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Abstract

The need to determine semantic relatedness or its inverse, semantic distance, between

two lexically expressed concepts is a problem that pervades much of natural language pro-

cessing such as document summarization, information extraction and retrieval, word sense

disambiguation and the automatic correction of word errors in text. Standard ways of mea-

suring similarity between two words on a thesaurus, such as WordNet, are usually based on

the path between those words in the thesaurus graph. By contrast, Hughes and Ramage

(2007) proposed a Markov chain model of lexical semantic relatedness based on WordNet,

which uses a random walk over nodes and edges derived from WordNet link and corpus statis-

tics to compute a word-specific stationary distribution. Based on this model, we propose

to apply α-divergence to score the semantic relatedness of a word pair. In our experiments,

the resulting relatedness measure with α = .9 outperforms the existing measures on certain

classes of distributions, that is correlated with human similarity judgements by rank ordering

at ρ = .937.

keywords: Random Walk, WordNet, Semantic Relatedness Measure, Similarity Measure,

α-divergence, Markov Chain, PageRank

3



Contents

1 Introduction 5

2 WordNet 7

3 Related Work 9

4 Random Walk on WordNet 10

4.1 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Computing the stationary distribution . . . . . . . . . . . . . . . . . . . . . 13

5 Relatedness Measures 15

5.1 Zero-KL Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Hellinger Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 α-Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Evaluation 19

7 Conclusion 22

4



1 Introduction

Many problems in Natural Language Processing require a numerical measure of semantic

relatedness between two arbitrary words. Information retrieval needs these scores to expand

the query words; word sense disambiguation uses relatedness measures to choose appropri-

ate meaning of a word according to its context; question answering systems often evaluate

candidate sentence alignments by using the similarity scores. It is important to distinguish

the concepts of semantic relatedness and similarity, where the former one should be a more

general concept than the later. Two semantically similar words are intuitively related be-

cause of the similarity between their meanings, such as happy and graceful (synonymy). But

two dissimilar concepts can also be semantically related, such as window and house, since

window is a part of house (meronymy). Moreover, hot and cold are also related just because

of their semantic dissimilarity (antonymy). So a pair of words can be semantically related

by any kind of functional relations or their frequent co-ocurrence, like pen and paper. Many

applications typically require semantic relatedness rather than similarity. Several popular

algorithms compute the lexical semantic relatedness measure based on the knowledge from

WordNet [7], an electronic dictionary indicating semantic relationships among word senses.

A main challenge for such algorithms is to find the relatedness for two arbitrary words

even if they share few direct relationships. Actually most words in WordNet share no direct

semantic links, or some of the pairs can be very far away on WordNet even though intuitively

they are highly related. For example, furnace and stove are connected by going up to the

same ancestor artifact along a series of IS-A (hypernymy/hyponymy) relationship. Several

existing algorithms use the shortest path or only the hypernym/hyponymy relationship to

define relatedness measure and find furnace and stove are not related. However, Word-

Net provides lots of other relationships besides hypernymy/hyponymy, such as meronymy,

antonymy, verb entailment etc. In addition, some implicit links can also be obtained from

the text of the definitional gloss information in WordNet. If all of the above relationships can

be considered, the furnace will be easily connected to stove by following the path furnace -

crematory - gas oven - oven - kitchen appliance - stove. Another problem is that many pairs

are connected in WordNet through several paths, such as moon is connected to satellite by

two paths: one is from the sense of moon as the natural satellite of the Earth, the other

is from the sense of moon as any natural satellite of a planet. moon is also connected to

religious leader by only one path which is from the sense of moon as Sun Myung Moon: a

United States religious leader. Both religious leader and satellite are at the same shortest

5



path distance from moon, however, the connectivity structure of the graph would suggest

satellite to be ”more” similar than religious leader as there are multiple senses, and hence

multiple paths, connecting satellite and moon. These problems motivated people to find an

alternative way to measure semantic relatedness on WordNet rather than the path-based

methods.

