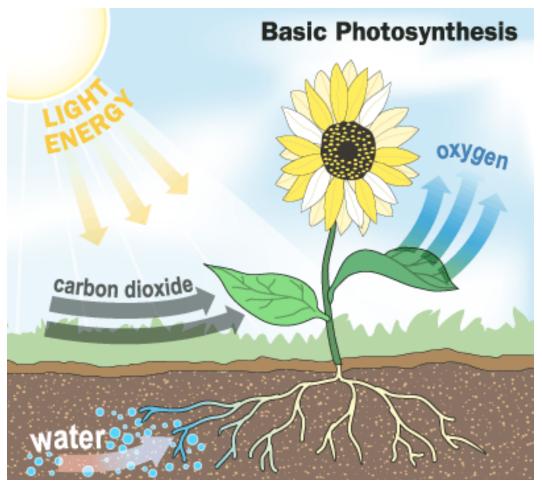

Plant Adaptations to Wetland Conditions

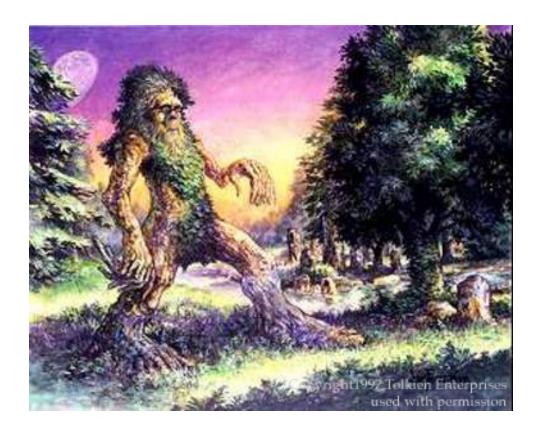
Cindy Hagley MN Sea Grant chagley@d.umn.edu

Plants are autotrophs

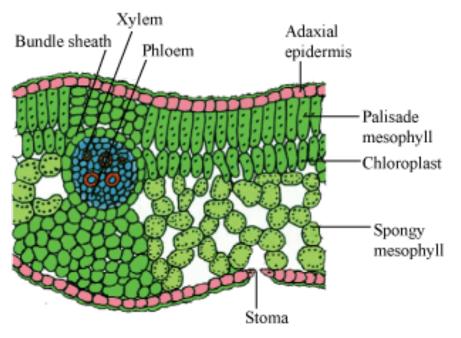

Manufacture their own food from simple, inorganic materials in the environment.

http://3.bp.blogspot.com/_vVRwTcj_flU/TG1T7heRWDI/AAAAAAAABY/SCXIE44ze3E/s320/Respiration.gif

Plant Growth Requirements

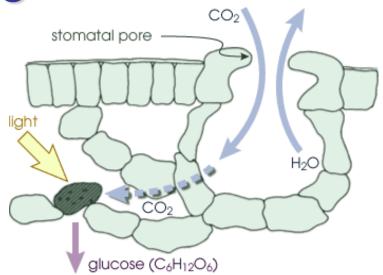

- 1. Water
- 2. O₂
- 3. Sunlight
- 4. CO₂
- 5. Nutrients and trace elements
- 6. Reproduction

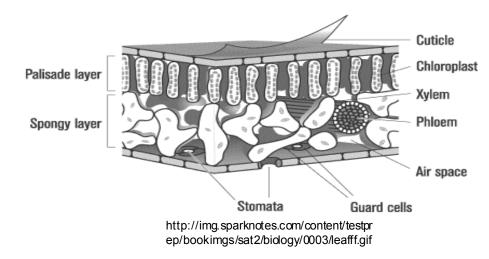
http://static.howstuffworks.com/gif/irrigationphotosynthesis.gif


Terrestrial Plants

- Colonized land about 440 million years ago.
- Required adaptations to:

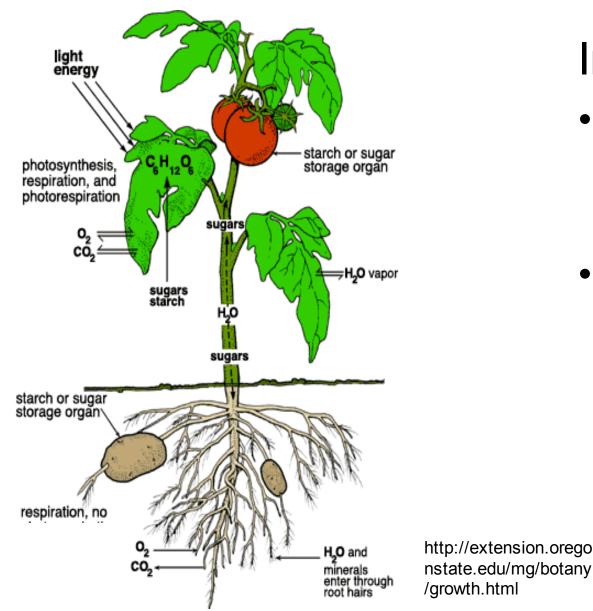
- Resist drying out
- Exchange gases with atmosphere
- Transport water and nutrients
- Stay upright


- Photosynthesis requires specialized cell structures
 - Chloroplasts
 - Mostly in the middle layer of cells in a leaf
 - Why?

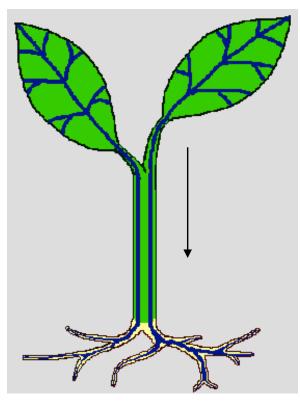

http://s3.mnimgs.com/img/shared/discuss_editlive/23975 _03_23_13_20_18/8.png

Employees.csbsju.edu/ssaupe/biol327/lecture/plant-way.htm


- Photosynthesis requires a way to exchange gases
- BUT....prevent loss of excessive water
 - WHERE are most stomata located?
 Why?


http://earthobservatory.nasa.gov/Study/LAI/Images/phnthesis.gif

- Thin leaves are required for light absorption and gas exchange, but they need SUPPORT
 - Cell walls
 - Leaf veins



http://users.rcn.com/jkimball.ma.ultrane t/BiologyPages/L/Leaf.html

Internal transport

- Photosynthesis requires a water supply
- "Mine" water and nutrients from the soil
 - Root system
 - Specialized
 transport system
 ____xylem____

http://sps.k12.ar.u s/massengale/vas ctissue.GIF

Internal transport

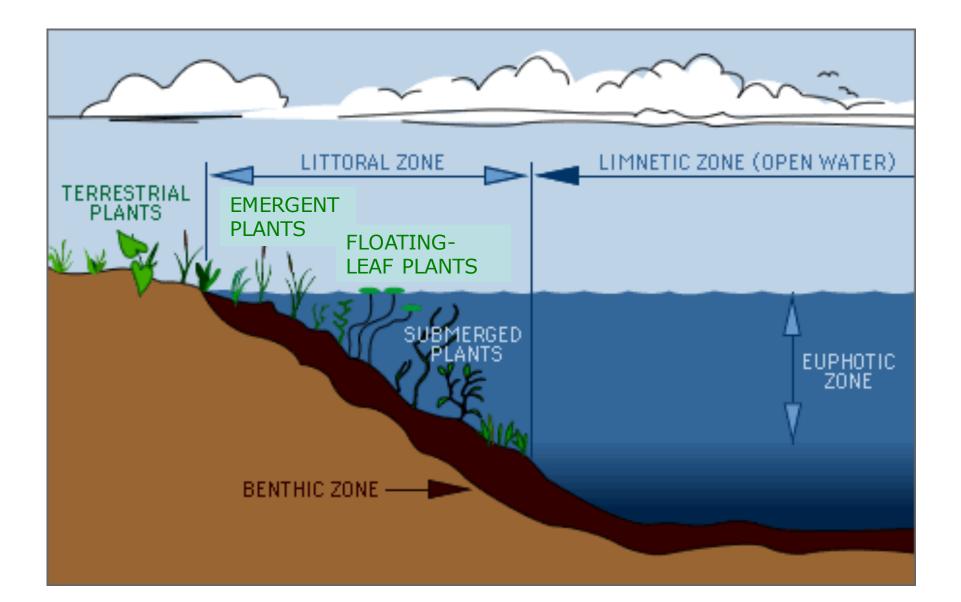
- Carbohydrates

 (sugars and other metabolic products)
 from photosynthesis
 needed throughout
 the plant
- Another transport system does this

phloem

Terrestrial Plant Adaptations

- Xylem and phloem became structural
- Reproductive structures elevated (pollination, dispersal)
- Structural adaptations to resist water loss
 - Volume to surface area ratio increased to control:
 - Evaporation
 - Heat buildup
 - Heat loss due to cooling
 - Cuticle became thicker
 - Stomata on undersides of leaves
 - Why?



