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Abstract

Statistical methods for automatically identifying de�
pendent word pairs �i	e	 dependent bigrams� in a cor�
pus of natural language text have traditionally been
performed using asymptotic tests of signi
cance	 This
paper suggests that Fisher�s exact test is a more ap�
propriate test due to the skewed and sparse data sam�
ples typical of this problem	 Both theoretical and
experimental comparisons between Fisher�s exact test
and a variety of asymptotic tests �the t�test� Pearson�s
chi�square test� and Likelihood�ratio chi�square test�
are presented	 These comparisons show that Fisher�s
exact test is more reliable in identifying dependent
word pairs	 The usefulness of Fisher�s exact test ex�
tends to other problems in statistical natural language
processing as skewed and sparse data appears to be the
rule in natural language	 The experiment presented in
this paper was performed using PROC FREQ of the
SAS System	

Introduction
Due to advances in computing power and the increas�
ing availability of large amounts of on�line text the
empirical study of human language has become an in�
creasingly active area of research in both academic and
commercial environments�
Statistical natural language processing �NLP� re�

lies upon studying large bodies of text called corpora�
These methods are useful because the unaided human
mind simply cannot notice all important linguistic fea�
tures� let alone rank them in order of importance� when
dealing with large amounts of text�
The di	culty in studying human language based

upon samples from text is that despite having billions
of words on�line it is still di	cult to collect large sam�
ples of certain events as many linguistic events very
rarely occur� Many features of human language ad�
here to Zipf
s Law �Zipf ����� Informally stated� this
law says that most events occur rarely and that a few
very common events occur most of the time�
Statistical NLP must inevitably deal with a large

number of rare events� Typical NLP data violates the
�This research was supported by the O�ce of Naval Re�

search under grant number N�����������	

large sample assumptions implicit in traditional good�
ness of �t tests such as Pearson
s X�� the Likelihood
ratio G� and the t�test� When this occurs the results
obtained from these tests may be in error� An alterna�
tive to these statistics is Fisher
s exact test� which as�
signs signi�cance by exhaustively computing all prob�
abilities for a contingency table with �xed marginal
totals�
This paper presents an experiment that compares

the e�ectiveness of X�� G�� the t�test and Fisher
s ex�
act test in identifying dependent bigrams� When these
results are di�erent it is shown why Fisher
s exact test
gives the most reliable signi�cance value� All of these
tests can be conveniently performed using the SAS Sys�
tem �SAS Institute ������

Lexical Relationships

A common problem in NLP is the identi�cation of
strongly associated word pairs� A bigram is any two
consecutive words that occur together in a text� The
frequency with which a bigram occurs throughout a
text says something about the relationship between the
words that make up the bigram� A dependent bigram
is one where the two words are related in some way
other than what would be expected purely by chance�
Intuitively appealing examples of dependent bigrams
include major league� southern baptist and �ne
wine�
The challenge in identifying dependent bigrams is

that most bigrams are relatively rare regardless of the
size of the text� This follows from the the distribu�
tional tendencies of individual words and bigrams as
described in Zipf
s Law �Zipf ����� Zipf found that if
the frequencies of the words in a large text are ordered
from most to least frequent� �f�� f�� � � � � fm�� these fre�
quencies roughly obey� fi � �

i
� The implications of

Zipf
s law are two�sided for statistical NLP� The good
news is that a signi�cant proportion of a corpus is made
up of the most frequent words� these occur frequently
enough to collect reliable statistics on them� The bad
news is that there will always be a large number of
words that occur just a few times�
As an example� in a ����� word subset of the
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Figure �� Distribution of single words

ACL�DCI Wall Street Journal corpus �Marcus et al�
���� there are ����� distinct words and ����� dis�
tinct bigrams� Of the distinct words� �� percent of
them occur only once and �� percent of them occur
�ve times or less� Of the distinct bigrams� �� percent
occur once and �� percent of them occur �ve times or
less� This data is represented graphically in Figures
� and �� As a result of these distributional tenden�
cies� data samples characterizing speci�c bigrams are
terribly skewed� This kind of data violates the large
sample assumptions regarding the distributional char�
acteristics of a data sample that are made by asymp�
totic signi�cance tests�

Representation of the Data

To represent the data in terms of a statistical model�
the features of each object are mapped to random vari�
ables� The relevant features of a bigram are the two
words that form the bigram�
If each bigram in the data sample is characterized

by two features represented by the binary variables X
and Y� then each bigram will have one of four possible
classi�cations corresponding to the possible combina�
tions of these variable values� In this case� the data is
said to be cross�classi�ed with respect to the variables
X and Y� The frequency of occurrence of these classi�
�cations can be shown in a square table having � rows
and � columns� The frequency counts of each of the �
possible data classi�cations in Figure  are denoted by
n��� n��� n��� and n���
The joint frequency distribution of X and Y is de�

scribed by the counts fnijg for the data sample repre�
sented in the contingency table� The marginal distri�
butions of X and Y are the row and column �equation
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Figure �� Distribution of bigrams

�� totals obtained by summing the joint frequencies�
The row variable is denoted ni� and the column vari�
able n�j � The subscript � indicates the index over
which summing has occurred�

ni� �
JX

j��

nij n�j �
IX

i��

nij ���

More generally� if there are I possible values for the
�rst variable and J possible values for the second vari�
able� then the frequency of each classi�cation can be
recorded in a rectangular table having I rows and J
columns� Each cell of this table represents one of the
I�J possible combinations of the variable values� Such
a table is called an I � J contingency table�

X

Y
industry �industry totals

oil n��� �� n��� ��� n��� ���
�oil n��� �� n��� ������ n��� ������

totals n������ n��������� n���������

Figure � Contingency Table

As shown in Figure � in order to study the associ�
ation �i�e�� degree of dependence� between the words
oil and industry� the variable X is used to denote
the presence or absence of oil in the �rst position of
each bigram� and Y is used to denote the presence or
absence of industry in the second position�

Signi�cance Testing
In both exact and asymptotic signi�cance testing� a
probabilistic model is used to describe the distribu�
tion of the population from which the data sample



was drawn� The acceptability of a potential popula�
tion model is postulated as a null hypothesis and that
hypothesis is tested by evaluating the �t of the model
to the data sample� The �t is considered acceptable if
the model di�ers from the data sample by an amount
consistent with sampling variation� that is� if the value
of the metric measuring the �t of the model is statis�
tically signi�cant�
The steps involved in performing a signi�cance test

are listed below and discussed in the subsections that
follow� Both exact and asymptotic signi�cance tests
follow steps � and ��

�� Select an appropriate sampling plan�

�� hypothesize a population model�

� select a summary statistic to use in testing the �t of
the hypothesized model to the sampled data� and

�� assess the statistical signi�cance of the model� de�
termine the probability that the data came from a
population described by the model�

Steps  and � are more commonly associated with
an asymptotic signi�cance test� An exact test does not
use a goodness of �t statistic but the notion of assessing
signi�cance still remains� The di�erences between the
two approaches will be discussed in more detail shortly�

Sampling Plan

In order for a signi�cance test to yield valid results the
data must be collected from the population via a ran�
dom sampling plan� The sampling plan assures that
each object in the data sample is selected via indepen�
dent and identical trials� The sampling plan together
with the population characteristics can be used to de�
�ne the likelihood of selecting any particular sample�
In the experiment for this paper a multinomial sam�

pling plan was used� In multinomial sampling the over�
all sample size n�� is determined in advance and each
object is randomly selected from the population to be
studied� Given this� the probability of observing a par�
ticular frequency distribution fnijg in a randomly se�
lected data sample is shown in equation ���� where the
pij 
s are the population characteristics specifying the
probability of classi�cation �i� j��

P �fnijg� � n���QI

i��

QJ

j�� nij�

IY
i��

JY
j��

p
nij

ij ���

The data in Figure  was sampled using a multi�
nomial sampling plan� This data is used to test the
bigram oil industry for association� When this data
was sampled� the only value that was �xed prior to the
beginning of the experiment was the total sample size�
n��� which was equal to ���������

Hypothesizing a Model

The population model used to study association be�
tween two words� where the two words are represented

by the binary variables X and Y� is the model for in�
dependence between X and Y�

P �x� y� � P �x�P �y� ��

If the model for independence �ts the data well as
measured by its statistical signi�cance� then one can
infer from this data sample that these two words are
independent in the larger population� The worse the
�t� the more dependent the words are judged to be�
Using the notation introduced previously� the pa�

rameters of the model for independence between two
words �i�e�� the words oil and industry in Figure �
are estimated as follows�

P �x� �
ni�

n��
P �y� �

n�j

n��
���

In signi�cance testing� the population model is the
null hypothesis that is tested� This hypothesis can only
be rejected or accepted� it can not be proven true or
false with absolute certainty� The signi�cance assigned
to the hypothesis indicates how likely it is that the
sample was drawn from a population speci�ed by that
model�

Goodness of Fit Statistics A goodness of �t statis�
tic is used to measure how closely the counts observed
in a data sample correspond to those that would be ex�
pected in a random sample drawn from a population
where the null hypothesis is true�
In this section� we discuss three metrics that have

been used to measure the �t of the models for associ�
ation� the likelihood ratio statistic G�� Pearson
s X�

statistic and the t�statistic� The distribution of each
of these statistics can be approximated when the hy�
pothesis is true and certain other conditions hold� they
therefore can be used in asymptotic signi�cance test�
ing� In Fisher
s exact test a goodness of �t statistic is
not employed�

G� and X� These statistics measure the divergence
of observed �nij� and expected �mij� sample counts�
where the expectation is based on a hypothetical pop�
ulation model� These statistics can be conveniently
computed using PROC FREQ of the SAS System�
The �rst step in calculating either G� orX� is to cal�

culate the expected counts given that the hypothetical
population model is correct� In the model for indepen�
dence� maximum likelihood estimates of the expected
counts are formulated as in equation ��� where mij

denotes the expected count in contingency table cell
�i� j��

mij �
ni�n�j

n��
���

Using this formulation�G� and X� are calculated as�



G� � �
X
i�j

nij log
nij

mij

X� �
X
i�j

�nij �mij��

mij

���
When the hypothetical population model is the true

population model� the distribution of both G� and X�

converges to �� as the sample size grows large �i�e�� the
�� distribution is an asymptotic approximation for the
distributions of G� and X��� More precisely� X� and
G� are approximately �� distributed when the follow�
ing conditions regarding the random data sample hold
�Read and Cressie ������

�� the sample size is large�

�� the number of cells in the contingency table repre�
sentation of the data is �xed and small relative to
the sample size� and

� the expected count �under the hypothetical popula�
tion model� for each cell is large�

�Dunning ���� shows that G� holds more closely to
the �� distribution than does X� when dealing with
bigram data� However� as pointed out in �Read and
Cressie ������ it is uncertain whether G� holds to the
�� distribution when the minimumof the expected val�
ues in a table is less than ���� Since low expected
frequencies appear to be the rule in bigram data �e�g�
columnm�� in Figure �� we suggest that the reliability
of the �� approximation to G� could be in question�

the t�statistic The t�statistic �equation �� measures
the di�erence between the mean of a randomly drawn
sample �x� and the hypothesized mean for the popu�
lation from which that sample was drawn ����� This
di�erence is scaled by the variance of the population�
When the variance of the population is unknown and
the sample size is large� standard statistical techniques
allow that the population variance can be estimated
by the sample variance �s�� which is in turn scaled by
the sample size �n��

t �
x� ��q

s�

n

���

�Church et al� ����� show how the t�statistic can be
used to identify dependent bigrams� The data sam�
ple is produced through a series of Bernoulli trials
that record the presence or absence of a single bigram�
Given this sampling plan the sample mean is de�ned
to be the relative frequency of the bigram � n��

n��
� and

the sample variance is roughly approximated by that
same relative frequency� The t�statistic can then be
rewritten as in equation ��

t �
n��
n��

� n��n��
n���q

n��
n���

�
n�� �m��p

n��
���

In the t�test� signi�cance is assigned to the t�statistic
using the t�distribution� which is equal to the stan�
dard normal distribution in large sample experiments�
This approach to assigning signi�cance is based on the
assumption that the sample means are normally dis�
tributed� This assumption is shown to be inappropri�
ate for bigram data in �Dunning �����
The formulation of �Church et al� ����� is equivalent

to a one�sample t�test� PROC TTEST of the SAS
System computes a two sample t�test and was not used
to compute the t�statistic values� Instead a separate
data step was created to calculate the value in equation
� and signi�cance was assigned to that value using the
PROBT function�

Assessing Statistical Signi�cance

If the test statistic used to evaluate a model has a
known distribution when the model is correct� that dis�
tribution can be used to assign statistical signi�cance�
For X� and G� the �� distribution is used while the
t�test uses the t�distribution� These serve as reliable
approximations of distributions of the test statistics
when certain assumptions hold� However� as has been
pointed out� these assumptions are frequently violated
in bigram data�
An alternative to using a signi�cance test based on

an approximate distribution is to use an exact signi��
cance test� In particular� for bigram data Fisher�s ex�
act test is recommended� This test can be performed
using PROC FREQ in the SAS System�

Fisher�s Exact Test

Rather than using an asymptotic approximation of the
signi�cance of observing a particular table� Fisher
s ex�
act test �Fisher ���� computes the signi�cance of an
observed table by exhaustively computing the proba�
bility of every table that would lead to the marginal
totals that were observed in the sampled table�
The signi�cance values obtained using Fisher
s exact

test are reliable regardless of the distributional charac�
teristics of the data sample� However� when the num�
ber of comparable data samples is large� the exhaustive
enumeration performed in Fisher
s exact test becomes
infeasible� In �Pedersen et al� ����� an alternative
test� the exact conditional test� is discussed for tables
where Fisher
s exact test is not a practical option�
When performing Fisher
s exact test in a �� � con�

tingency table the marginal totals n�� and n�� and
the sample size n�� are �xed at their observed value�
Given this� the value of n�� determines the counts in
n��� n�� and n��� All of the possible �� � tables that
adhere to the �xed marginal totals are generated and
the probability of each table is computed using the hy�
pergeometric distribution�
Given that all the marginals and the sample size

is �xed the hypergeometric probability of observing
a particular frequency distribution fn��� n��� n��� n��g
can be computed using equation �� Hypergeometric



probabilities can be computed with the SAS System
using the PROBHYPR function� PROBHYPR was
used to compute the individual table probabilities the
author added to the PROC FREQ output in the ap�
pendix and the data plotted in Figure ��

P �
�

n���n���n���n���
� n���n���n���n���

n���
���

The original problem that Fisher used to present
this test has gone down in statistical lore as the Tea
Drinker�s Problem� A woman claimed that by tasting a
cup of tea with milk she could determine if the milk or
tea had been added �rst� An experiment was designed
where eight cups of tea were mixed� four cups with the
milk added �rst and four with the tea added �rst� The
eight cups of tea were presented to the woman in ran�
dom order and she was asked to divide the � cups into
two sets of �� one set being those cups where milk was
added �rst and the other those where tea was added
�rst�
Given that the lady knew that there were � cups of

tea and that � of the cups had the tea added �rst and
� had the milk added �rst it is clear that all marginal
totals should be �xed at � and the sample size �xed at
�� Given this there are � possible outcomes to the ex�
periment �n�� � �� �� �� � and ��� Figure � shows the
distributions of the hypergeometric probabilities asso�
ciated with those � possible tables� This problem can
be represented using a � � � contingency table where
variable X represents the actual order of mixing and
Y represents the order determined by the tea drinker�
The � possible contingency tables and associated test
values as generated by PROC FREQ are shown in the
appendix�

Interpreting the Tea Drinker�s Problem

The probabilities that result from Fisher
s exact test
indicate how likely it is that the observed table was
drawn from a population where the null hypothesis is
true� In other words� the test indicates how likely it
would be to randomly sample a table more supportive
of the null hypothesis than the observed table� In the
Tea Drinker
s Problem the null hypothesis is that the
tea drinker is guessing and does not really know if the
milk or tea was added �rst� This is the hypothesis of
independence and is the same hypothesis used in the
test for association that identi�es dependent bigrams�
Fisher
s exact test can be interpreted as a one sided

or two sided test� PROC FREQ shows all of the pos�
sible results� two�sided� right�sided and left�sided�
A one sided test can be either right or left sided�

A right sided exact test is computed by summing the
hypergeometric probabilities of all the tables with �xed
marginal totals n�� and n�� whose cell count in n��
is greater than or equal to the observed table� As an
example consider the Tea Drinker
s Problem where n��
� � This implies that the tea drinker found  of the
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Figure �� n�� � �� n�� � �� n�� � �

� cups where milk had been added �rst� To compute
the signi�cance of the right sided test the probabilities
of the tables where n�� �  ������ and n�� � � ������
are summed� In this interpretation it is determined
how likely it is that the tea drinker could perform more
accurately in the experiment if it was repeated� A right
sided test shows how likely it would be to randomly
sample a table where n�� is greater than or equal to
the observed value when sampling from a population
where the null hypothesis is true� The probability of
being more accurate �i�e� the right sided probability�
is ��� which leads to the conclusion that she is not
guessing and has some idea of whether the milk or tea
was added �rst�

The left sided test is computed in the same fashion�
except that it sums the probabilities of the tables where
the count in n�� is less than or equal to the observed
value� Using the same example where n�� �  then
the probabilities of the tables where n�� �  �������
n�� � � ������� n�� � � ������� and n�� � � ������ are
summed resulting in a left sided value of ����� The left
sided test tells how likely it would be for the tea drinker
to perform less accurately in the same experiment if it
was repeated� Again� this is a fairly strong indication
that the tea drinker is not simply guessing�

The two sided exact test is computed by summing
the hypergeometric probabilities of all tables with the
same �xed marginals but whose probabilities are less
than or equal to the probability of the observed ta�
ble� Consider yet again the case where n�� � � The
probability of this table is ����� The tables that have
a probability less than this are those where n�� � �
������� n�� � � ������ and n�� � � ������� The sum of
these probabilities is ���� which is the result of the two
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Figure �� n�� � ������ n�� � ��� n�� � ��

sided exact test� The question answered here is how
probable would it be for the tea drinker to guess less
accurately than was observed� In more general terms
this is asking the question how likely would it be to
randomly sample a table where the probability of ob�
serving a table where n�� was equal to or less than
the observed value when sampling from a population
where the hypothesis of independence is true� On the
surface this is a less convincing demonstration of the
tea drinker
s skill� however� it still provides reasonable
evidence to support the conclusion that the tea drinker
is not guessing�

Interpreting the Bigram Experiment

The sample sizes in the bigram data are quite a bit
larger than those in the Tea Drinker
s Problem� In
addition� the bigram data is much more skewed� How�
ever� Fisher
s exact test remains a practical option
since the number of possible tables is bound by the
smallest marginal total �i�e� the smallest row or col�
umn total� which for bigram data is associated with
the overall count of the �rst or second word in the bi�
gram�
In the bigram data it would be more typical to �nd

a sample size of ������ where n�� � �� and n�� � ���
This implies that the row totals n�� and n�� are ��
and ����� respectively� In this case there are �� pos�
sible tables where n�� would range from � to ��� The
distribution of hypergeometric probabilities for these
�� possible tables is shown in Figure ��
The practical e�ect of the skewed distribution shown

in Figure � is that the right sided and two sided ex�
act test for association are equivalent� The right�sided
exact test value is the probability of observing a table
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Figure �� n�� � ������ n�� � ����� n�� � ��

with n�� greater than or equal to the observed� The
two�sided exact test value is the probability of observ�
ing a table with a probability value less than or equal
to the observed� These are identical since the value of
P�n��� decreases as n�� increases�

For example� if n�� � � the probability of observing
a table with n�� � � equals ����� Thus� if n�� is greater
than � then there is no probability that the two words
in the bigram are independent� They must be related�
Notice however that if the observed count is anything
but � a very small probability of independence is ob�
served� Such skewed probabilities are observed for ta�
bles where n�� � n�� and n�� � n��� These sorts
of tables are what was observed with the bigram data�

Notice that this was not the case in the Tea Drinker
s
Problem and would not be the case when the row to�
tals are closer or equal in value� Consider the exam�
ple shown in Figure � where n�� � ������ n�� �
���� and n�� � ��� It is easy to see that in this case
n�� � n��� In this case the distribution of the hyper�
geometric probabilities is symmetric and the right and
two�sided tests are di�erent�

In the test for association the marginal row totals
n�� and n�� are never very close in value� n�� counts
how many times the �rst word in the bigram occurs
in the text overall while n�� is the count of all the
other potential �rst words in the bigram� Since n��
will always be much less than n�� the distribution of
the hypergeometric probabilities will always be very
skewed�

In the test for association to determine bigram de�
pendence Fisher
s exact test is interpreted as a left�
sided test� This shows how probable would it be to
see the observed bigram a fewer number of times in



another random sample from a population where the
hypothesis of independence is true� If this probabil�
ity is high then the words that form the bigram are
dependent�

Experiment� Test for Association�

There are two fundamental assumptions that underly
asymptotic signi�cance testing� ��� the data must be
collected via a random sampling of the population un�
der study� and ��� the sample must exhibit certain dis�
tributional characteristics� If either of these assump�
tions is not met then the inference procedure may not
provide reliable results�
In this experiment� we compare the signi�cance val�

ues computed using the t�test� the �� approximation to
the distribution of both G� and X�� and Fisher
s exact
test �left sided�� Our data sample is a �������� word
subset of the ACL�DCI Wall Street Journal corpus�
We chose to characterize the associations established
by the word industry as shown in bigrams of the form
�word� industry� In Figure �� we display a subset
of �� bigrams and their associated test results�
As can be seen in Figure �� there are di�erences in

the signi�cance values assigned by the various tests�
This indicates that the assumptions required by certain
of these tests are being violated� When this occurs� the
signi�cance values assigned using Fisher
s exact test
should be regarded as the most reliable since there are
no restrictions on the nature of the data required by
this test�
Figure � displays the signi�cance value assigned to

the test for association between the word shown in col�
umn one and industry� A signi�cance value of �����
implies that this data shows no evidence of indepen�
dence� The likelihood of having randomly selected this
data sample from a population where these words were
independent is zero� This is an indication of a depen�
dent bigram� A signi�cance value of ���� would in�
dicate that there is an exact �t between the sampled
data and the model for independence � there is no
reason to doubt that this sample was drawn from a
population in which these two words are independent�
In this case the bigram is considered independent�
In this �gure� we show the relative rankings of the bi�

grams according to their signi�cance values� The most
independent bigram is rank � and the most dependent
bigram is rank ��� Note that the rankings de�ned us�
ing Fisher
s exact test and the �� approximation to G�

are identical as are the rankings as determined by the
�� approximation to X� and the t�test� Notice further
that the signi�cance values assigned by Fisher
s exact
test are similar to the values as assigned by the ��

approximation to G� for the most dependent bigrams�
However� there is some variation between the signif�
icance computed for Fisher
s test and G� among the

�Please contact the author at pedersen�seas	smu	edu if
you would like a copy of the source code and data	

more independent bigrams� This con�rms the obser�
vation made by �Dunning ���� that G� tends to over�
state independence� This indicates that the asymptotic
approximation of G� by the �� distribution is break�
ing down for those bigrams� In this case Fisher
s test
provides a more reliable signi�cance value� The sig�
ni�cance values assigned using the �� approximation
to Pearson
s X� and the t�test are very di�erent from
those assigned by Fisher
s exact test� This indicates
that neither X� nor the t�statistic is holding to its as�
sumed asymptotic approximation�

Conclusions
In this paper we examined recent work in identifying
dependent bigrams� This work has used asymptotic
signi�cance tests when exact ones would have been
more appropriate�
When asymptotic methods are used there are re�

quirements regarding both the sampling plan and the
distributional characteristics of the data that must be
met� If the distributional requirements are not met� as
is frequently the case in NLP� then Fisher
s exact test is
a viable alternative to asymptotic tests of signi�cance�
The SAS system allows for convenient computation of
Fisher
s exact test using PROC FREQ�
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Appendix� PROC FREQ output for Tea Drinker�s Problem

The SAS System

TABLE OF X BY Y

Y ��

Frequency�
Expected �
Deviation�
Percent �
Row Pct �
Col Pct �milk �tea � Total
����������������������������
milk � � � � � �

� 	 � 	 �
� 	 � �	 �
� 
���� � ���� � 
����
� ������ � ���� �
� ������ � ���� �

X �� ����������������������������
tea � � � � � �

� 	 � 	 �
� �	 � 	 �
� ���� � 
���� � 
����
� ���� � ������ �
� ���� � ������ �

����������������������������
Total � � �


���� 
���� ������

STATISTICS FOR TABLE OF X BY Y

Statistic DF Value Prob
������������������������������������������������������
Chi�Square � ����� ����

Likelihood Ratio Chi�Square � ����� �����
Continuity Adj� Chi�Square � ��
�� �����
Mantel�Haenszel Chi�Square � ����� �����
Fisher�s Exact Test �Left� �����

�Right� �����
�	�Tail� ���	

P�n�� � �� ����� ��

Phi Coefficient �����
Contingency Coefficient �����
Cramer�s V �����

Sample Size � �
WARNING� ���� of the cells have expected counts less

than 
� Chi�Square may not be a valid test�
��� Added by the author� Not a part of PROC FREQ output
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