Hughes and Ramage [10] presented the application of random walk Markov chain

theory to measure lexical semantic relatedness. A weighted and directed graph of words/-

concepts is constructed from WordNet. A particle starting at an arbitrary word/concept on

the graph can randomly walk towards a target word and after a long term running it will

visit each node with the proportion of each node’s visiting times converging to a stationary

distribution. An interpretation of such word-specific probability distributions is how often

the particle visits all the other nodes when starting from a specific word. Then the related-

ness score between two words can be defined by the similarity of their respective stationary

distributions. This random walk method enables a consistent way to combine multiple types

of relationships on WordNet and extend a local similarity statistics into the entire graph.

In this project, we compute a stationary distribution for each word in WordNet re-

ferring to the random walk model proposed by Hughes and Ramage. Beyond applying their

Zero-KL(ZKL) divergence as relatedness measure, however, we propose to use α-divergence

which derives Kullback-Leibler (KL) divergence [13] when α → 0 or 1. We can show that

the α-divergence measure outperforms the ZKL and the existing measures on certain classes

of distributions when α = .9, with a correlated coefficient ρ = .937 to human similarity

judgements.
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2 WordNet

WordNet is a lexical database of English with nouns, verbs, adjectives and adverbs

included. All of these words are grouped into sets of synonyms, called synsets. Synsets

are interlinked by types of semantic and lexical relationships. Each synset can present a

discriminative concept and be further explained by a short gloss (usually definition and/or

example sentences). For example, a synset in WordNet with glosses is shown as followed:

dog#n#1, domestic dog#n#1, Canis familiaris#n#1 (a member of the genus Canis (prob-

ably descended from the common wolf) that has been domesticated by man since

prehistoric times; occurs in many breeds) ”the dog barked all night”

where ”dog#n#1” represents the 1st sense of word dog as its part of speech noun, ”dog#n#1,

domestic dog#n#1, Canis familiaris#n#1” represents a synset and the sentences followed

represent the gloss of this synset.

The latest version of WordNet, WordNet 3.0, contains 155,287 words (including 26,896

polysemous words), 206,941 word-sense pairs for a total of 117,659 synsets. The semantic

and lexical relationships shared between synsets are based on the part-of-speech and few

relations can cross the part-of-speech boundaries. These relations include:

• Nouns

– hypernyms/hyponyms (IS-A relation): canine is a hypernym of dog, dog is a

hyponym of canine (dog IS A kind of canine)

– coordinate terms : wolf is a coordinate term of dog, dog is a coordinate term of

wolf (wolf and dog share a hypernym canine)

– holonym/meronym (IS-A relation): building is a holonym of window, building is

a holonym of window (window IS A part of building)

• Verbs

– hypernyms/hyponyms (IS-A relation): to perceive is an hypernym of to listen,

to listen is an hyponym of to perceive (the activity of perceiving IS A kind of

listening)

– troponyms : lisp is a troponym of to talk (the activity talking is doing lisping in

some manner)
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Figure 1: An example of WordNet3.0

– entailment : sleep is entailed by to snore (by doing snoring you must be doing

sleeping)

– coordinate terms : to lisp and to yell

• Adjectives

– related nouns

– similar to

– participle of verb

• Adverbs

– root adjectives

The organizations of nouns and verbs more look like hierarchical trees respectively,

because of their main relation hypernym or IS-A relationship. For instance, the first sense

of the word dog as noun would have the following hypernym hierarchy, where the words at

the same level are synonyms of each other:
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3 Related Work

A simple way to measure similarity in WordNet is to treate it as a graph and then define

the shorter path two nodes share, the more similar they are [23]. This shortest path length in

a lexical network can actually measure conceptual distance if the path is IS-A relationship.

Jiang and Conrath, 1997 [12] proposed to find the shortest path in the taxonomic hierarchy

between two concepts (similarly to [17]), which had one of the best performance [5]. Both

of the above methods primarily make use of IS-A relationship, i.e. hypernymy, in WordNet

and therefore are more like to measure similarity than to measure relatedness.