"Our" Aquatic Plants

Evolved from terrestrial plants

 What makes growing in aquatic environments different than in terrestrial environments?

Aquatic Plant Zones

Wetlands support a rich food web, from microscopic algae and dragonfly larvae to alligators, and black bears.

Mark Sharp

1835.00

http://upload.wikimedia.org/wikipedia/com mons/6/6d/Food_web.gif

Tradeoffs between a terrestrial and aquatic existence

and the second second

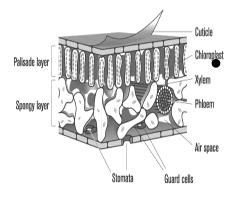
Varies based on plant characteristics (e.g., growth form) and location (e.g., plant zone)

Adaptations to a water environment

- 1. Fluctuating water levels
- 2. Limited oxygen
- 3. Limited light
- 4. Limited carbon dioxide
- 5. Difficulty obtaining nutrients
- 6. Reproduction difficult

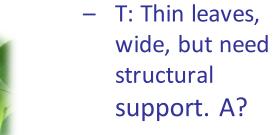
On the Plus Side.....

Water –

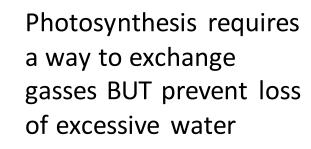

•Insulation – high specific heat buffers sudden or radical shifts in air temperature

- Support water's high density provides support for plants
- •Light less light available to plants, but water buffers radical shifts in light

Save energy on:

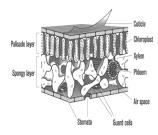

- •Temperature regulation
- Structural support

Harder or Easier? Problems plants have to solve



Photosynthesis requires specialized cell structures

- T: Chloroplasts mostly in the middle layer of cells in a leaf. A?
- Photosynthesis requires efficient light harvesting



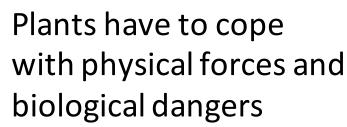
- T: Stomata mostly on underside of leaf. A?
- Photosynthesis requiresa water supply
 - T: Obtain from soil. A?

Employees.csbsju.edu/ssaupe/biol327/lecture/plant-way.htm

Problems plants have to solve

Plants require inorganic nutrients

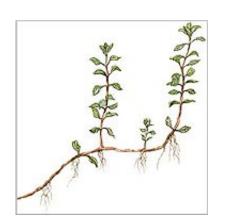
 T: Mine from soil and transport up plant. A?



Stationary plants need ways to reproduce

- T: Wind, insects, etc. A?

- Respiration requires oxygen
 - T: Plentiful in air. A?



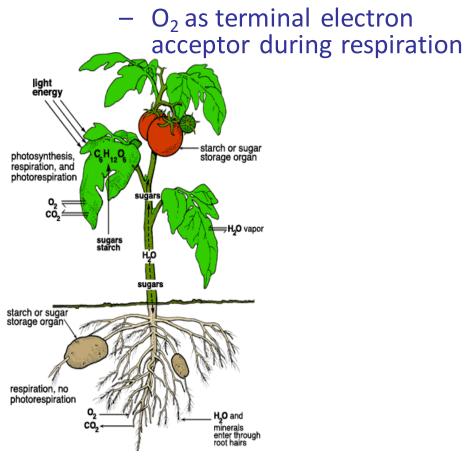
 T: Wind, floods, drought, cold; herbivory, competition. A?

Employees.csbsju.edu/ssaupe/biol327/lecture/plantway.htm

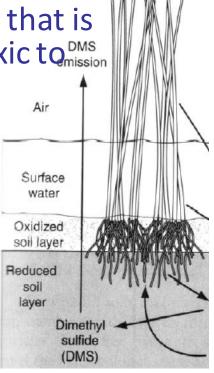
1. Adaptations to fluctuating water levels

- Heterophylly
 - Survive under dry or submerged conditions
 - Emergent leaves ovate, elliptic or rounded why?
 - Longer, ribbon-like submerged leaves why?
- Ability to adapt rapidly
 - Costly in energy and nutrients
 - Harms competitive ability with terrestrial plants
- Seed banks

