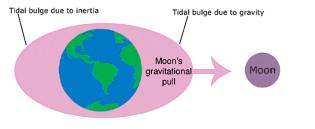
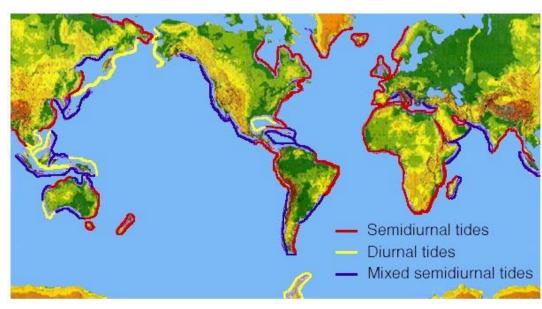
Wetland Hydrology: Hydroperiods & Seiche/Tide


Guest Lecture: Dr. Anett Trebitz Research Ecologist US-EPA Mid-Continent Ecology Division, Duluth MN

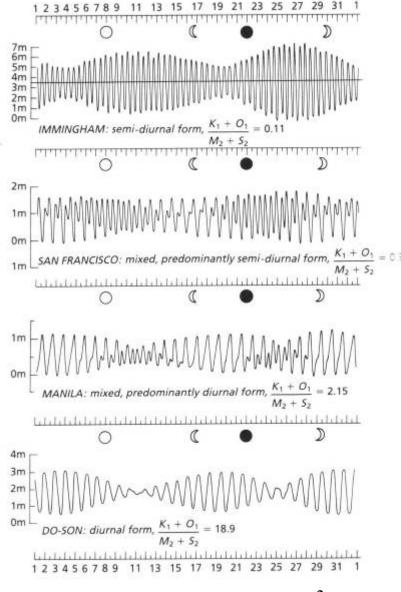
Guest Lecture for Wetlands Ecology class 7 Sept. 2017

PART 1: TIME SCALES OF HYDROLOGIC INFLUENCES

Day Month Seasonal Inter-annual Episodic Artificial



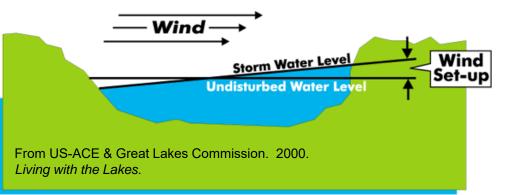
TIDE: day and month time scales


Lunar cycle superimposed on daily or twice-daily highs and lows

Affect both salt- and fresh-water wetlands (tidal bore can travel 100+ km).

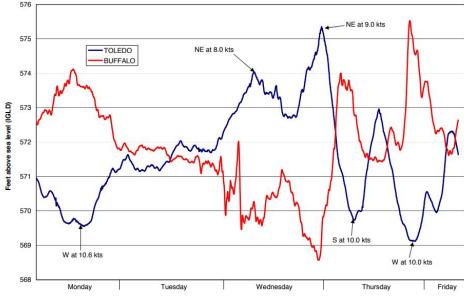
Magnitude and frequency are broadly predictable (can be forecast)

From NOAA. https://oceanservice.noaa.gov/education/tutorial_tides/media/supp_tide07b.html



From Mann & Lazier. 1991. Dynamics of Mari³e Ecosystems. Blackwell.

SEICHE (wind tide): hour to day time scale

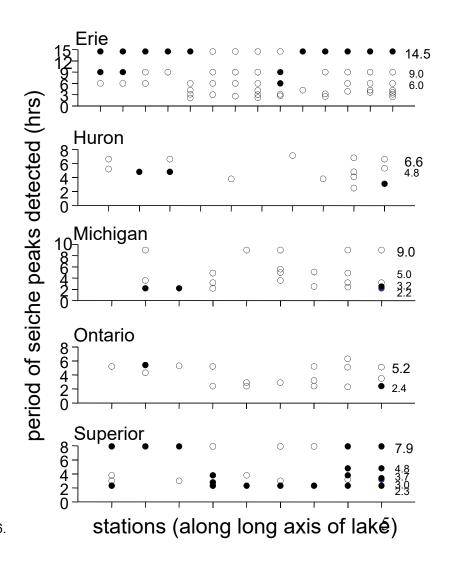

Wind- & barometric pressure-driven water-level oscillations

Internal seiche occurs at thermocline in many lakes; <u>surface seiche</u> is significant only in very large bodies of water.