Some alternative approaches have been proposed, such as Extended Lesk [2], Gloss

Vectors [21] etc. The basic idea behind these methods is to compare the ”bag of words” in

WordNet Synsets ’ definitional gloss texts. Thus, these gloss-based approaches can measure

relatedness. Besides, Weeds and Weir, 2005 [29] defined distributional similarity measures

based on co-ocurrence in body of text.

Apart from WordNet, people also use some other structured information resources.

Jarmasz and Szpakowicz, 2003 [11] showed ”the Roget’s thesaurus and WordNet are birds

of a feather”. Incorporating infromation from Wikipedia has become more popular re-

cently [9] [25]. These Wikipedia-based measures can perform better on some tasks than

some existing measures based on shallower lexical resources. But the results of Huges and

Ramage’s algorithm are competitive even if using only WordNet.

Huges and Ramage proposed to apply a random walk algorithm, PageRank – see [3]

for a survey, to obtain a probabilistic distribution for each concept in WordNet. Random

walks have been applied to natural language processing in several works, such as PP attach-

ment [26], word sense disambiguation [18], query expansion [6] etc. Hughes and Ramage

calculated distinct stationary distributions from random walks centered at different nodes

in the WordNet graph. They then introduced a novel variant of KL-divergence to mea-

sure semantic realtedness and showed this is one of the strongest measures. Rao, Yarowsky

and Callison-Burch (2008) [31] used the psuedo inverse of the Laplacian to derive estimates

for commute times in graph. They further improved this measure by discarding the least

significant eigenvectors, corresponding to the noise in the graph construction process, using

Singular Value Decomposition (SVD). But they only considered uniform weights on all edges

derived from WordNet and didn’t show an explicit advantage over Hughes and Ramage’s.
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4 Random Walk on WordNet

Let X = {X1, X2, ..., XT} be a set of finite states, then a random walk on X corresponds

to a sequence of states, where each state represents each step of the walk. At each step, the

walk will either leave its current state to a new state or remain at the current state. Random

walks are usually Markovian, which means the transition at each step is independent of the

previous steps and only depends on the current state.

The model proposed by Hughes and Ramage is based on a random walk through a

directed graph G = (V,E, W) derived from WordNet, with nodes V, edges E, and weight

matrix W = [wij], where wji as the weight of the edge connecting node i and j. The weight,

wij = 0 for nodes i and j being not neighbors; wij > 0 for an indication of relationship from

j → i in WordNet. We now can obtain a matrix P from W as follows:

P = D−1W

where D is a diagonal matrix with djj =
∑n

i=1wij, n = |V | the order of the graph.

Observe that:

• pii = P[i, i] = 0,

• pij = P[i, j] >= 0, and

•
∑n

i=1 pij = 1

Hence pij can be interpreted as the conditional probability of moving to node i given

the current state is at node j. If P{Xt = i} denote the probability of being at node i at

time t, then, by total probability theorem, it can be defined as the sum of probabilities over

all ways to node i from any other nodes at the previous time step. Formally,

P{Xt = i} =
∑
j∈V

P{Xt−1 = j}P{Xt = i|Xt−1 = j} =
∑
j∈V

P{Xt−1 = j}P[i, j].

Note that this is a Markov chain because the transition probability at time t is dependent

only on the last states at time t − 1 and the matrix P is the probability transition matrix
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with columns normalized.

The following subsections present how to construct the weight graph G from WordNet

and then compute the stationary distribution for a given word by random walking.

4.1 Graph Construction

As introduced in the previous section, WordNet is itself a graph over synsets and Word-

Net explicitly marks semantic relationships between synsets. But we are also interested in

representing relatedness between words. Therefore the nodes V includes three types of nodes

extracted from WordNet:

Synset The same synset node from WordNet. For example, one node corresponds to the

synset of ”dog#n#1, domestic dog#n#1, Canis familiaris#n#1”. There are 117,597

Synset nodes.

