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Abstract

Text classification tasks on Twitter corpora are challenging because the language

people use on Twitter is very unstable and unpredictable. These tasks are also mean-

ingful since Twitter has become a platform where massive information exchanging

and interaction is happening every moment. Our work aims to solve one such kind of

problem, Tweets Authorship Attribution. Traditional methods for text classification

use classifiers based on manually selected features while our system uses text embed-

ding as low-level features. According to the level of text embedding, our system can

be categorized as character, sub-word, word, or document based. In order to find

more indicative features, we use Convolutional Neural Networks to extract higher-

level features from the basic text representations. With the higher-level features,

we use neural network classifier to predict the authorship of tweets. We conduct

experiments on the dataset from the work by Schwartz et. al using text embed-

ding methods on different levels and compare our experiment results with state-of-art

methods. Our results we get show that convolutional neural network systems based

on text embeddings are accurate.
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1 Introduction

Being offered the opportunity to own work is in most cases a pleasure, but this

is not always true. Occasionally, there are cases where people would rather hide due

to the danger of being identified as the author of their ideas, discoveries or, perhaps,

protests. Usually it is fine and we may feel better not to know the authorship, if that

is the author’s will. But somehow not knowing the true authorship could also cause a

problem. Think about the rise of Twitterbots (which are Artificial Intelligent machine

programs that can automatically generate tweets) and the potential problems that

could arise if we cannot distinguish a Twitterbot from a human. One example of

such Twitterbots is DeepDrumpf, which is created to mimic the twittering style of

Mr. Donald Trump.

The work done by Mosteller and Wallace (1964) about the authorship of disputed

Federalist Papers marked the start of the study of authorship attribution. [1] Years

have passed, and these articles have been studied thoroughly enough so the complete

list of authorship can now be found on Wikipedia. Many such authorship attribu-

tion work has been done, especially for tasks with long documents like identifying

anonymous articles. If we take a look at these articles, we will find that most of them

are texts with thousands of words. Compared to these long texts, twitter texts are

relatively short and irregular. If we want to solve the authorship attribution task on

Twitter, we have to consider it as a different task.

In this work, we build a network system based on text embeddings for Tweets

authorship attribution problem. We use a text embeddings and feature extraction
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strategy instead of feature engineering. We conduct experiments for our system on

different levels of text embeddings and compare their performances with state-of-

the-art methods. Among our systems built on different embeddings, the character

based system achieve the best result. Under the same condition, it improves on other

systems significantly. We also study the document embedding system thoroughly and

give analyses of its results.
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2 Background

In this project, we design text classification system using convolutional neural

network based on text embeddings. In this chapter, we will give explanation for the

background and introduce some related works to our project. We will talk about

the definition of text classification task, the idea of text embedding and the concept

of implicit feature engineering. We will also give details about dataset and training

strategies.

2.1 Natural Language Processing and Text Clas-

sification

Our work is in the field of Natural Language Processing (NLP), which is a sub-

field of Artificial Intelligence. NLP focuses on the study of the interaction between

machine and human natural language. NLP tasks include word sense disambiguation,

machine translation, language modeling, syntactic parsing, etc. NLP is closely related

to statistics since most NLP systems study the statistics of corpora and rely on the

most significant ones. Statistical methodologies are also commonly seen as the essence

of NLP systems.

Text classification has long been a problem in Natural Language Processing (NLP).

Text classification tasks are usually to label a text with a class label, according to

its attributes such as sentiment positivity, authorship or whether it is humor. For
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example, authorship attribution (AA) is one instance of the problems that need to

be solved. Authorship attribution can be seen as a general classification problem.

Given an unlabeled set of texts and a set of names of candidate authors, assign each

text with an author name. Depending on whether the set of author is determinant,

authorship attribution can be either closed (the set of author is determinant) or open

(indeterminate).

Many previous works have been done in authorship attribution, especially for

tasks with long documents such as identifying anonymous articles [1]. This work by

Mosteller and Wallace about the authorship of the disputed Federalist Papers marked

the start of the study of authorship attribution. The difference between their work

and ours is that the former used inference methods and was done on long text while

ours uses learning methods and is done on tweets which are relatively short.

Authorship attribution on Twitter is a meaningful and challenging task. It is

meaningful since twitter has become a platform where massive information exchang-

ing and interaction is happening every moment. Authorship attribution on tweets is

challenging because Twitter language is so different from formal written languages.

Twitter language is very unstable and unpredictable. Various expressions are in-

vented and abandoned regularly there. Hence we can hardly generalize consistent

and convincing knowledge about Twitter corpora. This limits the performance of

most traditional methods since they are heavily dependent on the knowledge base of

language. Therefore authorship attribution on Twitter is still a problem to be solved.

Other text classification problems include sentiment analysis, emoji prediction and

figurative language (humor, irony, sarcasm, etc.) detection. They are very similar to

authorship attribution problem, but they are usually binary classification problems.

Given an unlabeled set of text, assign each text with a label of 1 or 0, indicating

whether the text tends to be positive/ironic or negative/not ironic, etc.
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2.2 Terminology

2.2.1 N-grams

N-gram refers to a sequence of n consecutive objects, depending on what n-gram

is being used. 1-gram is usually called unigram, 2-gram bigram, 3-gram trigram,

then four-gram, five-gram and so on. For example, “I play” is a word bigram in

the sentence “I play a star in today’s play.” So is “play a”. We can also say “I p”

is a character trigram in the same sentence. Note that we count the space as a

character in this case, but we do not have to. The statistics of N-grams are widely

used in NLP problems.

2.2.2 Word Co-occurrence Matrix

If two words appear close enough so that they are inside a context window of

a certain size, then we call this relationship word co-occurrence. Note that this

relationship is symmetric. A word co-occurrence matrix is a logical data structure

to store word co-occurrence information. Here is an example. Suppose our corpus

consists of only one sentence, “I play a star in today’s play.” Let the context window

size be 4, which means 4 consecutive words are considered to be in one context.

Word I play a star in today’s

I 0 1 1 1 0 0

play 1 0 1 2 2 1

a 1 1 0 1 1 1

star 1 2 1 0 1 1

in 0 2 1 1 0 1

today’s 0 1 1 1 1 0
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As shown above, the matrix, called C, is an n by n matrix where n is the vocab-

ulary size of the corpus (n = 6 in this case). The matrix element Cij denotes the

frequency of word co-occurrence of word pair wi and wj. By this definition, we can

assert that the word co-occurrence matrix is a symmetric matrix because of the sym-

metric property of co-occurrence. For convenience, the diagonal elements are often

set as 0, since we care more about the co-occurrence relationships between different

words.

2.3 Explicit Feature Engineering

Almost all classification systems end up with a classifier. An important step before

in creating a classifier is to find variables (a.k.a. features) and to transform the text

into a numerical representation of these features. The power of a classification system

is largely determined by the feature selection step. Features that are indicative and

easy to measure are necessary for the classification system to be accurate. After we

represent the text with features, the original text is then discarded and will never be

used in later steps. This means we must put all our faith in the features. For example,

the number of positive/negative words used is usually considered as a good feature

for sentiment analysis while the length of text may not be equally powerful. As an

example, consider the sentiment analysis task consisting of two texts -“I like this

movie! Its plot is interesting!” -“This book is too abstruse for a student.”. If we can

use only one feature for representation - the number of positive/negative words, then

we represent the first text with a integer ’2’ because of the “like” and “interesting”

used in it, and similarly ’-1’ for the second because of appearance of “abstruse”. With

this feature, we can simply build a linear classifier which sets ’0’ as the threshold to

decide the positivity of the sentiment. But if the only one feature we can choose is
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the length of text, then we will represent the two texts above by integers ’8’ and ’8’.

