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Abstract

We report on an empirical study of supervised learning
algorithms that induce models to resolve the meaning
of ambiguous words in text. We �nd that the Naive
Bayesian classi�er is as accurate as several more so-
phisticated methods. This is a surprising result since
Naive Bayes makes simplifying assumptions about dis-
ambiguation that are not realistic. However, our re-
sults correspond to a growing body of evidence that
Naive Bayes acts as a satis�cing model in a wide range
of domains. We suggest that bias variance decomposi-
tions of classi�cation error can be used to identify and
develop satis�cing models.

Introduction

The Naive Bayesian classi�er (Duda & Hart 1973)
makes very broad assumptions that usually do not cor-
respond to a realistic model of the task at hand. De-
spite this, it proves remarkably successful in classi�ca-
tion and prediction over a wide range of domains.
We present an empirical comparison of Naive Bayes

and several other supervised learning algorithms that
resolve the meaning of ambiguous words in text. Each
method learns from training examples where the sense
of an ambiguous word has been manually encoded. We
�nd few signi�cant di�erences between Naive Bayes
and several more sophisticated methods that construct
representative models of disambiguation.
This paper suggests that Naive Bayes is a satis�c-

ing model since it is an approximate representation of
a domain and often proves as accurate as more com-
plex and representative models that are constructed at
much greater expense.
This paper begins with an introduction to Naive

Bayes that includes a brief review of previous studies.
We discuss word sense disambiguation and the role of
Naive Bayes in past research. We outline our exper-
imental design and present an extended discussion of
our results disambiguating 12 words using 5 di�erent
algorithms. We close by pointing out that bias vari-
ance decompositions may o�er a means of identifying
and developing satis�cing models.

Naive Bayes
The Naive Bayes model assumes that a set of features
are all conditionally independent given the value of a
classi�cation variable. In disambiguation the contex-
tual features of a sentence are represented by variables
(F1; F2; : : : ; Fn) and the sense of the ambiguous word
is represented by (S). Contextual features in Naive
Bayes only interact with the sense variable and do not
interact directly with each other.
The probability of observing a particular sense in a

given context is computed as follows:

p(S; F1; F2; : : : ; Fn) = p(S)
nY

i=1

p(FijS) (1)

Training the Naive Bayes model with examples is a
relatively simple process. The parameters p(FijS) are
estimated from a corpus of sense{tagged text. Even
with a large number of features the number of param-
eters in Naive Bayes is comparatively small. For a
problem with I features, each having L possible values,
and a classi�cation variable withK possible values, the
number of parameters to estimate in the Naive Bayes
model is I � L � K. There are I interactions among
features.

Previous Work Naive Bayes has accumulated a
considerable record of success in a range of domains.
For example, (Clark & Niblett 1989) compare Naive
Bayes, a rule induction system, and a decision tree
learner. They �nd that Naive Bayes performs as accu-
rately as these more sophisticated methods in various
medical diagnosis problems.
A more extensive study of Naive Bayes appears in

(Langley, Iba, & Thompson 1992). They compare
Naive Bayes and a decision tree learner using data from
the UCI Machine Learning repository (Merz, Murphy,
& Aha 1997). For 4 of 5 naturally occurring data sets
they report that Naive Bayes is the more accurate.
They also present an average case analysis of Naive
Bayes that is veri�ed empirically using arti�cial data.
(Provan & Singh 1996) compare Naive Bayes and

more complex Bayesian networks that diagnose the



cause of acute abdominal pain. They argue that sim-
ple classi�cation models will often outperform more
detailed ones if the domain is complex and the amount
of data available is relatively small. Their experiment
consists of 1270 cases, each of which has 169 features.
They �nd that the Naive Bayes model with 169 inter-
actions is more accurate than a more detailed Bayesian
network that has 590 interactions.
(Pazzani, Muramatsu, & Billsus 1996) discuss a soft-