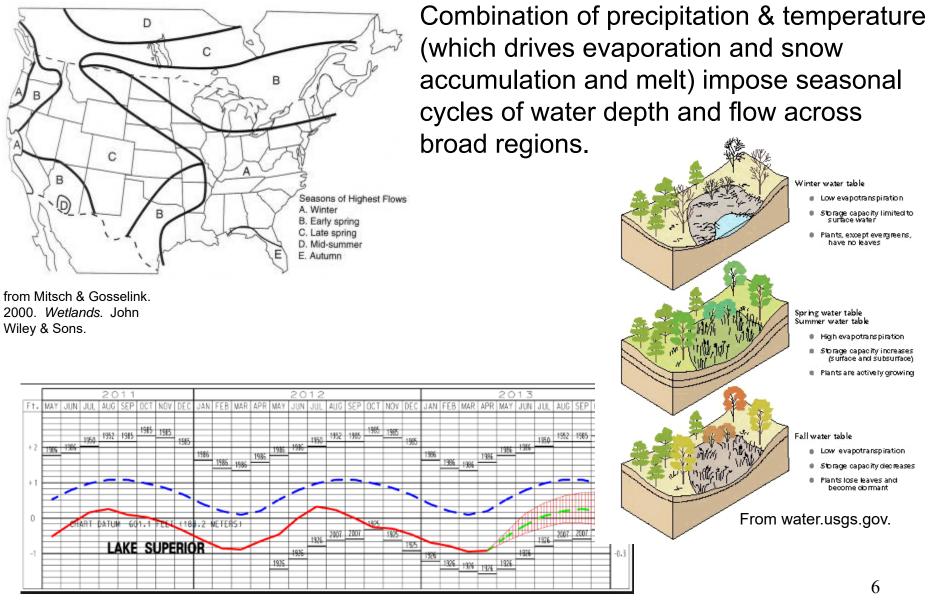
Lake profile showing wind set-up

Lake Erie seiche activity from October 17-21, 2011. Notes with arrows indicate the wind speed and direction.

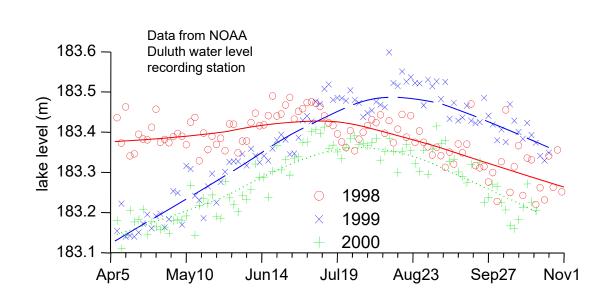
From Ohio DNR: http://geosurvey.ohiodnr.gov/extra-newsarchives/2011-articles/lake-erie-seiche-or-wind-tides



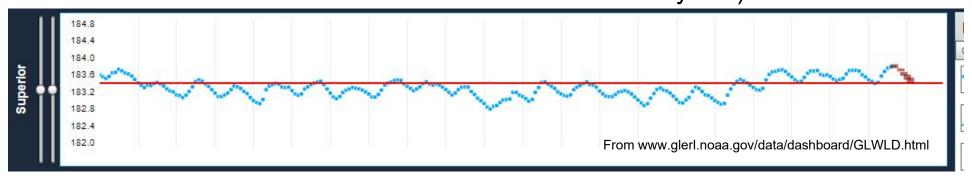
SEICHE continued


magnitude: variable over both space (somewhat predictable) and time (not predictable)