In this case, they cannot be classified differently with any classifier. Note that we

discuss the power of a feature in general because it is indeed possible to find cases for

almost any feature where it is not good.

Usually the selected features are ”meaningful” so that each feature is well defined

and its meaning is clearly known by users of the system. A very convenient and

popular way to select features is the Bag-of-Words (BOW) model. The simplest

BOW model counts the frequency of every word in the vocabulary, from which it

generates a vector representation. To make this feature set more efficient, the vector

is usually truncated to a shorter size by setting a threshold on the minimum of word

counts, and removing function words like article ”the” and preposition ”to” from the

set. Many works combine BOW features with different classifiers such as SVM or

logistic regression for the classification system. [2][3]

Apart from BOW features, some tasks require more precise features depending on

the complexity of the task, and sometimes features are manually defined. Manually

defined features can be the count of n-grams or part-of-speech n-grams. Generally

these complex features are also based on statistics of the corpus. The advantage of

this feature strategy is that we know exactly the features we choose and why we

choose them. This enables us to understand the task and the strength and weakness

of our system. However it does have disadvantages. Selecting a good feature set

usually requires expert linguistic knowledge and a thorough study of the task. Also

a good feature set for one task may not generalize to other tasks.
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2.4 Implicit Feature Engineering

Just like we have many different classifiers, explicit feature selection is not the

only feature engineering strategy.

2.4.1 Word Embedding

The idea of implicit feature engineering is based on word embedding. Word em-

bedding is one kind of Vector Space Model, which uses vectors as bag of features to

represent a document or a query. The features are usually frequencies of terms in

the documents or other functions with frequency as a factor. The best part of this

model is that the problem to be solved now has a view from the embedded vector

space, and we can use measures from it. For example, we can use the cosine of the

angle between two vectors to measure the similarity between two documents. Bag of

Words feature is one example of Vector Space Model. But it is an embedding for the

whole text, rather than a single word.

A simple instance of embedding is one-hot embedding, where each word is mapped

to a sparse vector with length exactly equal to the vocabulary size. Each dimension of

the vector space can be seen as the binary feature of some word, denoting if it is that

word. A word vector has only one nonzero element in ”its own” dimension and zeros

in all other dimensions. This is very intuitive and sparsity is usually a good property.

However, one-hot embedding yields a dimension disaster as the vocabulary size grows.

Additionally, we cannot compute word similarity or do many other semantic analyses

using this embedding method, because any pair of two words will be perpendicular

to each other and thus totally independent under this representation. Because of all

these problems, it is rarely useful in real problems.

Nowadays, a popular family of word embedding method is called continuous word
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representation. In continuous word representation methods, words are mapped to

non-zeros dense vectors in a smaller vector space with fewer dimensions. Compared

with one-hot embedding, continuous representation methods can be seen as dimen-

sionality reduction methods. Useful information is gleaned together and redundant

dimensions are removed. Continuous word representation methods are so power-

ful and widely accepted that the concept of word embedding is almost the same as

continuous word representation methods. We will use word embedding to refer to

continuous word representation methods for the rest of this dissertation.

Normally, we need to give definition to all the dimensions in a Vector Space Model

so that we are able to decide the exact vector representation for each word. However,

word embedding is different. We do not define the dimensions, instead we simply

assume the number of dimensions. That means we only choose how many dimensions

we want the vector space to have. Then there come two questions. How can we

determine the value on each dimension if we do not know its meaning? How do we

determine the length?

The answer to the first question is that we cannot decide the exact value for each

dimension, since we cannot generate rules or scoring functions for them if we do not

know what they are. But we do not have to set these values by ourselves. The

strategy is to initialize them and optimize them numerically in a specific task. Since

these features are all abstract and obtained by optimization, it should be safe to say

that the number of dimensions and the power of the model have positive correlation.

Hence determining the number of dimensions becomes balancing the trade-off between

model capacity and computational cost.

Here is a brief example of word embedding. The embedding dimension is set as 5.
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Word Embedding vector

I [0.3, 0.4, 0.1, 0.4, 0.9]

play [0.7, 0.6, 0.5, 0.1, 0.2]

a [0.1, 0.3, 0.2, 0.7, 0.9]

star [0.8, 0.8, 0.9, 0.2, 0.1]

... ...

This brief example shows what the embedding vectors will be like. As shown in

the table, all the words are mapped to vectors with equal length. We are not able

to tell the exact meaning of each dimension, but we can assume that they all have

implicit meanings and their values are already optimized.

Word2vec

One popular word embedding model is the word2vec. In 2013, Mikolov showed

the power of word2vec and it soon became one of the mainstream word embedding

approaches in NLP. [4] One year later, the same group expanded word2vec into dis-

tributed document representation (doc2vec), which could also give a whole document

a vector representation. Both models are now widely used as text representation

methods in NLP tasks.

The word2vec model shows its capacity in solving the word analogy problem. A

word analogy problem is to find the target word d from word c based on a parallel

relationship from word a to word b. A word analogy problem could be semantic or

syntactic. A typical semantic word analogy problem could be ”Man is to King as

Woman is to...”. A typical syntactic word analogy problem could be ”dance is to

dancing as fly is to...”. As mentioned earlier, word embedding as a Vector Space

Model can map word to vectors. Hence the word analogy problems can be solved by

finding the nearest word vector to the vector of b−a+c. In the word2vec paper, there
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is a famous formula v(Woman) − v(Man) + v(King) = v(Queen), which explains

how the word analogy problem is solved. First, we use the embedding vectors of man,

woman and king to calculate v(Woman)−v(Man)+v(King). Then we compute the

cosine value between the resulting vector and the embedding vector for each word.

Finally we rank all the cosine values and find the closest (largest cosine value) word

”queen” as the answer to the word analogy problem. The success of word2vec model

on this task shows that the embedding vectors indeed inherit semantic information

from words.

The composition property is believed to be the key factor for the success of word

embedding in word analogy. One previous work tries to explain this property in a

mathematical way. In this paper, Gittens et al. studies the Skip-Gram model in

two aspects [5]. First, they make some assumptions about the distribution of word

in corpus. Based on these assumptions, they use mathematical and statistical proof

to provide a theoretical understanding of word composition property. Then, they

explain the relationship between Skip-gram model and the Sufficient Dimensional-

ity Reduction (SDR), which is a technique for reducing dimension of matrices. A

shorter feature list that keeps the most valuable information will greatly reduce the

classification cost and increase accuracy. The idea to extract needed word embedding

information from word co-occurrence matrix in SDR and Skip-gram are very similar.

But their training objectives are slightly different. SDR fits the entire probability

mass function of word co-occurrence P (x1, x2), while Skip-Gram fits conditional dis-

tributions P (x1|x2). Fitting the entire distribution is more precise, strictly speaking.

