4.1 Classical Physics

Classical physics is based on the two postulates:

1. **State space postulate:** Any closed system is associated with even dimensional space called the phase space. The state is described by a single point (or vector) in the phase space. The state is specified by N position (usually denoted by q_i’s) and N momentum (usually denoted by p_i’s) coordinates:

 \[(q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)\] (4.1)

 What is the dimensionality of the phase space of a simple harmonic oscillator? What is the dimensionality of the phase space of a single particle in a box? How many real numbers needed to specify a state of the harmonic oscillator and how many needed to specify a single particle?

2. **Evolution postulate:** Evolution of any closed system is described by function on the phase space. The function is called Hamiltonian and denoted by $H(q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)$ and the evolution is described by the following equations

 \[
 \dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}.
 \] (4.2)
For a simple harmonic oscillator the Hamiltonian is

\[H(q, p) = \frac{p^2}{2m} + \frac{kq^2}{2}. \] \hspace{1cm} (4.3)

and the corresponding equations of motion are

\[\dot{p} = -kq \]
\[\dot{q} = \frac{p}{m} \] \hspace{1cm} (4.4)

or equivalently

\[\ddot{q} = \frac{\dot{p}}{m} = \frac{-kq}{m}. \] \hspace{1cm} (4.5)

4.2 Quantum Physics

In contrast the quantum physics is based on three postulates. We will first state the postulates and then introduce the necessary mathematical formalism that goes with it.

1. **State space postulate:** Any closed system is associated with a Hilbert space. The state of the system is described by a single point (or ket-vector) in the Hilbert space

\[|\psi\rangle \] \hspace{1cm} (4.6)

with unit length

\[\langle \psi | \cdot |\psi\rangle \equiv \langle \psi |\psi\rangle = 1 \] \hspace{1cm} (4.7)

where \(|\psi\rangle \) is a bra-vector. Ket- and bra- vectors are usually represented by either finite dimensional vectors or by wave-functions.

2. **Evolution postulate:** Evolution of any closed system is described by a unitary operator, i.e.

\[|\psi(t_2)\rangle = \hat{U}(t_2 - t_1) |\psi(t_1)\rangle \] \hspace{1cm} (4.8)

where

\[\hat{U}(t_2 - t_1) = e^{-i\hat{H}(t_2 - t_1)H}. \] \hspace{1cm} (4.9)

and \(\hat{H} \) is a Hermitian operator known as Hamiltonian operator. As we will see shortly this postulate can be recast in the form of Schrodinger equation.
3. **Measurement postulate:** A measurement is described by a collection of measurement operators \(\{ \hat{M}_m \} \) with probability of an outcome \(m \) given by

\[
p(m) = \langle \psi | \hat{M}_m^\dagger \hat{M}_m | \psi \rangle
\]

(4.10)

where \(\hat{M}_m^\dagger \) is the Hermitian conjugate of \(\hat{M}_m \) and the state after measurement

\[
\frac{\hat{M}_m | \psi \rangle}{\sqrt{p(m)}}.
\]

(4.11)

Then one can construct an operator (called observable)

\[
\hat{M} \equiv \sum_m m \hat{P}_m \equiv \sum_m m \hat{M}_m^\dagger \hat{M}_m
\]

where projection operator \(\hat{P}_m \) is defined as a projector on eigenspace of \(\hat{M}_m \) with eigenvalue \(m \). If there is a continuum of measurement of operators, then summation is replace with integral. For example,

\[
\hat{X} = \int x |x \rangle \langle x | dx
\]

(4.12)

or

\[
\hat{P} = \int p |p \rangle \langle p | dp.
\]

(4.13)

4.3 Schrodinger Picture

One can show that all normal operators have a diagonal representation,

\[
\hat{A} = \sum_{i=1}^n \lambda_i |i \rangle \langle i |.
\]

(4.14)

Therefore all positive definite operators as well as Hermitian operators have diagonal representations. Then one can define a function of Hermitian operators as

\[
f(\hat{A}) \equiv \sum_{i=1}^n f(\lambda_i) |i \rangle \langle i |
\]

(4.15)

for an arbitrary function \(f \). This can be applied to Eq. (4.8) since the Hamiltonian operator \(\hat{H} \) must be Hermitian and thus has a spectral decomposition

\[
\hat{H} = \sum E_n |\psi_n \rangle \langle \psi_n |
\]

(4.16)
where E_n and $|\psi_n\rangle$ are the eigenvalues and corresponding eigenstates of Hamiltonian operators, i.e.