TokenPOS Assign each word contained in WordNet followed by its part of speech, such

as ”dog#n” meaning dog as a noun. These nodes link to all the Synset nodes for

”dog#n#1, domestic dog#n#1, Canis familiaris#n#1”, ”dog#n#2, frump#n#1”,

”dog#n#3”, etc. There are 156,588 TokenPOS nodes.

Token Each single word in WordNet. By eliminating the part of speech information, every

TokenPOS is connected to its corresponding Token. For example, ”dog” is connected

to ”dog#n” and ”dog#v” (meaning ”go after with the intent to catch”). There are

148,646 Token nodes.

For each edge in E connecting node i and j, it has a weight wij. From the semantic

and lexical relationships provided in WordNet, we can derive the edges E and weight matrix

W like this:

• Weights of the uni-directional edges connecting TokenPOS to Synset are based on the

SemCor frequency counts included in WordNet. To distinguish the zero counts from

the zero weight, we add pseudo-count 0.1 for all SemCor frequency counts of each
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target Synset. Intuitively, this causes the particle to have a higher probability of mov-

ing to more common senses of a TokenPOS; for example, the edges from ”dog#n” to

”dog#n#1, domestic dog#n#1, Canis familiaris#n#1” and ”dog#n#3” have weights

of 42.1 and 0.1, respectively.

• Uni-directional edges that connect Token to TokenPOS are weighted as the sum of

outgoing weights from this TokenPOS to Synset nodes. This also makes the walker,

starting at word ”dog”, be more likely to follow a link to ”dog#n” than to ”dog#v”.

For example, the edges from ”dog” to ”dog#n” and ”dog#v” have weights of 42.7 and

2.1, respectively.

• Add uni-directional edges from Synset to TokenPOS in order to exploit the textual

gloss information from WordNet. A Synset node is connected to TokenPOS nodes who

are used in that synset ’s gloss definition. This requires the glosses to be part-of-speech

tagged, for which we use the Brill Tagger (Eric Brill 1993). Then we weight each

TokenPOS by its distance from the mean word frequency counts in the gloss in log

space, which is called as ”Non-Monotonic Document Frequency” (NMDF). Formally,

the weight wij from a Synset node j to a TokenPOS i is:

wij = exp(−(log(ri)− µ)2

2σ2
)

where ri is the appearing times of this TokenPOS in the gloss, µ and σ are the mean

and standard deviation of the logs of all word counts. As we can see, this function can

down weights the extremely rare words, which is opposite from the tf-idf weighting.

On the other hand, the hight-frequency stop words such as ”by” and ”the” are also as-

signed by low weights. This is exactly what we need to roughly weight the relatedness

between two nodes. Thus NMDF weighting can be very effective here.

• We also add bi-directional edges between Synsets who share common TokenPOS nodes.

These edges are weighted by how many common TokenPOS nodes the two Synsets

share. Intuitively, different senses of the same word should be considered related.
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• At last, Synset nodes are connected with bi-directional edges according to the semantic

relationship types in WordNet. We use the following WordNet semantic relationships to

form edges: hypernyms/hyponyms, instance of/has instance of, meronyms/holonyms,

attributes, similar to, entailment, cause, domain/member of domain - all, as well as

some WordNet lexical relationships: antonyms, derived forms, participle of verb, per-

tains to noun and verb group. The weights are uniformed by 10, which is approximately

the maximum of the ”overlap” weights we obtained in our experiment. The intuition

to use this maximum is that edges from the direct relationship provided in WordNet

should have a higher weight than those from an indirect relationship such as overlap-

ping with a common TokenPOS.

In our experiment, after loading all the nouns from WordNet, we can construct a

graph with 357,756 nodes and 1,287,050 weighted edges, which is very sparse; fewer than 1

in 100,000 node pairs are directly connected. This makes our experiment can quickly con-

verge and get the stationary distribution, which will be introduced in the next subsection,

in about 30 iterations.