2. Problem – Obtaining Oxygen


- Aquatic plants need to:
 - Sequester oxygen
 - Tolerate low oxygen levels
 - Cope with toxic byproducts of anoxic and hypoxic sediments

Limited oxygen

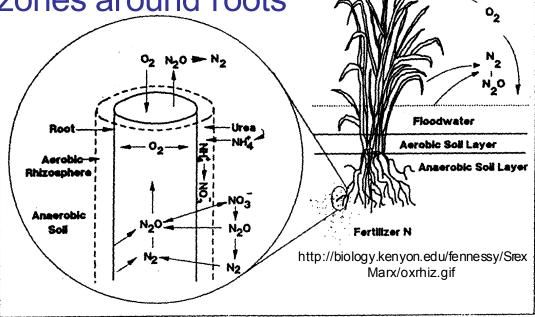

Upland soils

- Plant roots -- same oxygen levels as atmosphere (21%)
- Soil microorganisms aerobic

Wetland or aquatic soils

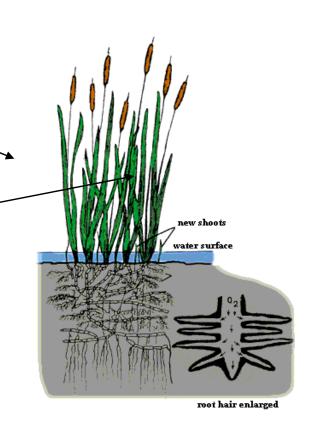
- Sediment pore spaces filled with water
 - Rate of oxygen diffusion reduced by factor of 10,000
- Sediment microorganisms anaerobic
 - Create habitat that is stressful or toxic to MS plants

Strategies for limited oxygen: Radial oxygen loss


- Some wetland plants can create aerobic conditions in anoxic sediments through radial oxygen loss into the rhizosphere.
 - Oxygen channeled to roots leaked to surroundings through diffusion
 - Increases sediment redox potential in root zone
 - Submerged plants tend to do less of it
- Driven by diffusion loss higher under most reducing conditions

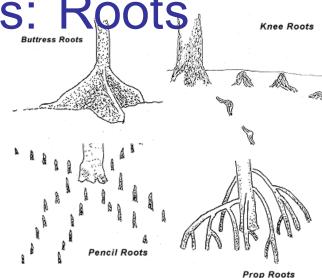
Strategies for limited oxygen: Radial oxygen loss

- Depletes root oxygen but may help plants by


 Oxidizing potentially toxic compounds (e.g., sulfide)
- Oxygen in rhizosphere used by nitrifying bacteria can transform ammonia to nitrate.

- Oxygenated microzones around roots

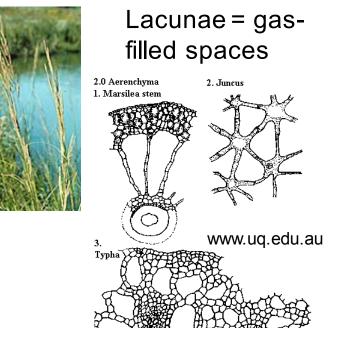
Strategies for limited oxygen: Structural Adaptations: Roots

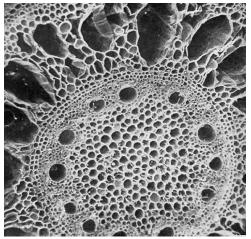

- Adventitious roots
 - Form from non-root tissue within days of flooding.
 - New roots replace roots killed by anoxia
 - Aid in water and nutrient uptake
 - Herbaceous and woody species
- Shallow roots
 - Wetland species tend to develop
 shallower root systems when flooded.
 - Surface and subsurface roots are above soil or in oxygenated portion of soil.
 - Uprooted trees indicator of continuous soil saturation