ware agent that learns to rate Web pages according to
a user's level of interest. They construct a pro�le using
examples of pages that a user likes and dislikes. They
apply a number of learning algorithms and �nd that
Naive Bayes is most accurate at predicting Web pages
a user will �nd interesting.
Finally, (Domingos & Pazzani 1997) compare the ac-

curacy of Naive Bayes with a decision tree learner, a
nearest neighbor algorithm, and a rule induction sys-
tem. They report that Naive Bayes is at least as accu-
rate as the rule induction system and nearest neighbor
algorithm for 22 of 28 UCI data sets and at least as ac-
curate as the decision tree learner for 20 of 28 data sets.
They also present an extensive analysis of the condi-
tions under which Naive Bayes is an optimal classi�er
even when the conditional independence assumptions
are not valid.

Word Sense Disambiguation

A fundamental problem in any text mining or natu-
ral language processing application is the ambiguity
of word meanings. For example, bill has a variety of
senses { a piece of currency, a proposed law, the jaws
of a bird, etc. In The Senate bill is being voted on,
it is clear to a human reader that bill is used in the
legislative sense. However, a text mining agent search-
ing for facts about bird anatomy might erroneously
select this sentence unless bill is disambiguated. Au-
tomatically annotating text with sense distinctions of
ambiguous words can improve document classi�cation
(e.g., (Voorhees 1993), (Sch�utze & Pedersen 1995)) and
enhance the performance of Web{mining agents like
those described in (Etzioni 1996).
Word sense disambiguation is frequently approached

as a problem in supervised learning (e.g., (Gale,
Church, & Yarowsky 1992), (Leacock, Towell, &
Voorhees 1993), (Bruce & Wiebe 1994b), (Mooney
1996), (Ng & Lee 1996), (Ng 1997), (Pedersen & Bruce
1997), (Pedersen, Bruce, & Wiebe 1997)). A model of
disambiguation is induced from a corpus of text where
the sense of ambiguous words have been manually en-
coded. Most of these methods result in detailed and
representative models of the context in which the am-
biguous word occurs. This model is used to disam-
biguate instances of the ambiguous word that are sub-
sequently encountered.
Under Naive Bayes, the model of disambiguation

simply assumes that no two contextual features in a
sentence will directly a�ect each other. This is not a

realistic assumption for many linguistic features. For
example, suppose we wish to predict the part of speech
of a word at position i in a sentence, based on the part
of speech at position i� 1. Clearly there is a relation-
ship between these two features. If position i � 1 is
an article, then it is more likely that position i is a
noun or an adjective rather than another article since
constructions such as : : : the a : : : are unusual at best.
Several other comparative studies of word sense dis-

ambiguation �nd Naive Bayes to be competitive with
more sophisticated learning algorithms (e.g., (Leacock,
Towell, & Voorhees 1993), (Mooney 1996), (Ng 1997)).
These studies di�er from ours in that they employ a
feature set, commonly known as bag{of{words, that
consists of thousands of binary features, each of which
indicates the presence or absence of a particular word
within some �xed distance of the ambiguous word.
Previous interpretations of the success of Naive

Bayes focus on the bag{of{words (e.g., (Pedersen &
Bruce 1997)). Given so many features, the assump-
tions of conditional independence made by Naive Bayes
seem reasonable and may result in a model that rep-
resents the training data reasonably well. However, an
earlier study of the feature set used in this paper shows
that there are models other than Naive Bayes that bet-
ter characterize our data (Pedersen, Bruce, & Wiebe
1997). Thus the assumptions of conditional indepen-
dence made by Naive Bayes seem less appropriate here.

Experimental Design
This section provides an overview of the text being dis-
ambiguated, the features used to represent sentences
with ambiguous words, and the algorithms that will
be compared to Naive Bayes.