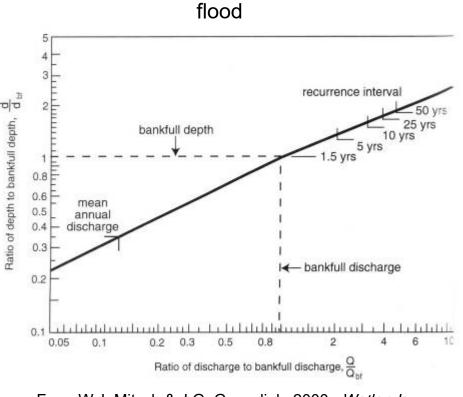
frequency: spatially predictable (basin shape/size); temporally somewhat predictable (interval but not re-set)



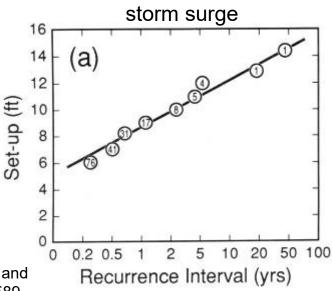
SEASONAL (annual) time scale


from NOAA Great Lakes water level website

INTERANNUAL time scale


Because precip and temp vary across years, so does timing and magnitude of seasonality.

Predictability of this varies from fairly high (e.g., for ENSO cycles), to moderate (e.g., wet-dry climate cycles) to low.



EPISODIC HYDROLOGIC EVENTS (unpredictable)

- often cast in terms of statistical frequency of occurrence (return interval).
- examples: storm surges, floods.

1999 flood on Iron River upstream from a coastal wetland on Lake Superior

From W.J. Mitsch & J.G. Gosselink. 2000. *Wetlands*. John Wiley & sons.

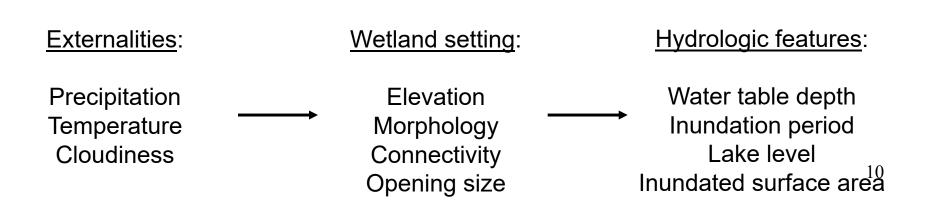
From K.W. Bedford. 1992. The physical effects of the Great Lakes on tributaries and wetlands. J. Great Lakes Res. 18:571-589.

ARTIFICIAL HYDROPERIOD

- <u>un-natural time-cycles</u>: e.g., level raised in fall for waterfowl habitat, reduced overwinter for future storage, daily cycle imposed by hydropower

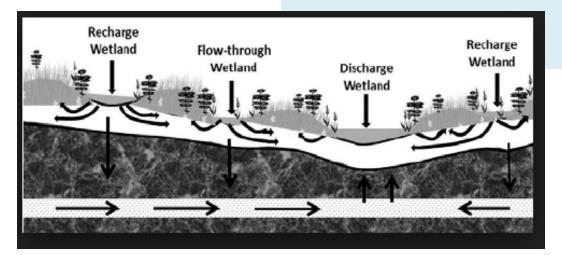
- <u>altered amplitude</u>: e.g., reduced for flood control, increased by hydropower generation ("peaking" generation)

- <u>normal cycles absent</u>: e.g., diked wetlands cut off from hydrologic exchange



PART 2: HYDROLOGY as WETLAND "SIGNATURE"

Hydroperiod and hydrodynamics:

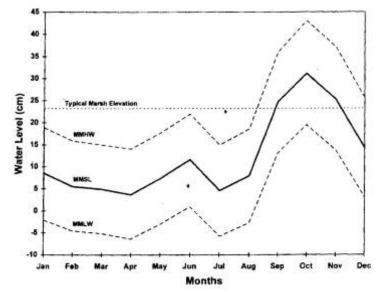

- Are the temporal pattern of inundation, water source, water movement
- Result from the interaction between hydrologic cycles and wetland morphology and landscape position