4.2 Computing the stationary distribution

Now we can get a columns normalized matrix P from the weight matrix W presented

above. A generalized PageRank algorithm is then introduced to compute a stationary distri-

bution for any specific word based on P, which contains the relatedness information about all

nodes extracted from WordNet. The notion of PageRank, first introduced by Brin and Page

(1998) [20], forms the basis for their Web search algorithms. Although the original version

of PageRank was used for the Web graph (with all the webpages as nodes and hyperlinks

as edges), PageRank is well defined for any given graph and is quite effective for capturing

various relations among nodes of graphs.

In order to compute the stationary distribution vdog#n for a walk centered at the

TokenPOS ”dog#n”, a generalized PageRank algorithm first defines an initial distribution

v
(0)
dog#n as an element vector with probability 1 assigned to itself and 0 to the other nodes.

Then at every step of the walk, it will ”jump” to v
(0)
dog#n with probability β. Intuitively, this

return probability captures the notion that nodes close to ”dog#n” should be given higher
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probabilities, and also guarantees a unique stationary distribution (Bremaud, 1999) [4]. The

stationary distribution vi for node i is computed with an iterative update algorithm:

• Let v
(0)
i = ei, ei is a vector of all zeros except ei(i) = 1

• Repeat until ‖v(t)i − v
(t−1)
i ‖1 < ε

– v
(t)
i = βv

(0)
i + (1− β)Pv

(t−1)
i

– t = t+ 1

• vi = v
(t)
i

We decide to apply the same convergence criteria as Hughes and Ramage use: ε = 10−10

and β = 0.1. Due to the sparsity of the matrix P, it only takes three dozen iterations to

meet the criteria in our experiment.
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5 Relatedness Measures

Based on Hughes and Ramage’s random walk model, we can compute the word-specific

stationary distribution for any word in WordNet. Now we need to consider how to define

a relatedness measure between two words. For a weighted graph G(V,E,W), we define a

relation sim: V × V → <+ such that sim(p, q) is the relatedness measure between two

words with their respective stationary distributions, p and q. In our case, we measure the

divergence of the word-specific distributions since, intuitively, if the random walker starting

at the first word’s node and another random walker starting at the second word’s node tend

to visit the same nodes, they can be considered semantically related.

Many statistical similarity measures between probability distributions can be applied

to this task. One standard way is to consider p and q geometrically be two vectors, and then

measure the cosine value of the angle between them. This is usually called cosine similarity

and represented as a dot product:

simcos(p, q) =

∑
i piqi

‖p‖‖q‖
.

In the following subsections, we would like to introduce some other measures such as

the ZKL divergence (a modified KL-divergence proposed by Hughes and Ramage), Hellinger

distance and α-divergence. All of these measures give a dissimilarity score to the word

pair, which actually are equivalent to measure similarities. We will later apply them on the

random walk model and compare them with some existing measures, including the above

cosine similarity measure.

5.1 Zero-KL Divergence

KL-divergence (or relative-entropy) is an asymmetric dissimilarity measure between two

probability distributions. Intuitively speaking, it measures the added number of bits re-

quired for encoding events sampled from the first distribution using a code based on the

second distribution. The need for such a measure arises quite naturally for probability dis-

tributions associated with language models such as measuring the distance between a query

and members of a document collection [14]. Because p and q are probability distributions,

we could expect to apply KL-divergence to be our relatedness measure, defined as:
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simKL(p, q) = DKL(p‖q) =
∑
i

pi log
pi
qi
.

As shown in the formula, however, KL-divergence is undefined if any qi is zero. Several

modifications to smooth KL-divergence have been proposed and Lee, 2001 [16] surveyed that

the Skew divergence measure [15] outperformed the others.

sα(p, q) = DKL(p‖αq + (1− α)p) =
∑
i

pi log
pi

αqi + (1− α)pi
.

To simplify the Skew divergence, Hughes and Ramage proposed a reinterpretation of

the Skew divergence. While qi = 0 simplifies the Skew divergence to pi log pi
(1−α)pi = pi log 1

1−α

, and Skew divergence’s best performance was shown by Lee for α near 1, thus Hughes and

Ramage choose α as 1− 2−γ for some γ ∈ <+. Zero terms in the sum can now be written as

pi log 1
2−γ

= pi log 2γ ≈ piγ. The final ZKL divergence measure is defined with respect to γ:

simZKLγ (p, q) =
∑
i

pi

{
log pi

qi
qi 6= 0

γ qi = 0.