Text

The data used in these experiments is a sense{tagged
corpus created by Bruce and Wiebe that is described
in greater detail in (Bruce & Wiebe 1994a), (Bruce &
Wiebe 1994b), (Bruce 1995), and (Bruce, Wiebe, &
Pedersen 1996). They selected the following 12 words
from the ACL/DCI Wall Street Journal corpus (Mar-
cus, Santorini, & Marcinkiewicz 1993):

� Nouns: interest, bill, concern, and drug.

� Verbs: close, help, agree, and include.

� Adjectives: chief, public, last, and common.

They extracted every sentence containing one of
these words and manually tagged the ambiguous word
with a sense from the Longman Dictionary of Contem-
porary English (LDOCE) (Procter 1978). The num-
ber of sentences where each word occurs as well as the
number of possible senses are shown in Figure 2.

Feature Set

Each sentence in the sense{tagged corpus is reduced
to a feature vector (POS�2, POS�1, POS+1, POS+2,



C1 C2 C3

agree million that to
bill auction discount treasury
chief economist executive o�cer
close at cents trading
common million sense share
concern about million that
drug company FDA generic
help him not then
include are be in
interest in percent rate
last month week year
public going o�ering school

Figure 1: Co{occurrence feature values

CO1, CO2, CO3, MORPH, SENSE). This feature set
was developed by Bruce and Wiebe in the work cited
above. These features are de�ned as follows:
POSX represents the part of speech of words that

occur 1 or 2 positions to the left (-) or right (+) of the
ambiguous word. The part of speech tags are derived
from the �rst letter of the tags in the ACL/DCI WSJ
corpus and have 25 possible values.
COX is a binary feature representing a co{

occurrence. These features indicate whether or not a
particular word occurs in the same sentence as the am-
biguous word. They were selected from among the 400
words that occur most frequently in the sentences con-
taining the ambiguous word. The three words chosen
are the most indicative of the sense of the ambiguous
word as judged by a test for independence. The values
of this feature for each word are shown in Figure 1.
MORPH represents the morphology of the ambigu-

ous word. It is a binary feature for nouns; representing
if the word is singular or plural. It indicates the tense
of the verbs and has between 2 and 7 possible values.
This feature is not used for adjectives.
SENSE represents the sense of an ambiguous word.

The words in this study have between 2 and 7 possible
LDOCE senses.

Learning Algorithms

We compare the following supervised learning algo-
rithms with Naive Bayes.
Majority Classi�er: All instances of an ambigu-

ous word are assigned the most frequent sense in the
training sample. This establishes a lower bound of dis-
ambiguation performance.
PEBLS (Cost & Salzberg 1993): A k nearest{

neighbor algorithm where classi�cation is performed
by assigning an ambiguous word to the majority class
of the k{nearest training examples. In these experi-
ments each ambiguous word is assigned the sense of
the single most similar training example (i.e., k = 1).

C4.5 (Quinlan 1992): A decision tree algorithm in
which classi�cation rules are formulated by recursively
partitioning the training sample. Each nested partition
is based on the feature value that provides the greatest
increase in the information gain ratio for the current
partition.
CN2 (Clark & Niblett 1989): A rule induction al-

gorithm that selects classi�cation rules that cover the
largest possible subsets of the training sample as mea-
sured by the Laplace error estimate.
Naive Mix (Pedersen & Bruce 1997): A probabilis-

tic classi�er based on the averaged joint distribution
of a sequence of decomposable models1. These mod-
els are generated during a forward sequential search.
The best �tting model at each level of complexity in
the search is included in the sequence. Complexity is
measured by the number of interactions in the model
and �t is evaluated by Akaike's Information Criteria
(Akaike 1974).

Experimental Results

There are three experiments presented here. First,
we perform 10{fold cross validation using all available
data for each word and determine the accuracy of each
method. We �nd few signi�cant di�erences among the
methods. Second, we vary the amount of training data
in order to see how much is required to reach certain
levels of accuracy. We �nd that Naive Bayes is less
accurate when there are fewer than 300 training ex-
amples. Third, we decompose classi�cation error into
bias and variance components.

