
additional Wiktionary data could help improve the
choice of the system.

1349



References
Satanjeev Banerjee and Ted Pedersen. 2003. Extended

gloss overlaps as a measure of semantic relatedness.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, IJCAI’03, pages 805–
810, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: How to tell a pine
cone from an ice cream cone. In Proceedings of the
5th Annual International Conference on Systems Doc-
umentation, SIGDOC ’86, pages 24–26, New York,
NY, USA. ACM.

1350