But fitting conditional distributions will greatly. reduce the cost and give similar

result. From this point of view, Skip-gram is a heuristic method for SDR.
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2.4.2 Feature Extraction, Convolutional Neural Network

In NLP tasks, n-grams are often chosen as default features for the representation

of word collocation in texts. But this could be difficult if we have no sense of what

kind(s) of n-grams could be useful for a certain problem. Recently, a trend [6] [7]

for solving text classification tasks is to break text into the smallest units and build

a representation for them. Then the scheme uses complex neural networks such

as convolutional neural network (CNN) or recurrent neural network (RNN) to find

abstract features upon the representations. This system configuration takes advantage

of the feature extraction ability of complex neural networks. The work [8] tries to

explain the mechanism of character-entry-CNN by showing that the features extracted

by CNN are specific n-grams. We believe this scheme could be very useful for finding

features for the classification when we have little knowledge of the corpus. We consider

a Twitter corpus as such a case.

Neural networks (a.k.a. artificial neural networks) are a family of configurations

used in machine learning. Its most interesting ability is that it can approximate

any function. Because of this, it can be used to fit any classification or regression

function. Imagine a classifier as a function which takes the features as input and

outputs a number as a label which indicates the class it belongs to. What if we do

not know what the desired classifier looks like but we can approximate it with a very

simple model? Yes, this is exactly what a neural network is!

Neural network gets its name because it is a hierachical network of neurons, which

are actually functions in particular forms. A neural network is actually a big function

F that consists of smaller functions f1, f2...fn as neurons, e.g., F = fn(f1, f2, ...).

A neuron function f = σ(g(~x)) is usually divided into two parts, the linear function

g(~x) and the activation function σ(y). The linear function is always defined as g(~x) =

12



Figure 2.1: Neural Network

ωT~x + b, which is the general representation of a linear map from Rn → R, given

~x ∈ Rn. There are several commonly used activation functions such as tanh or the

sigmoid function σ(y) = (1 + e−y)−1. If we do not use activation functions, then the

neuron is simply a linear function and the whole network will also be linear because

it is composed of only linear functions, which means it can only approximate linear

functions. So, having an activation function in a neuron is important for a neural

network. From the definition, we know that each neuron outputs a single value.

Generally, if we put the outputs of many neurons together, we will get a vector,

and this vector can be again used as input for subsequent neurons. This makes the

hierachical structure of a neural network. A layer is the set of neurons which work

together on the same input vector and contribute to the same vector which will be

used by the next layer.

Now thousands or even millions of neurons work together, approximating the

desired function. Since neural network has already given us the structure, in order

to approximate the desired function with neural network, we only need to optimize

the parameters ~θ = (W,B) (see Fig 2.1) in the network. This is an optimization

13



problem with the form F (~θ, ~x). We use the data with pairs of (~x, y) to optimize the

parameters ~θ. The optimization strategy is usually to define a loss function to use

gradient strategies, such as stochastic gradient descent [9]. Commonly chosen loss

functions include squared error between the current network output and the data y

value, L = (y− y0)2. With squared error loss function, we can compute the gradients

of the parameters of the last layer. Because the whole network is a composition of

functions, we can apply the chain rule to all other parameters and compute their

gradients layer by layer, from the last to the beginning. Since the gradients are

computed in reverse order, this process is often referred to back propagation. The

optimization of network parameters is usually called the training of the network. And

after we finish the optimization, we finish the approximation of the desired function.

Then our network is ready to go! This is just the simplest structure of a neural

network and is called fully connected network. Nowadays there are many kinds of

neural networks with more complex structures.

A complete system with implicit feature engineering strategy which uses word

embedding as text representation and convolutionl neural network as feature extractor

solves the text classification task in this way. For example, suppose we want to know

if the tweet “I play a star in today’s play” (7 words) is ironic. First we use a large

corpus such as Wikipedia to train an embedding model. This model can map any

word to a vector with a fixed length. Then we use this model as a look-up table

and transform all the words in the tweet to word vectors w1 through w7. After that,

we use convolutional neural networks to generate features from the word embedding

vector sequence. Then we use a classification layer afterwards. In conclusion, this

system takes as input pure text, then after word embedding and higher-level feature

extraction, feeds the features into classifier and produces the classification result. We

will explain all these in details in Chapter 3.
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2.5 Embedding on other levels

The idea of mapping words to word vectors is great, but it still can be improved

by using embedding at a different level. Besides word embedding methods, people

also extend the study to lower or higher level embeddings. On decomposing a word

and analyzing its morphology information, there are works on sub-word or character

embeddings (e.g. [10] [7]). For building a general model for one entire sentence or

document, there are works on document embedding [11].

2.5.1 Sub-word Embedding

Some previous works [12] [13] [14] point out that including morphological infor-

mation may help word embedding. In these papers, the authors argue that there

is one disadvantage of the word2vec model. Because it assigns completely different

vectors to different word types. This fails to include word morphological information

in word embedding. This means words with similar morphemes, for example worker

and working, should share some embedding parameters but they don’t. These works

build morphological word-morpheme mapping based on existing dictionaries and im-

prove the original word embedding in different tasks to different degrees.

Among all the sub-word embedding methods, fasttext [10] designed by Facebook

Research is the widely accepted since it is the most time efficient embedding method

for text classification tasks. In the paper, Mikolov et al. introduce a new way to

represent a word not only by itself but also with its n-grams as sub-words. The

model assigns each character n-gram a vector and maps the sub-word embedding to

classes numbered of 1 to N with a hash function, where N is the number of hash

classes. A word is represented by its index in the vocabulary together with its sub-

word vector classes. The authors train the word prediction model with sub-word
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based word vectors and it learns a better word representation. The hash function is

designed to reduce the time cost, and it does so significantly. The authors show that

this model has better performances in several tasks including word analogy and word

similarity.

Again, consider the irony detection task for the tweet “The workers are working

in the workshop.”. Recall that in word2vec model, we represent the tweet with a

sequence of word vectors w1 through w7. If we use a sub-word embedding model,

instead of a word representation, we use sub-word representation. We segment the

words in this tweet into sub-words “The work ers are work ing in the work shop”

(10 sub-words). Then we represent the tweet with a sequence of sub-word vectors s1

through s10. By doing this, we share parameters among the representations of worker,

working and workshop. As the vocabulary grows larger, the advantage of sharing

parameters will become more and more significant. To solve text classification tasks

with sub-word embeddings, the other parts of higher-level feature extraction and

classification are very similar to that in word embeddings.

In another work [15], Mikolov et al. introduce a new text classification method

using fasttext. They use an embedding and classifier model. To represent a document,

the model uses as input the average of fasttext word embedding of words contained

in the document. Since the fasttex embedding is time efficient, the whole model

outperforms all other state-of-art method in terms of time cost.

2.5.2 Character Embedding

We also replace a word embeddings with character embeddings. Consider the

following example: “The workers are working in the workshop.” In character embed-

ding, we segment all the words in this tweet into characters. This tweet will become
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a sequence of 33 characters, not including spaces and the period. Then we represent

the tweet with a sequence of character vectors c1 through c33. The advantage of using

character embeddings is that the character vocabulary is extremely small compared

to word or sub-word and can largely reduce the cost of embedding. But there is no

free lunch. One character does not contain much information, just like one pixel in

a graph. Hence we need more complicated feature extraction models for character

embedding to get equally good features for the whole text. This is where the cost is

finally paid.

There are several works discussing the design of character representations [6] [8].