Cross Validation

Ten{fold cross validation is an e�cient means of
training and evaluation. All of the sense{tagged ex-
amples for a word are randomly shu�ed and divided
into 10 equal folds. Nine folds are used as training
examples for a supervised learning algorithm. The re-
maining fold serves as a held{out test set to evaluate
the learned model. This is repeated 10 times so that
each fold serves as the test set once.
The average accuracy and standard deviation of each

method across the 10 folds is reported in Figure 2.
The row win{tie{loss shows the number of words that
Naive Bayes disambiguates signi�cantly more{equally{
less accurately than the competing algorithm. Signi�-
cance is judged by a pairwise t{test (p = :01).
The accuracy of Naive Bayes is not signi�cantly dif-

ferent than the other methods that learn more detailed
models at greater cost. This can quickly be con�rmed
by noting the average accuracy across all 12 words
as well as the number of times the accuracy of Naive
Bayes ties the other methods.

1Decomposable models were �rst applied to word sense
disambiguation in (Bruce & Wiebe 1994b)



word/ sample Majority Naive PEBLS Naive
# senses size classi�er Bayes k=1 C4.5 CN2 Mix
chief/2 1040 .862 .026 .943 .015 .945 .018 .947 .020 .945 .013 .951 .016
common/6 1110 .802 .029 .832 .034 .853 .019 .871 .030 .803 .029 .853 .024
last/3 3180 .933 .014 .919 .011 .947 .012 .945 .008 .935 .013 .940 .016
public/7 870 .560 .055 .593 .054 .536 .039 .598 .047 .579 .057 .615 .055
adjectives 1550 .789 .822 .820 .840 .816 .840
bill/3 1340 .681 .044 .865 .026 .855 .034 .878 .029 .873 .035 .897 .026
concern/4 1490 .639 .054 .859 .037 .840 .036 .852 .042 .859 .033 .846 .039
drug/2 1220 .575 .033 .807 .036 .778 .034 .798 .038 .777 .069 .815 .041
interest/6 2360 .529 .026 .763 .016 .768 .020 .793 .019 .729 .034 .800 .019
nouns 1603 .606 .824 .810 .830 .810 .840
agree/3 1350 .777 .032 .930 .026 .928 .030 .947 .031 .947 .031 .948 .017
close/6 1530 .680 .033 .817 .023 .843 .042 .853 .021 .834 .036 .831 .033
help/4 1390 .753 .032 .780 .033 .710 .047 .790 .039 .779 .045 .796 .038
include/2 1560 .912 .024 .944 .021 .939 .015 .954 .019 .951 .018 .956 .018
verbs 1458 .781 .868 .855 .886 .878 .883
overall 1537 .725 .838 .829 .852 .834 .854
win-tie-loss 8-4-0 1-10-1 0-9-3 1-11-0 0-9-3

Figure 2: Disambiguation Accuracy

Learning Rate

The learning rate shows how accuracy changes as more
training examples are utilized. We expect that increas-
ing the number of examples will increase classi�cation
accuracy. However, there is a point at which further
examples do not improve accuracy. Since our 10{fold
cross validation results for the full sample did not re-
sult in many signi�cant di�erences we would like to
determine which algorithm reaches the highest accu-
racy with the fewest number of training examples.
We begin with very small amounts of training data;

�rst 10 and then 50 examples. Thereafter we increment
100 examples at a time until all available training data
is used. We induce a model using each quantity of
training data and evaluate that model using a held{
out test set. For each quantity of training data we
perform a variant of 10{fold cross validation and divide
the sense{tagged data into 10 folds. One fold is held
out for evaluation and training examples are randomly
sampled from the remaining 9 folds. This process is
repeated 10 times so that each fold serves as the held{
out test set once.
Figure 3 shows the learning rate of the Naive Mix,