Strategies for limited oxygen: Structural Adaptations: Roots

- Pneumatophores Modified erect <u>roots</u> that grow upward from roots of some tree species (mangrove, cypress).
 - Cypress "knees"
 - Do not help aerate roots
 - Important role in CO₂ exchange
 - Mangrove pneumatophores, root knees and plank roots
 - Do play role in aeration ~40% of root system is gas space
- Prop roots and drop roots develop from <u>stems</u> or <u>branches</u> and drop into soil
 - Mangroves
 - Provide stability
 - Improve aeration

www.wettropics.gov.au/ pa/pa_images



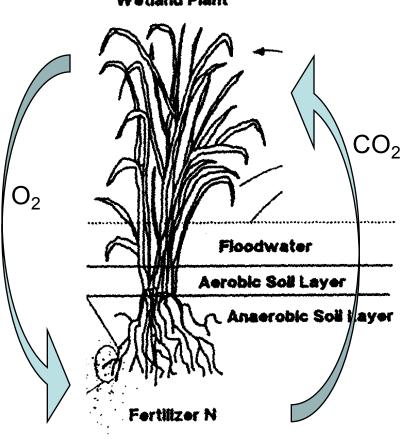

http://www.sfrc.ufl.edu/4H/Other_Resour ces/Contest/Highlighted_Ecosystem/Man groveEnvfac.htm

Strategies for limited oxygen: Structural adaptations

- Make it easier to move oxygen through the plant
 - Aerenchyma special tissues
 - Rapid gas exchange pathway: diffusion through porous tissues.
 - In some species, air space extends from leaves to roots (e.g., Spartina).
 - Cattails ½ leaf volume is gas storage. Internal concentration of carbon dioxide is up to 18 times great than atm.

Strategies for limited oxygen: Stem adaptations

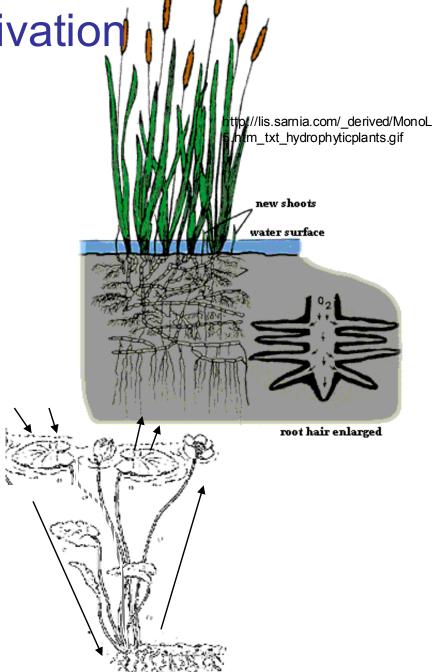
- Rapid underwater shoot extension & stem elongation in response to flooding
 - Access to light, oxygen, and CO₂
 - Happens when normally exposed leaves are submerged
 - Early season stem elongation
- Stem buoyancy
 - Formation of aerenchyma
 - Aerenchyma allow submerged plants to remain upright and form canopies.
 - Floating-leaves use water for support
 - saves energy on structural tissue


www.lucidcentral.org/ keys/appw/nonkey/images

www.plant-identification.co.uk

Strategies for limited oxygen: Aerenchyma

- Allow O₂ to travel to roots by diffusion, effectively aerating roots.
- More reduced the conditions, more porous the plant tissue


Gas Transport Mechanisms to avoid oxygen deprivation

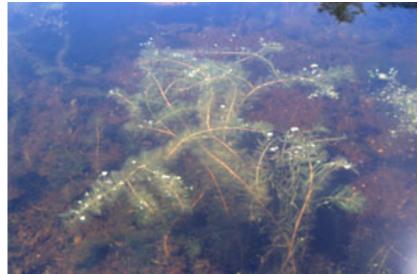
Passive molecular diffusion

- Primary mechanism
- Oxygen usually higher in aerial parts of plant than roots
- *Phragmites australis* stems 20.7%, rhizomes 3.6%

Pressurized ventilation

- Air into stomata of younger leaves (smaller pores – support pressure gradients), down to rhizomes, up stems of older leaves, and out
- Driven by temperature and water vapor pressure differences between inside of leaves and air
- Nuphar lutea
- Rhizomes get oxygen!

Strategies for limited oxygen: Avoidance of anoxia

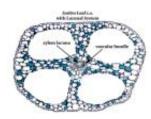

Avoid anoxia in time and space

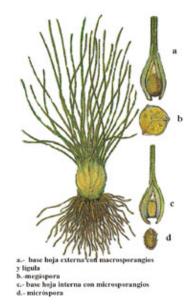
- Time active growth or seedling establishment to avoid flooding
 - Reduce metabolism in winter to avoid oxygen deprivation
 - E.g., tulip tree can survive flooding, except in spring when actively growing
- Reproduce by seed dispersal to new areas
- Reach oxygen-rich atmosphere quickly
 - Avoid low oxygen periods, then grow very quickly using stored carbon and nutrients
 - Overwintering carbohydrate-rich structures survive anoxic sediments until plant reaches water surface
 - (e.g., turions, bulbs, rhizomes)
- (Alter environment around roots)

Submerged plants have it especially tough!