In previous work [7], shrestha et al. use character-level embedding as input and both

convolutional neural network (CNN) and recurrent neural network (RNN) to extract

local and long-term dependencies based on the embeddings. This model is shown to

be reliable in many different text classification tasks.

The combination of two neural networks in this paper is worth noting. Both

CNN and RNN are used in previous work for feature extraction. CNN is indeed

able of capturing dependencies. But there is a problem with CNN. In these works,

the convolution kernels are chosen to be small. We will talk about the meaning

of convolution kernel later, but one can assume that kernel is an abstract context

window. If a kernel is small, the context window for possible dependencies will be

small. In order to include long-term dependencies, researchers most build a very

deep network which increase the computational cost. In particular, when we embed

on character level, the length of dependency can be very long. But with RNN,

dependencies of any length can be captured in only one RNN layer. So using CNN and

RNN together can capture both local and long-term dependencies. Such a complex

and deep network may work well on long texts, but not neccessarily be good on tweets.
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2.5.3 Document Embedding

Document embedding is different from the embedding methods we discussed pre-

viously. These methods assign each different entity at their levels a vector, and then

represent the whole document as a sequence of vectors. Document vectors do not do

this. Document embedding builds a direct document to vector mapping rather than

a combination of embeddings on lower levels. For example, for the tweet I play a star

in today’s play (7 words), document embedding represent this tweet with one single

vector d. The advantage of this method is that we can use the document vector d as

the features of the document and feed that to a classifier directly. In [15], Mikolov

et al. give an interesting interpretation of document embedding. That is, document

embedding is a method which saves the intermediate document vector for reuse. It

uses non-trivial constructions to make the document vector unique, and does more

than simply averaging word vectors.

A representative document embedding method is doc2vec in [11]. The idea of

doc2vec model is based on word2vec model. The doc2vec model initializes random

vectors to represent words or documents and then optimize the representation by

fitting the document-word co-occurrence information. This is very similar to the idea

of word2vec.

Since the doc2vec paper was published, there have been many discussions about

its validity. There are two frequently asked questions. One is that whether doc2vec

really outperforms other baselines on other data sets. The other one is that out of the

two models in the doc2vec paper, which one is better? However, many researchers

only reported their experiment result as being worse than that of the doc2vec paper,

without explanation. Rigorous academic discussion about these issues are missing.

The work by Lau and Baldwin [16], first reported that doc2vec shows its advantage

18



in text-level tasks with an empirical experimented evaluation. They conduct experi-

ments including a forum task duplication test and sentiment analysis. They compare

doc2vec embedding with component-wise mean of word2vec as document embedding

and ngram maximum likelihood estimation baseline. In both tasks, doc2vec scores

higher accuracies overall. This work also compares the two models in the doc2vec

paper and reports that the Distributed Bag of Words (DBOW) model shows higher

accuracy in both tasks. Although it surprisingly (or not?) contradicts the conclu-

sion of the doc2vec paper, it is the first to provide rigorous experimental results and

analyses.

Doc2vec model provides a new approach to treat a document as one entity, which

can be seen as a combination of text representation and feature extraction. It is shown

that many text classification problems can be solved by using doc2vec and choosing

classifier carefully. That is the reason we try it for tweet authorship attribution.

2.6 Training Strategies for Embedding

Two strategies for training the character, sub-word, word or document embeddings

are seen in previous works.

2.6.1 Pre-trained Embedding

The first strategy, used in word2vec, doc2vec, GloVe [17] and fasttext, is to pre-

train the embedding individually and independently from the task where it will be

used. Usually the pre-training task is to fit word co-occurrence statistics of some

large and regular corpus like Wikipedia. The advantage of this strategy is that the

embedding is meaningful since it roots from the co-occurrence information, and it can

be reused in different tasks once trained. The pre-trained strategy generally shows
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better performance than joint training strategy. One possible explanation is that it

can be seen as multitask learning [18].

2.6.2 Joint Training

The second strategy is to add an embedding layer in the network, and then jointly

train the embedding parameters and network parameters to optimize the classification

target function. The advantage of this strategy is that this embedding is trained

specifically for the task and thus can be more efficient. But on the other hand, this

embedding may not be meaningful without the task.

We use the joint training strategy in our system. As said earlier, this is because

that Twitter language is very unstable and unpredictable, thus having a reliable

reusable embedding for tweets is difficult.

2.7 Data set

The dataset we use is a subset from previous works [19] [6]. The data set consists

of about 9,000 authors with up to 1,000 tweets each. Each tweet is a single line of

text without other information about the author. The dataset has been preprocessed

with several substitution rules. User names are substituted by an initial ‘N’, URLs

by an initial ‘U’ and numbers by an initial ‘R’. We believe the data provider does this

in order to keep the usage of these symbols while minimizing the noise.

Due to the information privacy-preserving principle of Twitter, this dataset is not

downloadable directly. We obtain this dataset from one of the previous researchers

directly. We have used and will only use this data for this research.
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3 System Description

We build several different models for Tweets Authorship Attribution. As shown

in Figure 3.1, their structures are similar to each other and can be roughly divided

into three parts: the text representation, feature extraction, and the classifier. We

will explain our system by parts.

Figure 3.1: System Overview
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3.1 Text Representation

The first part of our system is text representation. The text representation models

we use in different systems are slightly different. But they do the same thing, which

is to convert pure text into numerical representations.

3.1.1 Word Embedding, word2vec

In word2vec, two different models are chosen to train the language model, namely

Continuous Bag of Words (CBOW) and Skip-gram (SG). The CBOW model (Figure

3.2) predicts word at specific position t from its context. The input of CBOW model is

all the context words. It sums the vector representation (word embeddings) of context

words to get a context vector vc. After that, it computes the dot product of the

context vector vc and each candidate word wt for position t and then normalizes with

the soft-max function to generate an output as distribution. The soft-max function

is commonly used in neural network classifiers for converting the final output into a

categorical distribution. It is defined as:

σ(~x)i =
exp(xi)∑
j exp(xj)

Explaining a neural network usually involves two main phases, forward and back

propagation. Forward propagation is how the neural network works from the input

to the output. The back propagation is how the gradients of the parameters are

computed. It gets its name because the gradient computed by the chain rule is

propagated from the output to the input. We will go through forward and back

propagation in detail to explain the model.
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Continuous Bag of Words Model

Forward Propagation

We now explain the forward propagation of CBOW, given a word sequence w1, w2, ..., wT .

1. We start with initializing two word embedding matrices V and U of size N×D,

where N is the vocalulary size, and D is the embedding size that we want. Each

word wt corresponds to two different representations vt and ut in this model.

vt is used in the input side, while ut is used in the output side. In subsequent

analyses, V is often referred as input vector, and U as the output vector.