Hughes and Ramage showed this ZKL-divergence measure is the WordNet-based

measure most highly correlated with human similarity judgements with γ = 2. In our ex-

periment, we found when γ = 5, ZKL-divergence gave its best performance but it didn’t

outperform our resulting measure.

5.2 Hellinger Similarity Measure

Hellinger similarity measure is inspired from the Hellinger distance between two probability

distributions. The Hellinger distance between p and q is defined as the quantity

DH(p, q) = (
1

2

n∑
i=1

(
√
pi −
√
qi)

2)
1
2 = (1−

n∑
i=1

√
piqi)

1
2 .

Since a distance measures dissimilarity, we define the Hellinger similarity measure as:

simH(p, q) =
n∑
i=1

√
piqi.

Both KL-divergence and Hellinger distance are in the family of α-divergence [1] [28] [27],

with α→ 0 and α = 1
2

respectively. So we introduce α-divergence in the following subsection.
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5.3 α-Divergence

α-divergence is a family of divergences, indexed by α ∈ (−∞,∞). The formula of α-

divergence between two continuous probability distributions p(x) and q(x) is:

Dα(p||q) =

∫
x
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

α(1− α)

for all α ∈ (−∞,∞).

α-divergence has several important properties as followed:

• Dα(p||q) is convex with respect to p(x) and q(x)

We first simplify the definition of α-divergence to Dα(p||q) =
1−

∫
p(x)αq(x)1−αdx

α(1−α) . Now,

by showing ∂2Dα(p||q)
∂p2

=
∫
α(1−α)p(x)α−2q(x)1−αdx

α(1−α) =
∫
p(x)α−2q(x)1−α ≥ 0 and repeating

the same calculation for q, we prove Dα(p||q) is convex with respect to p anq.

• Dα(p||q) ≥ 0 and Dα = 0 if and only if p(x) = q(x) for all x

Let f(p, q) = αp(x)+(1−α)q(x)−p(x)αq(x)1−αdx
α(1−α) , we can easily prove that f(p, p) = 0, ∂f

∂p
(q, q) =

0 and ∂2f
∂p2

(p, q) > 0 for all p > 0. Thus, p has only one minimum with respect to p and

it occurs at p = q. The same result works for q. Therefore, Dα(p, q) ≥ 0 for all p and

q and the equality is obtained if and only if p(x) = q(x) for all x.

• KL-divergence is a special case of an α-divergence with α→ 0

By using L’Hopital rule, we can see limα→0Dα(p||q) = limα

−
∫
ln
p(x)
q(x)

p(x)αq(x)1−αdx

1−2α =

−
∫
q(x) ln p(x)

q(x)
dx, which is the definition of KL-divergence between continuous distri-

butions q(x) and p(x), Dα(q||p).

Note that it is symmetric between (p, α) and (q, 1 − α), thus limα→1Dα(p||q) =

DKL(p||q).
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Therefore, α-divergence includes KL-divergence as a special case. Some other special

cases are:

D−1(p||q) =
1

2

∫
(q(x)− p(x))2

q(x)
dx

D2(p||q) =
1

2

∫
(q(x)− p(x))2

p(x)
dx

D 1
2

= 2

∫
(
√
p(x)−

√
q(x))2dx

where
√
D 1

2
is the Hellinger distance we showed in the last subsection. But here it is defined

between continuous distributions p(x) and q(x).

Due to the properties of α-divergence and it being a general form of KL-divergence,

it is possible to assume that we can find a good α, which can measure the distance well

between two stationary distributions p and q in our model. Therefore, we define:

simα(p, q) =

∑n
i=1 p

α
i q

1−α
i

α(1− α)
.
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6 Evaluation

Now we have several methods to compute similarity scores for any pair of words in

WordNet via their stationary distributions. We are going to evaluate these measures by

calculating their correlations to human judgement of relatedness.