- Limited by light and carbon
- CO₂ (primary form of inorganic carbon for photosynthesis) diffuses ~10,000 times more slowly in water than in air
 - Submerged plants can use bicarbonate ions for photosynthesis
 - Some can use
 - inorganic carbon from
 - the sediments

3. Strategies for limited light: Adaptations


- Make it easy to absorb the light
 - Chloroplasts on leaf surface rather than in mesophyll
 - Higher chlorophyll concentration (higher photosynthetic rate at low light
- Increase surface area exposed to light
 - Leaves ribbon like or highly dissected (high surface area to volume ratio
 - Also helps get dissolved gases into plant inner tissues as do wavy-edged leaves
- Grow toward the light
 - Apical growth (from tip of stalk) allows concentration of leaves at water surface
 - Also can outcompete other plants by getting all the goods (E.g., *Myriophyllum spicatum*)
- Start REALLY early
 - E.g., Curly leaf pondweed (Potamogeton crispus)


4. Strategies for limited carbon dioxide:

- Same characteristics that help with light and oxygen
- Use bicarbonate when CO₂ limited
 - Plants that can use either carbon dioxide or bicarbonate have more habitats available to them
- Aquatic acid metabolism
 - Assimilate carbon dioxide at night when more plentiful
 - Get CO₂ at night by diffusion, tie up into carboxyl group of organic acid, and decarboxylate the next day, releasing CO₂ for photosynthesis

Limited carbon dioxide:

- Aerenchyma transport
 - Recycle respired carbon dioxide within aerenchyma and use in photosynthesis
 - See this in soft water lakes with low carbon (e.g., *Isoetes*)
 - Maintain internal CO₂ pressures higher than external pressures
- Sediment-derived CO₂
 - Can be up to 90 % of carbon uptake in some submerged species
- Diffusive Boundary Layer submerged plants have no stomata – get by with molecular diffusion

5. Strategies for limited nutrients: Adaptations

- Obtaining nutrients
 - Mychorrhizal associations
 - Nitrogen fixation
 - Carnivory
- Conserving nutrients
 - Nutrient translocation
 - Evergreen leaves

Limited Nutrients: Obtaining nutrients

- Mychorrhizal associations symbiotic fungi
 - Increase plant ability to capture water, phosphorus, nitrogen, potassium
 - Plant provides carbohydrates to fungi
 - More mycorrhizal infection in areas with low phosphorus and more oxidized soils
- Nitrogen fixation
 - N₂-fixing bacteria get energy from plant
 - Plant gets added N
 - Found in aquatic legumes, *Alnus, Myrica,* some mangroves probably get nitrogen from cyanobacteria

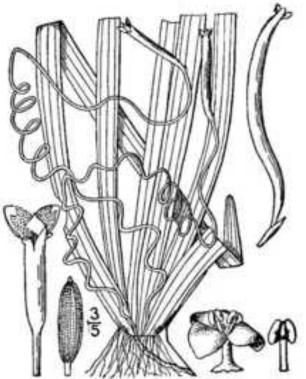
Limited Nutrients: Obtaining nutrients

- Carnivory
 - Many species in nutrient poor peatlands
 - Types of traps
 - Pitfall (pitcher plant Sarracenia)
 - Lobster pot
 - Passive adhesive
 - Active adhesive (sundew Drosera)
 - Bladder trap (bladderwort Utricularia)
 - Snap trap (Venus' flytrap Dionaea)
 - Utricularia found in wide range of nutrient regimes. Why?
 - Facultative carnivory cost of maintaining structures versus benefits of additional nutrients