2. The input for the model is the sequence of one-hot embedding vectors for words

in the sequence o1, o2, ..., oT . We use V >oi as the word embedding to represent

word wi. This matrix works like a dictionary because each row is the D dimen-

sional word embedding for the associated word. It works just like a look up

table.

vi = V >oi

3. Then we compute the average of all the embedding vectors inside the context

window with length k to represent the context vector:

vc =
1

2k
(vt−k + ...+ vt+k)

4. Next, we compute the dot product between the context vector and each word

candidate wi using the output vector ui. That is to compute

yj = u>j vc
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5. Finally we use all the yj in the soft-max function to calculate the final categorical

distribution over the word candidates.

log p(wt|wt−k, ..., wt+k)m =
exp(ym)∑
j exp(yj)

Figure 3.2: Structure of Continuous Bag of Words

Back Propagation

In back propagation, we will update the parameters to maximize the conditional

probability of predicting the correct word at position t given the context:

log p(wOut|wIn) = log p(wt|wt−k, ..., wt+k)]
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where k is the window size. In order to do this, we define the loss function as

Ej′ = − log p(wt|wt−k, ..., wt+k) = − log
exp(yj′)∑
j exp(yj)

= −yj′ + log
∑
j

exp(yj)

where wj′ is any word candidate at position t. Our goal is to minimize this loss func-

tion. Because minimizing this loss function will maximize the conditional probability

of the seen word given its context words. We will derive the update equation of the

parameters.

Let us first take the derivative of the loss function with respect to yj′ . Note that

this means we are now updating the j′th row of U according to the input and output

pair (wt−k, ..., wt+k, wj′).

∂E

∂yj′
=
∂[−ym + log

∑
j exp(yj)]

∂yj′

= −Ij′ +
exp(yj′)∑
j exp(yj)

where Ij′ = 1 if wj′ is the actual word, otherwise Ij′ = 0. Remember that

yj′ = u>j′vc

Hence the gradient of uij′ is calculated according to the chain rule as follows:

∂E

∂uij′
=

∂E

∂yj′
· ∂yj

′

∂uij′
=

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· vci
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The update equation for U is:

uij′ = uij′ − α ·

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· 1

2k
(vt−k + ...+ vt+k)

i

where α is called the learning rate or step size.

Note that this update equation can be interpreted in the following way. Recall

that vc is the context vector. If the word wj′ is exactly the word seen at the position

t. Ij′ will be 1 and the subtracted term becomes negative. Then we actually add a

portion of vc to uj′ , thus making uj′ closer to vc and all the context words. If the word

wj′ is not the actual word, then we subtract a portion of vc from uj′ , thus making uj′

further from vc and all the context words.

The update function for V is similar, according to the chain rule:

∂E

∂vfi
=

∂E

∂yj′
· ∂yj

′

∂vci
· ∂vci
∂vfi

=
∑
j′

{

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· uij′ ·

1

2k
}

where f is the indices of words that are in the context window wt. Hence,

vfi = vfi − α ·
∑
j′

{

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· uij′ ·

1

2k
}

It can also be interpreted in a similar way. We add a positive portion of the actual

word um to each context word, making each of them closer to the actuall word. On

the other hand we subtract a portion of word that are not seen at position t from

each context word, making each of them away from those words.

This is how we update the word embedding matrices V and U in CBOW model.
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Skip-gram Model

Another model for word2vec word embedding pre-traininig is the Skip-gram (SG)

model. SG does the opposite of CBOW model. Given a word wt, it predicts context

word at all context position i. The input of SG model is the word vector wt at

position t. Then for each context position i, it computes the dot product of the word

vector and each candidate word wi for position i and then normalizes with soft-max

to generate an output as distribution. The forward propagation and back propagation

of SG model are very similar to those of CBOW model. Hence we do not go through

them in details. In both models, we train two matrices of word embeddings, namely

Figure 3.3: Structure of Skip-Gram

V and U . After they are trained, word occurrence information is contained within

the embedding layer. V and U can be seen as two different and independent set of

representations for one vocabulary. The best thing is that they work as dictionaries.

So we can save the embedding matrices for reuse; when we need word embedding for

a word, we can simply look up the matrix and find the vector. Usually we only need

one of them and we usually choose the input vector V for reuse.
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There is also a joint training strategy for word embedding. We do not train a

reusable word embedding matrix. When we need word embeddings, we add a word

embedding step containing embedding matrix V into the system. Then we jointly

train the other parameters and this task specific word embedding matrix together.

The advantage of this strategy is that task specific word embedding can usually be

tuned to fit the task well.

In our system, we do not directly use word2vec, but the word2vec model is the

foundation of the document embedding model we use, which is the doc2vec. Our

system with word embedding configuration actually uses joint training strategy. The

joint training strategy for word, sub-word and character embedding models are almost

exactly the same.

3.1.2 Document Embedding, doc2vec

The doc2vec model is based on the word2vec model. It adds an embedding vector

for the whole document to the prediction task and optimize both the word embeddings

and the document embedding at the same time. Doc2vec extends the Continuous Bag

of Words (CBOW) and Skip-gram (SG) models and creates two similar models named

Distributed Memory (DM) and Distributed Bag of Words (DBOW), respectively.

Distributed Memory Model

DM model is an extended version of CBOW model. It adds a document vector

vd to the input of CBOW (see Fig 3.4). Before taking the dot product, the model

adds the document vector vd into the average context vector vc. Then it takes dot

product of the resulting vector vc and each candidate word wt for position t and then

and then normalizes.
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Forward Propagation

The forward propagation of DM model is almost the same as the CBOW model,

except that we now have a document vector as input.

1. Initialize word embedding matrices V and U with size N×D, and a document

embedding vector with length D.

2. The input for the model is the sequence of one-hot embedding vectors for words

in the sequence o1, o2, ..., oT , and the document embedding vector vd.

Note that the length of vd is equal to the word embedding vector

V >oi.

3. Then we compute the average of all the embedding vectors inside the context

window with length k and the document vector to represent the context-

topic vector:

vc+d =
1

2k + 1
(vt−k + ...+ vt+k + vd)

4. Next, we compute the dot product between the context-topic vector and each

word candidate wi using the output vector ui. That is to compute

yj = u>j vc+d

5. Finally we use all yj in the soft-max function to calculate the final categorical

distribution over the word candidates, which is the same as word2vec.

log p(wt|wt−k, ..., wt+k)m =
exp(ym)∑
j exp(yj)
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Figure 3.4: Structure of Distributed Memory

Back Propagation

In back propagation, we will update the parameters to maximize the conditional

probability of getting the correct word at position t given the context and topic:

log p(wOut|wIn) = log p(wt|wt−k, ..., wt+k,doc)]

where k is the window size.

Here, if we consider the document just as topic word and consider it as part of

the context, then the optimization problem of DM is exactly the same as CBOW. We

can use the same loss function.

Ej′ = − log p(wt|wt−k, ..., wt+k) = − log
exp(yj′)∑
j exp(yj)

= −yj′ + log
∑
j

exp(yj)

where wj′ is any word candidate at position t. The update equations for V and U

are almost the same only except for some trivial differences. Let’s derive the update

equation for vd. Since we see the topic word as a word which is equivalent to context
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words, they should have similar update equations. Recall that the update equation

for word embedding matrix V :

vfi = vfi − α ·
∑
j′

{

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· uij′ ·

1

2k
}

where f is the index of word that is in the context window wt. For the document

embedding vector vd, we only need to change the constant 1
2k

to 1
2k+1

.

vdi = vdi − α ·
∑
j′

{

[
−Ij′ +

exp(yj′)∑
j exp(yj)

]
· uij′ ·

1

2k + 1
}

We can also try to understand what happens when we update the document

embedding vector. Since we train the model for all positions, all words in the sentence

will finally be actual words. Hence, we add a proportion of each word embedding

vectors in the sentence to the document embedding, making the document topic

closer to each of them. This is how we update the document embedding vector vd in

DM model.