- Are predictive of a wetland's structure and function yet can be temporally quite variable

HYDROLOGY is an important element of wetland classification

- Basin Wetlands (lakes and ponds)
 - Physical: Water flow is vertical (precipitation)
 - Hydroperiod: Long with floods during periods of high rainfall.
- Riverine Wetlands (periodically flooded banks of rivers and streams)
 - Physical: Water flow is both vertical and horizontal (precipitation and stream/river flow)
 - Hydroperiod: Have short periods of flooding with stream/river flow.

Basin Wetlands


Riverine Wetlands

HYDROPERIOD can be quite variable

- Some wetlands are alternately wet or dry; others are inundated year-round but with varying depth/extent
- Can vary considerably, even within wetland types or the same wetland over time

From Skidds and Golet. 2005. Estimating hydroperiod suitability for breeding amphibians in southern Rhode Island forest ponds. Wetl Ecol & Manage 13:349-366.

From Brockmeyer et al. 1997. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, FL. Wetl. Ecol. Manage. 4:93-109.

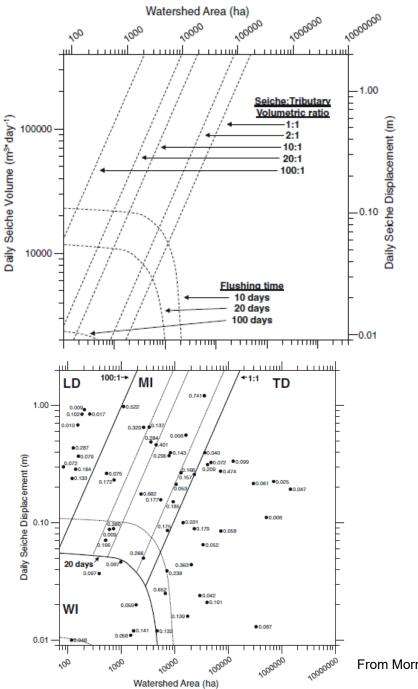
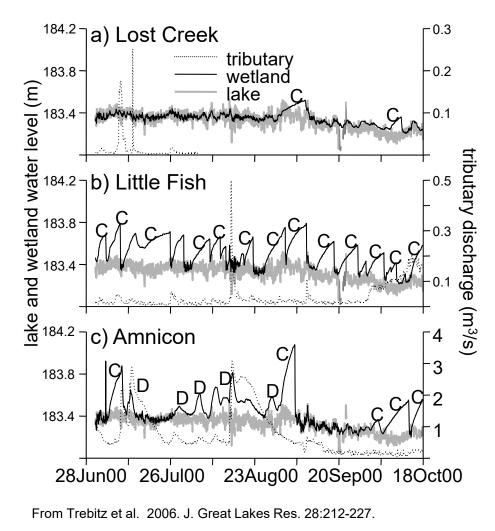
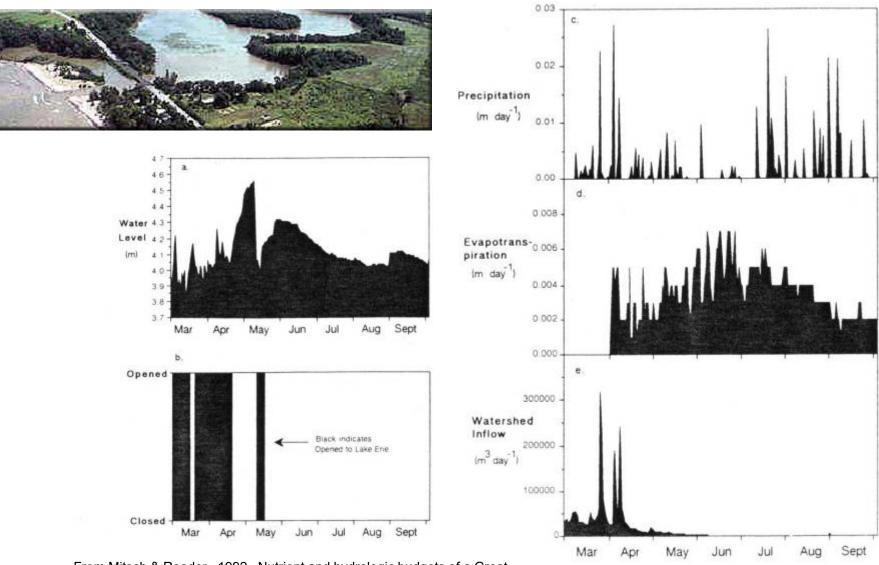