C4.5, Naive Bayes, and the Majority Classi�er as the
number of training examples is increased. Each plot
shows the average accuracy with each method of the 4
words that belong to the indicated part of speech.
Adjectives C4.5 and the Naive Mix achieve nearly

the same level of accuracy learning from 10 training
examples as they do 900 examples. Naive Bayes has a
\slower" learning rate. Accuracy is low with a small
number of examples but quickly improves with the ad-
dition of training data. Naive Bayes achieves approxi-
mately the same accuracy as C4.5 and the Naive Mix

after roughly 300 training examples. However, none of
the methods signi�cantly exceeds the accuracy of the
Majority Classi�er.
Nouns C4.5 and the Naive Mix are nearly as accu-

rate as the Majority Classi�er after only learning from
10 training examples. However, unlike the adjectives,
accuracy increases with additional training data and
signi�cantly exceeds the Majority Classi�er. Like the
adjectives, Naive Bayes begins at very low accuracy
but reaches the same accuracy as C4.5 and the Naive
Mix after approximately 300 training examples.
Verbs As is the case with adjectives and verbs,

Naive Bayes begins at a very low level of accuracy while
C4.5 and the Naive Mix nearly match the accuracy of
the Majority Classi�er after only 10 training examples.
All three methods exceed the Majority Classi�er and
perform at nearly exactly the same level of accuracy
after approximately 600 examples.
The main di�erence among the methods in this ex-

periment is that Naive Bayes has a slower learning rate;
C4.5 and the Naive Mix achieve accuracy of the Ma-
jority Classi�er usually with just 10 or 50 examples.
This is at least partially due to the skewed sense dis-
tributions, especially for adjectives and verbs. Given
these distributions of senses, 10 or 50 examples will
contain enough information for C4.5 or the Naive Mix
to learn the majority class and obtain that level of ac-
curacy immediately. Naive Bayes is unable to do the
same since it relies upon an assumed model.

Bias Variance Decomposition

Here we decompose classi�cation error into two funda-
mental components. This allows us to make distinc-
tions between approaches that perform at the same
level of accuracy.



word test Naive Bayes MC4
size bias var error bias var error

agree 750 .060 .013 .073 .044 .019 .063
bill 740 .134 .034 .168 .120 .035 .155
chief 440 .056 .007 .063 .033 .026 .059
common 510 .130 .032 .162 .109 .045 .154
interest 1760 .201 .070 .271 .178 .103 .281
close 930 .128 .045 .173 .122 .042 .164
last 2580 .058 .007 .065 .053 .006 .059
concern 890 .110 .040 .150 .131 .041 .172
drug 620 .178 .045 .223 .188 .014 .202
help 790 .170 .056 .226 .206 .034 .240
include 960 .053 .016 .069 .088 .006 .094
public 270 .338 .088 .426 .382 .033 .415

Figure 4: Bias Variance Estimates

Background Loss functions such as mean{squared
error and misclassi�cation error can be decomposed
into two components, known as bias and variance. Bias
is an estimate of the systematic error that a learning
algorithm is expected to make. Variance estimates the
degree to which the learning algorithm is a�ected by
variations in the training sample.

(Geman, Bienenstock, & Doursat 1992) decompose
mean{squared error into additive bias and variance
components. This is a very useful tool in analyzing
the results of regression problems. However, it not
applicable to classi�cation where error is measured
by counting the number of misclassi�cations. Fortu-
nately, numerous decompositions of misclassi�cation
error have recently been proposed (e.g., (Kong & Di-
etterich 1995), (Breiman 1996a), (Kohavi & Wolpert
1996), (Tibshirani 1996), (Friedman 1997), (James &
Hastie 1997)).

Some learning algorithms are inherently unstable in
that they produce very di�erent models across various
samples of training data that have only minor di�er-
ences. These algorithms are said to have low bias and
high variance; decision trees and neural networks are
examples (Breiman 1996b).

High bias and low variance results in models that are
more robust to changes in the training data but do not
closely characterize the training data. Naive Bayes is
generally regarded as high bias and low variance. This
is because the assumptions it makes about the inter-
actions among features have nothing to do with a par-
ticular training sample. Nearest neighbor algorithms
such as PEBLS are also considered high bias and low
variance. These methods classify not by inducing a
model but rather by �nding some number of closely
matching examples in the training data.