Distributed Bag of Words Model

Similarly, Distributed Bag of Words model (DBOW) is an extended version of

Skip-gram (SG) model. It replaces the input word vector wt with the document

vector wd and predicts words for each surrounding position i just like in the SG

model. Since the document embedding vector has exactly the same length as word

embedding vectors, both the forward and back propagation of DBOW are exactly the

same as SG. We do not go through them in details.

In both models, we train two word embeddings matrices and a document embed-

ding vector, namely V , U and vd. This is the case when we have no pre-trained word

embeddings. The structure of doc2vec also allows us to use pre-trained word embed-
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ding vectors to train a document embedding. If we now have pre-trained V and U ,

we can use them directly in the forward propagation and “freeze” them in the back

propagation. The only thing we need to train is the document vector vd. Therefore

with pre-trained word embedding, doc2vec will be very efficient. Using trained word

embedding to get document vector is referred as “infer” by doc2vec users.

In word2vec, we have the property that similar words tend to have similar embed-

dings. It is similar in doc2vec as well. Actually it does have. The document vector is

also called topic vector in doc2vec paper [11], because documents with similar topic

tend to have similar vectors. This is what we want for text classification tasks.

We implement the whole word embedding step with the help of gensim [20] NLP

package on Python. This package offers several operable input parameters and train-

ing approaches. We set DM model as the training approach and other entries with de-

fault parameters given by the package. See https://github.com/JeromWang/Authorship-

Attribution-with-Doc2vec

3.1.3 Character Embedding

As mentioned earlier, embedding models can have two strategies. We use the

pre-training only strategy for document embedding and joint training for other em-

beddings including character embedding.

Suppose that the text sequence is w1, w2, ..., wT . We split all the words into

characters and represent the text as c1, c2, ..., cL, which is a sequence of characters

of length L. First, we represent each character with one-hot embedding. Now text

is represented by o1, o2, ..., oL. This step can be seen as a Vector Space Model. [21]

The dimension of vector space for ASCII characters is 128, and it will be larger if the

twitter corpus contains some non-ASCII characters. We do not want to use sparse
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vectors with 100-200 dimensions to represent 100-200 items. Hence we project it onto

a lower-dimensional space. This is done by multiplying the one-hot vectors with a

character embedding matrix C with size N × D, where N is the vocabulary size of

characters and D is the character embedding size we want. Then each character is

represented as a dense vector ci = C>oi. The text is represented by a sequence of

character embedding (c1, c2, ..., cL). The character embedding matrix C is trained

jointly with other parameters. We implement the one-hot and character embedding

matrix with Keras library [22] in Python.

3.1.4 Sub-word Segmentation and Embedding

The work, Mikolov et al. tries to enrich word representations with sub-word

information and it improves the original word embedding methods [15]. They show

that sub-word is an efficient level for text representation. However, the method

used to generate sub-words in their work [15] divides words into fix length n-grams,

which fails to use word morphology knowledge. We believe that Language is never,

ever, ever, random [23]. Sub-words as character n-grams could be detected by our

knowledge, which is conveyed by their frequencies.

We employ the byte-pair-encoding (BPE) algorithm [24] which is a frequency

based text compression algorithm to detect the sub-words. The original algorithm

first splits the text into bytes (characters). Then it ranks all the byte pairs which are

simply bi-grams according to their frequencies. The most frequent byte pairs are then

joined together and encoded by a single byte. By repeating this simple process, the

original text will be compressed. In our system, we do not use BPE as a compression

algorithm. Instead, we use this algorithm to find sub-words as n-grams with high

frequencies for word segmentation. This can be achieved if we only join characters
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together but do not replace them with new symbols. This is not used for the first

time in NLP, it was also shown to be successful in the work [25].

For example, suppose the text to be segmented is

S0 = workers work in workshop.

First, we split S0 into character sequence

S1 = w o r k e r s w o r k i n w o r k s h o p .

Then in the first iteration, we choose the most frequent bi-gram wo and join them

together

S2 = wo r k e r s wo r k i n wo r k s h o p .

In the second iteration, we choose the most frequent bi-gram wor and join them

together

S3 = wor k e r s wor k i n wor k s h o p .

Similarly, the next bi-gram should be work

S4 = work e r s work i n work s h o p .

We expect that the text are represented by a sub-word sequence after the algorithm

finishes in N iterations, and this is the result.

SN = work er s work in work shop .

After word segmentation, the text is now sub-word sequences. In order to use

sub-word embedding to represent the text, we first represent each sub-word type

with a one-hot vector. The one-hot vector for the ith sub-word in vocabulary is

a sparse binary vector oi which has 1 as the ith element and all 0 for others. We

project this embedding hyperspace onto a smaller hyperspace by multiplying the

one-hot embedding with a sub-word embedding matrix S with size N × D, where

N is the sub-word vocabulary size and D is the dimension for the target embedding
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hyperspace. Now each sub-word is represented by a dense vector si = S>oi, and the

text with length of T is represented by a sequence of sub-word embedding vectors

(s1, s2, ..., sT ). The sub-word embedding matrix S is trained jointly. We implement

the one-hot and sub-word embedding matrix with Keras library in Python.

3.2 Feature Extraction

The second part of our system extracts features based on the text embeddings.

Given the text embeddings, we will use a convolutional neural network to extract the

features. Again, the features extracted by CNN are hard to interpret. But as we

optimize the loss function, we believe that everything in our system works as they

are expected. Our convolutional neural network can be used on any level of text

embeddings.

A Convolutional Neural Network is a neural network with specific structures.

Our convolutional neural network is a one-layer multi-channel convolutional neural

network that works as follows:

The input of the convolution layer is the text embedding sequence. Let us use the

word embedding v1, v2, ..., vL as an example, where L is the sequence length. If we

set the embedding dimension to be D, then our text will be represented by a matrix

with size D×T . The convolution operation is done with a set of convolution kernels.

Each kernel is also a matrix with size D × k, where the k is called the kernel size.

Our convolution layer consists of two steps.

1. Calculate the convolutions of the resulting vector sequence from the sub-word

embedding vector sequence T = (v1, v2, ..., vL) and convolution kernels. The

kernel size r represents the context window of feature extraction and the kernel
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Figure 3.5: Multi-channel Convolution Layer

number m represents the number of features.

fm′

l=1:L = σ(km ∗ [vl−r/2+1, ..., vl, .., vl+r/2]), σ(x) = max{0, x}

where m is the kernel number and σ is the activation function. The convolution

operation ∗ works like Figure 3.6. We calculate the element-wise product and

then sum them together. After that, we calculate the activation function value

of the sum.

2. Then the pooling step chooses the maximum as the abstract feature from all

the convolutions

fm = max{fm′

l=1, ..., f
m′

l=L−r+1}

The convolution unit outputs the sequence of features which are as many as
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Figure 3.6: 1-D Convolution

Figure 3.7: Max-Pooling

the kernel number. We extract one feature from one convolution kernel. The

output can be seen as the features extracted within a certain size of context

window

F = (f 1, ..., fM)

The convolution between two matrices is just like the matrix version of dot prod-

uct. Hence we can imagine that the convolution kernels are very like the embeddings

of some certain n-grams as features. The features are thus the convolution results

as scores of the existence of these n-grams. Among all the convolution results, we
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only pick the largest value. Because the largest value correspond to the closest match

between the sentence and the n-gram we are looking for.