photo: Dale Wrubleski, Institute for Wetland and Waterfowl Research



HYDROLOGY EXAMPLE from Great Lakes coastal wetlands

From Morrice et al. 2011 Wetlands 31:1199-1213.

WATER BUDGET example from Great Lakes coastal wetland

From Mitsch & Reeder. 1992. Nutrient and hydrologic budgets of a Great Lakes coastal freshwater wetland during a drought year. Wetlands Ecol. Manage. 1:211-222.

PART 3: IMPORTANCE OF HYDROLOGY TO ECOLOGY

HYDROLOGY has legal importance

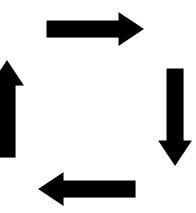
- Supreme Court decision in 2001 removed Clean Water Act protection from wetlands having "*isolated, intra-state, non-navigable waters*" unless there was a "*significant nexus*" with navigable waters.
- Has catalyzed significant research on hydrological and ecological connectivity of such wetlands.
 Google isolated wetlands

S

Google	isolated wetlands
Scholar	About 18,900 results (0.08 sec)
Articles Case law My library	Do geographically isolated wetlands influence landscape functions? <u>MJ Cohen</u> , <u>IF Creed</u> , L Alexander Proceedings of the, 2016 - National Acad Sciences Abstract Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment Cited by 25 Related articles All 11 versions Web of Science: 13 Cite Save
Any time Since 2017 Since 2016 <mark>Since 2013</mark> Custom range	A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies <u>DL Mclaughlin</u> , DA Kaplan AGU Fall Meeting, 2014 - adsabs.harvard.edu Abstract Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) Cite Save
Sort by relevance Sort by date	[HTML] Geographically isolated wetlands are part of the hydrological landscape MC Rains, SG Leibowitz, <u>MJ Cohen</u> Hydrological, 2016 - Wiley Online Library Since the US Supreme Court's 2001 SWANCC case (531 US 159), there has been
 ✓ include patents ✓ include citations 	significant focus on whether Clean Water Act (CWA) protections should be extended to so- called geographically isolated wetlands (GIWs); wetlands that are surrounded by uplands Cited by 19 Related articles All 8 versions Web of Science: 10 Cite Save
✓ Create alert	[HTML] Geographically isolated wetlands : rethinking a misnomer <u>DM Mushet</u> , AJK Calhoun, LC Alexander, <u>MJ Cohen</u> Wetlands, 2015 - Springer Abstract We explore the category "geographically isolated wetlands "(GIWs; ie, wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important Cited by 31 Related articles All 6 versions Web of Science: 20 Cite Save
	Relative effects of geographically isolated wetlands on streamflow: a watershed-scale analysis HE Golden, <u>HA Sander, CR Lane, C Zhao</u> , 2016 - Wiley Online Library Abstract Geographically isolated wetlands (GIWs) are characterized as 'isolated 'because they are embedded by uplands, though they potentially exhibit a gradient of hydrologic, biological, or chemical connections to other surface waters. In fact, recent field studies have Cited by 20 Related articles All 4 versions Web of Science: 14 Cite Save More