Due to a different scale of each set of scores, we will use Spearman’s rank correlation

coefficient to quantify the correlation between sets of judgements. This rank coefficient can

also capture some information about the relative ordering of scores. For two ranked sets of

n scores xi and yi with the difference di = xi − yi, Spearman’s ρ coefficient is defined as

follow:ed

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
.

If the tied ranks are considered, a corrected Spearman’s ρ coefficient is then defined:

ρ =
Cx + Cy −

∑n
i=1 d

2
i

2
√
CxCy

,

where

Cx =
n3 − n

12
−
∑
tx

t3x − tx
12

Cy =
n3 − n

12
−
∑
ty

t3y − ty
12

,

and tx and ty stand for the number of observations with the same rank order in x′is and y′is.

There are several popular datasets by human judgements of relatedness applied in

evaluating the similarity measures. The most widely used one is from Miller and Charles

,1991 [19], who repeated their experiments on 30 pairs of words. Even though individuals

can vary their judgements, the results summed up in Miller and Charles’ experiments are

still very close to the scores conducted by Rubenstein and Goodenough ,1965 [24], which

provide human judgements of semantic similarity for 65 pairs of words. Both datasets have

been scored on a scale of zero to four. Finkelstein et al., 2002 [8] offered a larger set of word

relatedness judgements, WordSimilarity-353 (WS-353, on a scale of zero to ten). However,

the WS-353 data contains a lot of word pairs that are not semantically related but still have

higher scores, such as ”computer - software”. So in our experiment, we will compute the

correlation to Miller and Charles’s (MC), Rubenstein and Goodenough’s (RG) and only 30

pairs judgements from WS-353 that are also included in MC.
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Figure 2: Spearman rank correlation between ZKL-divergence and human judgements

Although for ZKL-divergence, Hughes and Ramage recommended to set γ = 2, we

found when γ = 30 the ZKL-divergence will give the best Spearman correlation, ρ = .926

for Miller and Charles data (shown in Figure 3). The reason causing the above difference

is because, on one hand, we were using a different part of speech tagger from Hughes and

Ramage’s, which was the Stanford maximum entropy tagger. On the other hand, we our-

selves specified some steps that are not detailed in Hughes and Ramage’s graph construction,

such as how to weight the semantic relationships directly included in WordNet and to use

a Bayesian estimate based on the SemCor frequency counts to weight the edges between

TokenPOS and Synset nodes.

Figure 3 shows that the α-divergence provides ρ = .937 for Miller and Charles when

α = .9, which outperforms the ZKL-divergence. We also generate some other similarity

measures based on the three datasets and α-divergence also shows the best performance in

Table 1. We use the WordNet::Similarity package [22] to compute the scores for four existing

measure: wup [30], vector [21], lesk [2] and path. path and wup are based on path lengths,

whereas vector and lesk are based on the glosses and they both can cross part of speech

boundaries.
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Figure 3: Spearman rank correlation between α-divergence and human judgements

Table 1.

Different relatedness measures’ Spearman rank correlation ρ’s with human judgements.

Relatedness measures ρ with MC ρ with RG ρ with WS-353

α-divergence (α = .9) .937 .816 .852

ZKL-divergence (γ = 30) .926 .775 .842

Hellinger .820 .718 .718

Cosine .883 .736 .842

wup .769 .697 .715

vector .891 .721 .813

path .732 .702 .680

lesk .826 .664 .814
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7 Conclusion

In this project, we have introduced and re-implemented Hughes and Ramage’s Markov

chain model on WordNet. According to their idea, we can compute a stationary distribution

for each word by using a random walk algorithm. To measure the lexical semantic relat-

edness between a word pair, we propose to use the α-divergence, which is computing the

divergence between two distributions of the two words. We have tuned the parameter α

based on comparing the correlation with human judgements of relatedness. Our measure

outperforms the existing measures, including the ZKL-divergence that was shown having the

best score by Hughes and Ramage in 2007.
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