Experiment We break down the classi�cation er-
ror of Naive Bayes and a decision tree algorithm us-
ing the decomposition proposed in (Kohavi & Wolpert
1996). We choose this decomposition since it adheres

to generalized loss{function decompositions developed
in (Tibshirani 1996) and (James & Hastie 1997) and
is also implemented in MLC++ (Kohavi, Sommer�eld,
& Dougherty 1996).
Generally, a bias estimate reects how often the av-

erage classi�cations, across N training samples, of a
learned model fails to correspond to the actual clas-
si�cations in E. Variance estimates the degree to
which the classi�cation predicted by the learned model
varies across multiple training samples. An algorithm
that always makes the same classi�cation regardless of
the training data will have variance of 0. We follow
the sampling procedure recommended in (Kohavi &
Wolpert 1996) to estimate these values.

1. Randomly divide the data into two sets, D and E.
Let the number of instances in D = 2m, where m is
the desired size of the training sample. E serves as
a held{out test set.

2. Generate N samples of size m from D.

3. Run each learning algorithm on the N training
samples. Classify each observation in E using the
learned model.

4. Repeat steps 1{3 R times to evaluate di�erent E.

The learning algorithms in our experiment are Naive
Bayes and MC4, the MLC++ version of C4.5. We
choose MC4 since it is a decision tree learner and rep-
resents a low bias and high variance approach. By
contrast, Naive Bayes is a high bias and low variance
model.
We chose training samples of size m = 300 since

this is the smallest number of examples with which
all methods achieve comparable error rates. We set
D = 600 and generate N = 100 training samples. We
repeat this entire procedure R = 10 times.
We show the estimates of bias and variance obtained

by MLC++ in Figure 4. The standard deviations
across the 10 repetitions is not reported since it is al-
ways less than .001. This �gure is divided into three
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Figure 3: Training Examples versus Accuracy

groups of words. For the �rst group Naive Bayes has
higher bias and lower variance than MC4. The second
group of words has equal bias and variance for Naive
Bayes and MC4. In the third group MC4 has higher
bias and lower variance than Naive Bayes.
The data in Figure 4 is presented again as corre-

lation plots in Figure 5. The bias, variance, and total
classi�cation error for a word is represented by a single
point in each plot. Points on or near x = y are asso-
ciated with words who have nearly identical estimates
for Naive Bayes and MC4.
The �rst plot shows the bias. There are no extreme

di�erences between the bias of Naive Bayes and MC4.
It may be that the training sample size of 300 is too
small to bring out large di�erences in bias between
the methods. We will examine the e�ect of varying
the training sample size on bias and variance in future
work. The second plot shows variance. We see more
extreme di�erences, particularly for public and interest.
The third plot in the �gure shows the overall error
rate, i.e., the sum of the bias and the variance. This
con�rms that the error rates for the two methods are
fairly similar for each word.

Conclusions

We suggest the Naive Bayes model is a satis�cing
model for a complex and important problem in nat-
ural language processing. An empirical study shows
that Naive Bayes is as accurate as methods that build
more detailed models of disambiguation. The only ex-
ception to this behavior is when training sample sizes
are very small. In those cases a decision tree learner
and an averaged probabilistic model are able to take
advantage of skewed sense distributions and duplicate
the performance of the Majority Classi�er.
Our analysis includes estimates of the bias and vari-

ance components of classi�cation error. There is an
inherent tradeo� between bias and variance. Bias is
reduced by building more representative models of the
training data. However, this leads to increases in vari-
ance since the more detailed models are sensitive to
changes across di�erent samples of training data.
Bias variance decompositions o�er a systematic

means of monitoring the tradeo� between representa-
tional power and robustness that are often made when
building models. This is a potentially powerful tool for
building and tuning satis�cing models.
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