http://www.snv.jussieu.fr /bmedia/carnivore/10utriculaire.html

Limited Nutrients: Conserving nutrients

- Nutrient translocation
 - At end of active growing season

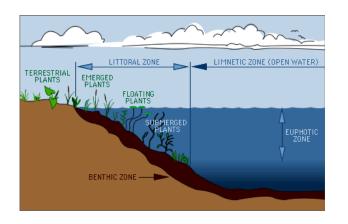


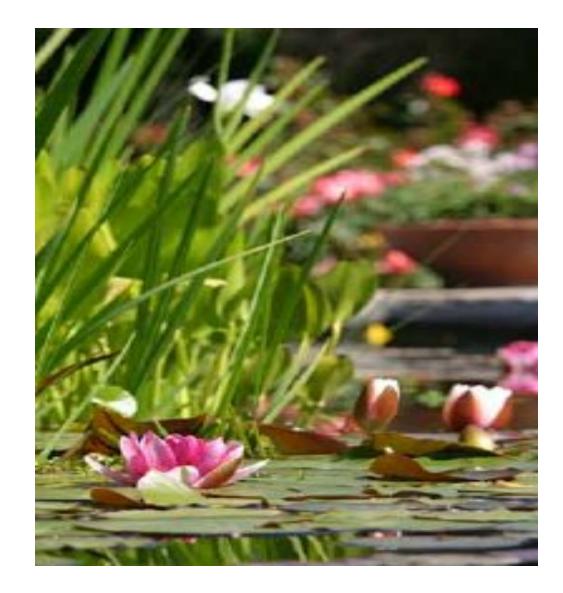
- Move nutrients and carbohydrates from aboveground tissues to belowground ones such as roots, rhizomes, tubers, bulbs
- Store as source of energy for next growing season's initial growth
 - E.g., Pond cypress foliar nitrogen 3x higher in spring than fall
- Evergreen leaves
 - Ericaceae (e.g., blueberries) low nutrient peatlands
 - Retain their leaves for 2 years

6. Aquatic Plant Reproduction

- Really good at reproducing asexually
 - Fragmentation
 - Rhizomes
 - Stolons (above the sediments)
- Submerged plants have to reproduce underwater
- Cool, but few examples of sexual reproduction in submerged plants
 - Vallisneria

Adaptations to herbivory

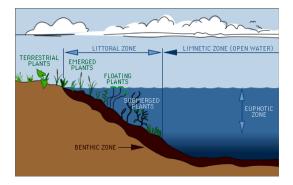

- Chemical defenses
 - Many wetland plants produce secondary metabolites that are unpalatable to herbivores
 - Plants that live a long time tend to use chemical defenses more
 - Cost/benefits?
 - Nymphaceae produce alkaloids that are toxic to many invertebrates
- Structural defenses
 - Thorns, hairy leaves, leathery leaves

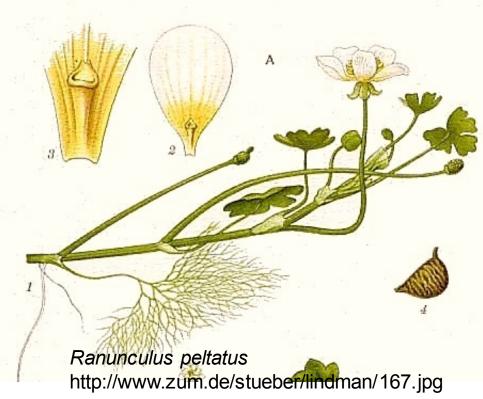

Aquatic environment

- Evolution of:
 - Specialized tissues and processes, e.g., aerenchyma (tissue with intercellular air spaces), & diffusion of oxygen from roots to sediments.
 - Life history changes (timing of seed production, vegetative reproduction)
 - Phenotypic plasticity in response to changing environmental conditions.

Types of Wetland Plants: Emergents

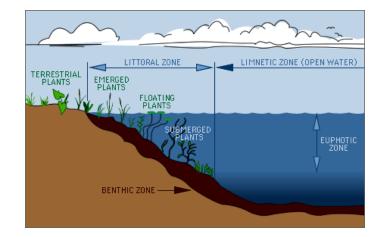
- Root in soil, with aerial leaves, stems, reproductive organs
- CO_2 , O_2 from air
- Nutrients from soil/ sediment.




www.nccoastalmanagement.net/ Handbook/section2.htm

Types: Floating Leaved

- Floating leaf shape most circular, oval or cordate (why?)
 - Leathery texture resistant to herbivory and wetting
- Long flexible petiole no supportive tissue
- Stomata on aerial side.
- May have heterophylly



Types: Submergent

- Photosynthetic tissues are underwater.
- Stems and leaves are soft (no lignin); either elongate, ribbon-like, highly divided, or wavy-edged
- Take up DO and inorganic carbon from water column.
- Majority of nutrients and some inorganic carbon from sediments (some from water column).
- Examples: *Vallisneria* (water celery), *Utricularia, Myriophyllum, Potamogeton* (pondweed).

Questions?