Each kernel-pooling unit in the CNN works as above. In our system, we have

three channels with different kernel sizes of 3, 4, and 5. Each channel has M = 512

kernels. We concatenate all three feature maps to one single vector. This single

vector is later used as the features for classification. The code we used can be found

at: https://github.com/JeromWang/UMDStatProjectAA

3.3 Classification

The third part of our model works in a similar way as most authorship attribution

models. After we generate features of each text, we use these vectors as input to a

classifier and expect to get authorship predictions as output. Our approach to solve

the authorship attribution problem consists of two steps. In the training step, we

use batch gradient descent and back propagation to update the parameters. Then

we use test set (a held out test set to evaluate the accuracy of the classifier) to test

the accuracy of the classifier. The classifier we use is a neural network classifier. It

consists of two basic fully connected neural networks and one soft-max function. It is

able to fit the function which takes the features and output the classification result.

We implement the training and testing of the classifier with scikit-learn library

[26] in Python.

3.3.1 Other Classifiers

For the doc2vec system, we also test other classifiers including Random Forest,

Support Vector Machine (SVM), and Logistic Regression classifiers as alternatives,

since they are generally robust classifiers. Neural network is the most accurate by
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comparison.

For random forest classifier, we implemented it with scikit-learn package in Python.

We used the default parameters for building the random forest, but we could not get

a satisfactory result. We explain this by the behavior of decision tree. Since each

decision tree creates one boundary which is parallel to one axis in the feature space,

the cost and accuracy decrease when the dimension of features grows. In our embed-

ding, one document is represented by a feature vector with 300 dimensions, which is

beyond the best zone of random forest.

For SVM, one problem is the parameter optimization. We tried to solve the

problem and avoid the tedious work by using previous work that can automatically

select the parameters for SVM models. We implemented this work by using the libsvm

package in Python [27]. However, the best outcome of SVM model with this package

is still not as good as that of CNN. Our explanation for this is SVM models perform

not as well in multi-classes problems, especially when the feature number is so huge.

For logistic regression, we used the one-versus-rest (OvR) scheme and implemented

with the sklearn package in Python. This OvR logistic regression performs better than

Random Forest and SVM, but not as good as the neural network. See the comparison

of results of different classifiers in Chapter 4 Experimental Results.

3.3.2 Embedding as Dimension Reduction Method

For general classification problems, a short and efficient list of features is always

what researchers want as the classifier input. This becomes a popular strategy in many

problems when longer vectors does not work out very well. Inspired by the previous

work [28], in our doc2vec system we try to add a step of dimension reduction before

we apply our classifiers on the document embedding.
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We use the traditional principal component analysis (PCA) for the dimension

reduction. PCA finds an orthogonal transformation between the original feature set

and the new feature set and sorts the new feature set by the variances on feature

dimension. By doing this, we can select the most useful features in the new feature

set by setting threshold for variance proportion. Usually it can improve classifier

performance by gleaning out the less useful features. We implement the PCA and

graph with the PCA function from matplotlib package [29] in python. It automatically

determines the transformation of features. We compare the fracs attributes which are

the proportion of variance of each principal component to get the importance of the

features (see the table 3.1).

Figure 3.8: % of importance of features after PCA
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No PCA PCA-100 PCA-95 PCA-90
0.411 0.3845 0.3812 0.3816

Table 3.1: Accuracy for keeping different % of importance of feature set for 50
authors with 1,000 tweets each

The fracs curve has a signifincant drop. However, the drop happens too early,

leaving most of the importance in the long tail. This could mean that each feature in

the set is useful to the same degree. In order to see if further reductions can be made

on this feature list, we try to glean out the last features to keep 95% and 90% of the

importance in the feature set. However this harms the performance of the classifier.

This means the 300 dimensions are all informative and cannot be reduced any more.

In this work [5], Gittens et al. shows Skip-Gram model can be interpreted as a

heuristic method of original Sufficient Dimensionality Reduction (SDR) method. The

difference between these two is whether to fit the conditional distribution as the former

does or the entire probability mass functions as the latter does. This interpretation

of word embedding bridges the idea of word embedding and co-occurrence feature,

unveiling the mystery of word embedding. Our experiments corroborate this point of

view.
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4 Experimental Results

4.1 Experiment Settings

We are interested in the performance of our model when the number of authors is

large, which is more likely to be the actual case on Twitter. We use a subset of our

dataset from [19] [6]. The subset of data for our experiment contains 1,800 authors

and 200 tweets each. The 1,800 authors along with their tweets are separated into

four groups with sizes 100, 200, 500 and 1,000. We conduct experiment for all four of

our systems and compare their results with that of a state-of-the-art method on the

same dataset.

4.2 Hyperparameter Details

We use all the tweets in the dataset collectively for training the byte pair encoding

algorithm in 2,000 iterations. Each iteration of BPE algorithm generates a new

character n-gram in the vocabulary. Hence our sub-word vocabulary size is around

2,000. We embed each sub-word with a vector with dimension D = 300. In our

concatenated convolutional neural network, each unit has M = 128 filters with filter

sizes and max pooling size r = {3, 4, 5}. For comparison, we also build character based

system containing not only the ascii characters with vocabulary size |V | = 200 but

also a word based system with vocabulary size |V | = 10, 000. In order to compare the

efficiency of different embedding levels, we set embedding dimension on all levels as

42



Embedding |V | D M r
Word 10K

300 500 3, 4, 5Sub-word 2K
Character 200

Table 4.1: Network parameter settings

D = 300. We also use the same network structure for all different text representation

methods. These parameter settings are shown in Table 4.1.

We use Adaptive Moment Estimation [30] with a learning rate α = 10−4 for

parameter training. Each model is trained for 100 epochs on data batches with size

32. We add two dropout layers [31] after the embedding layer and convolution layer

respectively with droping rate 0.25 in order to prevent over-fitting. Apart from that,

an early stopping strategy is also applied for over-fitting prevention. We set the early

stopping patience to be 10, which means the training process will be terminated after

10 epochs, accumulatively, without reduction of the loss. This causes the training

to stop after about 30-40 epochs. We save our models after each training epoch as

checkpoints and choose the one which has the highest accuracy for comparison. We

evaluate all the model with cross validation method with the number of folds equal

to 10.

4.3 Results and Evaluation

We check the training log to make sure that the training converges. From the

training accuracy plot in Figures 4.1 and 4.2, we can see that both system converges

as we have more training epochs. The curves are generally going just as we expect,

where training accuracy increases but test accuracy gradually plateaus.

The final results are in Table 4.2. In the table, Char means character embedding

and Char-2 means character bi-gram, sub for sub-word, d2v for doc2vec, and BOW-
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Figure 4.1: Accuracy versus training epochs for sub-word system

Figure 4.2: Accuracy versus training epochs for character system
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CNN-Char CNN-Sub CNN-Word CNN-d2v CNN-Char-2 BOW-LR
100 0.508 0.407 0.241 0.338 0.506 0.445
200 0.473 0.393 0.208 0.256 0.482 0.442
500 0.417 0.353 0.161 0.218 0.422 0.384
1000 0.359 0.284 0.127 0.154 0.365

Table 4.2: Accuracy for different # of authors with 200 tweets each

LR for the bag of words logistic regression baseline. The result of the baseline for the

largest experiment is missing because of the limit of our computing resources, but we

believe that the number will not surprise us. The results show that the multi-channel

based on character and character n-grams are the most accurate, followed by the

sub-word, doc2vec and word embedding. The character embedding methods improve

the second best sub-word methods by about 6-10%, which is significant.