LONG-TERM PATTERNS:	inundated area depth time connectivity	 plant succession seed banks resident species ecosystem connectivity invasive plant establishment
SEASONAL CYCLES:	evaporation snowmelt runoff water table lake level	 ice scour primary production migratory species. resident species water chemistry oxic/anoxic sediments
DAILY CYCLES:	tide seiche	 temperature salinity dissolved O ₂ species movements plant zonation

PRAIRIE POTHOLES: seasonal & interannual water level effects on biota


rainfall & re-flooding

- die-off of terrestrial veg
- aquatic veg establishes
- epiphytic algae increase
- dormant & flying inverts return
- increased epiphitic inverts

drought drawdown

- death of remaining submerged veg
- algae establish on mudflats
- terrestrial & emerg veg germinates
- aquatic inverts leave/go dormant
- colonization by terrestrial species
- shorebirds abundant on mudflats

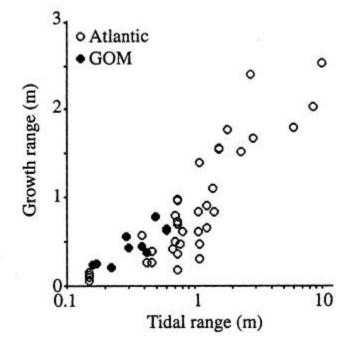
succession

- emergent veg & epiphytes degenerate
- increased algal mats
- highest abundance of epiphytic inverts
- increased benthic inverts
- highest abundance of waterfowl

more succession

- deeper veg disappears
- phytoplankton replaces algal mats
- decreased epiphytic inverts
- increased benthic inverts
- highest abundance of diving birds

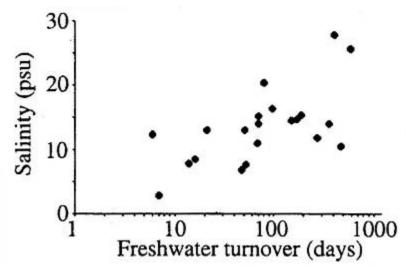
Figure from Dale Wrubleski, drawn after A.G. van der Valk, and C.B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59:322-335.



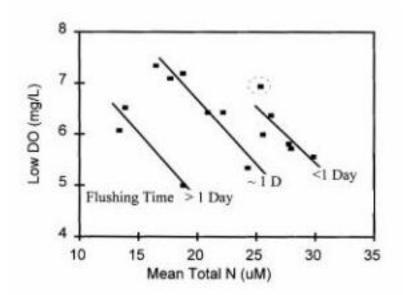
ESTUARIES: tide effects on vegetation

Tidal creek	Spartina alterniflora		Salt	Salicornia, Batis	Juncus
	Tall	Short	nato	Dailo	
100	80-100	40-80	5-10	4-8	2-5
20	23	33	127	41	24.5
	N.		- 1	u wit we shill	Halle
	creek	creek Tall 100 80-100	creek Tall Short 100 80-100 40-80	creek Tall Short flats 100 80-100 40-80 5-10 20 23 33 127	creek flats Batis Tall Short 100 80-100 40-80 5-10 4-8

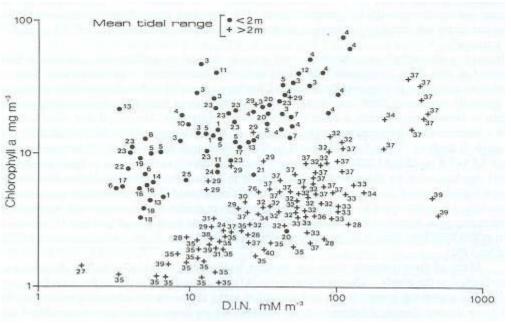
From W.J. Mitsch & J.G. Gosselink. 2000. *Wetlands*. John Wiley & Sons



from R.E. Turner. 2001. Of manatees, mangroves, and the Mississippi River: is there an estuarine signature for the Gulf of Mexico? Estuaries 24:139-150.



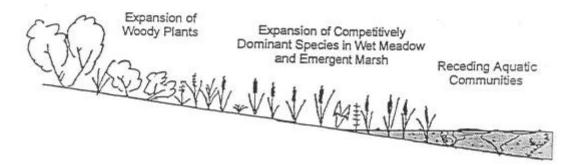
19


ESTUARIES: tide and tributary effects on water quality

from R.E. Turner. 2001. Of manatees, mangroves, and the Mississippi River: is there an estuarine signature for the Gulf of Mexico? Estuaries 24:139-150.

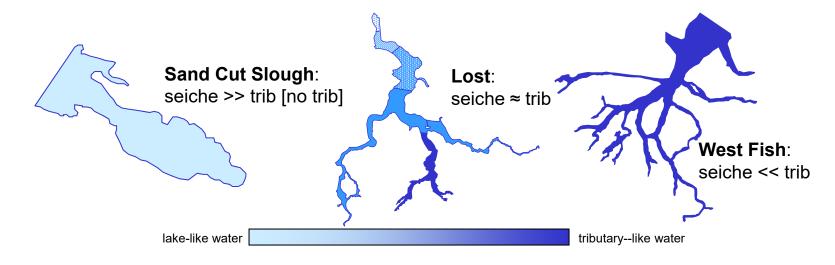
From Kelly 2001. Nitrogen effects on coastal marine ecosystems. Pp. 207-251 in *Nitrogen in the Environment: Sources, Problems, and Management.* Follett and Hatfields (eds), Elsevier.

GREAT LAKES: lake-level effects on vegetation

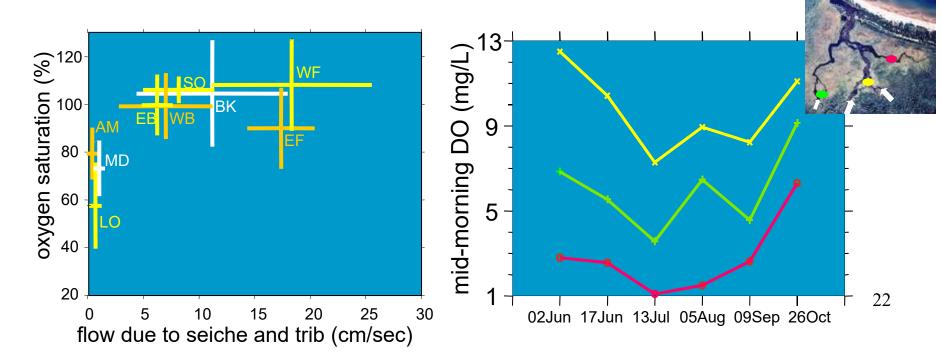

Die-back of Woody Plants Die-back of Dominant Emergents Expansion of Aquatic Communities

Year 2 - Receding Water Levels

Year 1 - High Water Levels



Year 3 - Low Water Levels



From Minc. 1997. Vegetative response in Michigan's coastal wetlands to Great Lakes water level fluctuations. Mich. Nat. Features Inventory report.

GREAT LAKES: seiche and tributary effects on water quality

From Trebitz et al. 2006. Hydromorphic determinants of aquatic habitat variability in Lake Superior coastal wetlands. Wetlands 25:505-519.