We explain the reasons why character embedding is the best by comparing it to all

other embeddings. Comparing to word embedding and document embedding which

are also based on words, the success of character embeddings can be explained since

tweets language are generally irregular. This means that many words are variations

from their standard forms, like yeees vs. yes. In these cases, word embeddings can not

represent tweet texts effectively but characters can do. Because character embedding

system has this better representation, it can extract better features and get higher

accuracy.

To compare the character and sub-word systems, we first want to see what are

the sub-words extracted from byte-pair-encoding. We get a list of the most frequent

sub-words in the 1,000 authors experiment shown in Table 4.3

From this list, we can gain some understanding of sub-words. The sub-words seg-

mented from the byte-pair-encoding algorithm can be seen as frequent characters or

their n-grams. They can be seen as n-grams-level features learned without supervi-
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Most frequent sub-words
(name) i a the to

in (url) s (number) and
. on t is it

you e d , u
! for my - ?
y of me ... #
n n m k p
be o c that at
l : b an re
g ing er st ”

Table 4.3: Most frequent 50 sub-words in 200,000 tweets from 1,000 authors

sion from character-level. When we do our experiments, we assume that sub-word will

give us better results than character because the sub-word segmentation can combine

the frequent and widely used character n-grams into one sub-word and leave the rare

and indicative patterns for the CNN to extract. Consider the example of the sub-

word pre. It is frequently used among all authors, and so it can be easily extracted

from characters and have this prefix as a sub-word rather having the CNN extract-

ing it. But to our surprise, sub-word does not improve the CNN feature extraction.

We explain this by the fact that there are also cases when some character n-grams

are frequent but only used by certain users. When we combine these character into

sub-words, we actually remove these decisive features from the system. We expect

that these two effects both exist in sub-word system and in this dataset, sub-word

segmentation seems to make more negative effects.

It is important to note that these methods are effective, and the rankings among

them are very likely to change from one dataset to another. It is very interesting to

study the reasons why a certain method works well on one data set (or not) in the

future.

As mentioned earlier, we use four classifiers in the doc2vec configuration experi-
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ments and find Convolutional Neural Network as the most accurate one. Table 4.3

shows the accuracies we get from the four classifiers which are Random Forest(RF),

Support Vector Machine (SVM), Logistic Regression (LR) and Convolutional Neural

Network (CNN), and we include the bag of words baseline (BOW). We implent them

with sk-learn and Keras library in Python. We use a relatively small set containing

less authors for the comparison of classifiers and we expect the results will generalize

to larger datasets. Note that the accuracy varies greatly because of their different

characteristics. But no matter what classifier we try with doc2vec, the performance is

still a lot worse than the bag of words baseline. Because the first four results are from

combinations of doc2vec embeddings and classifier, this means that doc2vec features

are still not good enough for the authorship attribution task.

RF SVM LR CNN BOW
0.213 0.216 0.384 0.411 0.739

Table 4.4: Accuracy for 50 authors with 1,000 tweets each
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5 Conclusions and Future Work

5.1 Conclusions

In this work, we evaluated four different embedding methods including charac-

ter, sub-word, word and document embedding on a Tweets Authorship Attribution

dataset with carefully designed experiments. We compare the results we get with

state-of-the-art methods. Our results show that all of them are accurate methods

compared to random baseline while the character embedding based system is the

most accurate of these. This means that for corpora on twitter which are generally

irregular, using character n-grams embeddings for text representation can improve

performance over word embedding based methods. Using all character bi-grams for

feature extraction is better than using sub-words, which are the most frequent varying-

length character n-grams extracted by byte-pair-encoding algorithm. Finally, we ob-

serve that the bag of words (BOW) baseline is a solid method. It gives both good

performance and understandability in this task.

5.2 Future Work

In this work, we test different text embedding methods on a Tweets Authorship

Attribution task. Since we only do experiment on one dataset, the conclusions we

draw about these embedding methods may not hold true on other datasets. In the

future, we will test our systems on other different tasks and datasets. The datasets
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we have already found include amazon reviews, sogou news, yahoo question answers

and yelp reviews. They are all very good datasets with reasonable sizes for text

classification tasks. Theyare shared by previous researchers and can be found in the

following link:

https://drive.google.com/drive/folders/0Bz8a Dbh9Qhbfll6bVpmNUtUcFdjYmF

2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M?usp=sharing

It can be observed in our experiments that sub-word embeddings do not always

work better than word or character embeddings. Our next goal is to have a deeper

understanding of the reasons why sub-word works or does not. Then we can decide

when to use sub-word. This work is currently in progress (see Figure 5.1 and 5.2).

We believe that one of the key factors is the discrepancy between distributions of

words in the corpus and sub-words generated by our segmentation algorithm.

Figure 5.1: Frequency and Cumulative distribution function of word and sub-word
on Sentiment Analysis dataset (2)
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Figure 5.2: Frequency and Cumulative distribution function of word and sub-word
on Tweet Authorship Attribution dataset (50)

In Figure 5.1 and Figure 5.2, we compare the frequency and cumulative distribu-

tion function (CDF) of the most frequent 1000 tokens in both word and sub-word

system. The two datasets being compared are for Sentiment Analysis and Authorship

Attribution, respectively. Sentiment Analysis problem is a binary classification task

with relatively long text, while this authorship attribution task is a 50-class classifi-

cation with short text. In Figure 5.1, the most frequent sub-words are approximately

7 times frequent than words. But in Figure 5.2, this does not happen. The result is

that sub-word embeddings improve over word embeddings significantly in the task of

Figure 5.1 but not so much in the task of Figure 5.2. However we are not sure about

how that will affect the accuracy of sub-word embedding at this point. Also note that

from these two figures, we can see from their CDFs that with sub-word embeddings,

we are able to represent text with smaller vocabulary. Because with the same amount
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(1000) of words or sub-words, we can represent a higher proportion of the text using

sub-words (≈ 0.85) than words (≈ 0.65).

We are also interested in making our sub-word segmentation algorithm (byte-pair-

encoding, BPE) better. From previous experiments, we notice that not all sub-word

are segmented in the way that we imagine that follows the word morphologies. Here

is an example we found:

Before BPE:

jacksonville, tiger woods is closer to competing again. woods is back home after

a week of family counseling?

After BPE:

jack-son-vil-le, ti-ger woo-ds is clo-s-er to com-pe-ting again. woo-ds is back home

after a week of family coun-sel-ing?

From this example, we can see segmentations like ”com-pe-ting” that make sense

but also ”woo-ds”which seems less reasonable. Also there are long patterns that

appear frequent enough to escape being segmented e.g., ”yesterday”. These go against

our motivation for sub-word segmentation which is to represent text while making

use of word morphology information. Hence in the future we will continue our study

of the possible constraints that can be made on byte-pair-encoding algorithm. With

several constraints on for example, length, vowel, we believe that we can minimize bad

segmentations and thus improve the sub-word embedding even more. We are trying

to get morphological information ”cheaply” without doing morphological parsing.
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