EFFECTS OF WATER LEVEL STABILIZATION

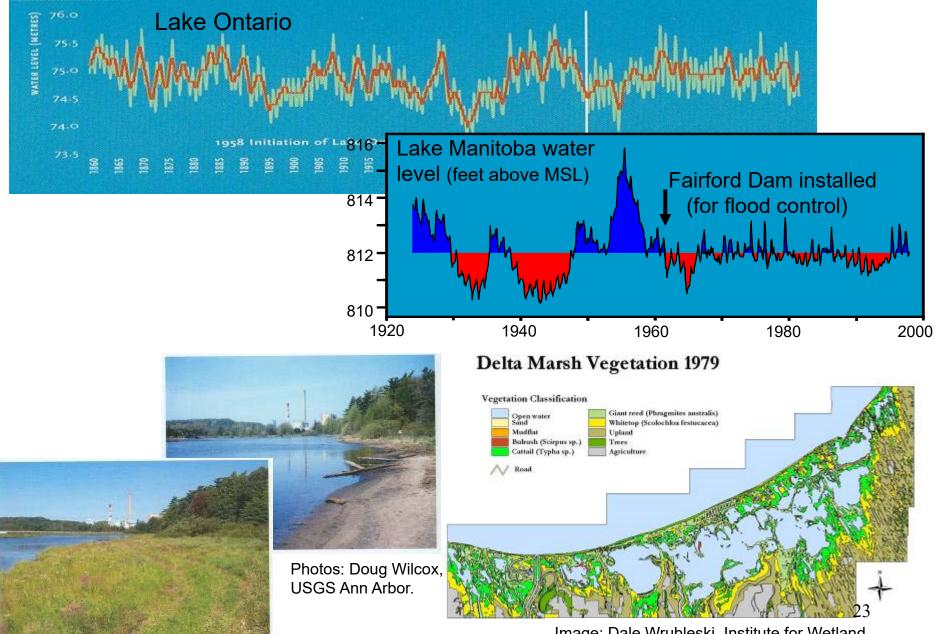
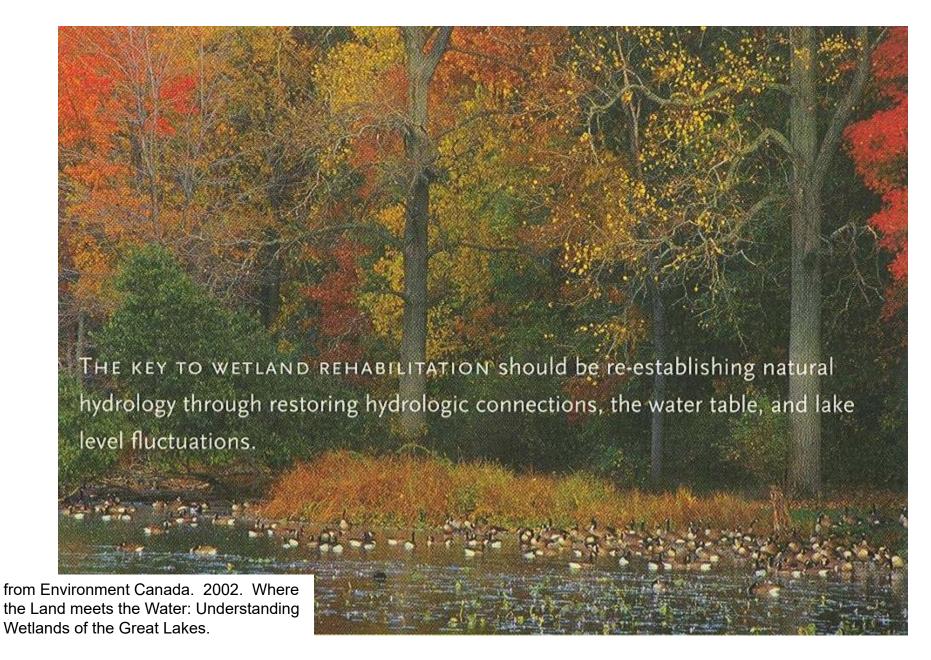
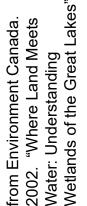



Image: Dale Wrubleski, Institute for Wetland and Waterfowl Research

Re-establishing hydrology is critical to wetland restoration

METZGER MARSH AERIAL VIEW


EXAMPLE: Metzger Marsh (Lake Erie)

- natural barrier beach lost: combination of stream diversion, shoreline hardening, high water

- diking stopped wetland loss but didn't restore original condition

- water control structure installed: permits drawdown and water exchanges with lake

- drawdown and flooding used to control nuisance plant species