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$$ \hfill (4.17)

The energy eigenstate $|\psi_n\rangle$ with the lowest energy eigenvalue E_n is called the ground state.

Moreover, by expanding both sides of Eq. (4.8) we get

$$|\psi(t_1)\rangle + (t_2 - t_1) \frac{d}{dt} |\psi(t_1)\rangle = \left(1 - (t_2 - t_1) \frac{i}{\hbar} \hat{H} \right) |\psi(t_1)\rangle$$ \hfill (4.18)

which is the famous time-dependent Schrödinger equation

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$ \hfill (4.19)

in contrast to the time-independent Schrödinger equation (4.17). Using (4.8), (4.9), (4.15) and (4.16) one can find the most general solution of the time-dependent Schrödinger equation

$$|\varphi\rangle(t) = \sum_n e^{-iE_n t/\hbar} [\langle \psi_n | \varphi \rangle(0)] |\psi_n\rangle$$ \hfill (4.20)

which is expressed as a linear sum over solutions of the time-independent Schrödinger equation. Note that each solution of the time-independent Schrödinger equation gives rise to a simple solution of the time-dependent Schrödinger equation

$$|\varphi\rangle(t) = e^{-iE_n t/\hbar} |\psi_n\rangle.$$ \hfill (4.21)

4.4 The simplest example

Consider a Hamiltonian operator in matrix representation given by

$$\hat{H} = \frac{\hbar \omega}{2} \sigma_3 = \begin{pmatrix} \frac{\hbar \omega}{2} & 0 \\ 0 & -\frac{\hbar \omega}{2} \end{pmatrix},$$ \hfill (4.22)

It can describe, for example, a stationary electron subject to external magnetic field in z direction.

Clearly the energy (or Hamiltonian) eigenvectors (or eigenkets) are given by

$$\hat{H}|+\rangle = \begin{pmatrix} \frac{\hbar \omega}{2} & 0 \\ 0 & -\frac{\hbar \omega}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\hbar \omega}{2} |z+\rangle$$

$$\hat{H}|+\rangle = \begin{pmatrix} \frac{\hbar \omega}{2} & 0 \\ 0 & -\frac{\hbar \omega}{2} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar \omega}{2} |z-\rangle$$ \hfill (4.23)
and then an arbitrary initial state
\[|\psi\rangle = \psi_+ |z+\rangle + \psi_- |z-\rangle \]
would evolve according to 4.20 as
\[|\psi(t)\rangle = \psi_+ \exp\left(-i\frac{\omega t}{2}\right) |z+\rangle + \psi_- \exp\left(+i\frac{\omega t}{2}\right) |z-\rangle. \]

Now consider (normalized) eigenstates of operator
\[\frac{\hbar}{2} \hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
or
\[|x\rangle = \frac{1}{\sqrt{2}} (|z+\rangle \pm |z-\rangle). \]
I we start with a state
\[|\psi\rangle = |x+\rangle = \frac{1}{\sqrt{2}} |z+\rangle + \frac{1}{\sqrt{2}} |z-\rangle \]
at time \(t = 0 \), then at some later time the state is
\[|\psi(t)\rangle = \frac{1}{\sqrt{2}} \exp\left(-i\frac{\omega t}{2}\right) |z+\rangle + \frac{1}{\sqrt{2}} \exp\left(+i\frac{\omega t}{2}\right) |z-\rangle. \]

Then if we decide to measure the system using
\[\hat{S}_x \equiv \frac{\hbar}{2} \hat{\sigma}_x + \frac{\hbar}{2} \hat{\sigma}_x - \]
and expectation value of observable operator
\[\langle S_x \rangle = \left(\frac{\hbar}{2}\right) \cos(\omega t) \]
Similarly one can show that

\[\langle S_y \rangle = \left(\frac{\hbar}{2} \right) \sin(\omega t) \]

(4.34)

which can be interpreted as precession of spin (to be defined precisely later on). A similar phenomena gives rise to, for example, neutrino oscillations.

4.5 Heisenberg Picture

A framework where the state vectors evolves with time, but the operators remain constant is a Schrodinger picture. There is also a Heisenberg picture where the operators change with time, and the state vectors remain constant. Consider a time independent Hermitian operator \(\hat{A}_S \) in the Schrodinger picture then

\[\langle \hat{A}_S \rangle(t) = \langle \psi_S(t) | \hat{A}_S | \psi_S(t) \rangle. \]

(4.35)

The time evolution is described by a Schrodinger equation whose solution is

\[|\psi_S(t)\rangle = e^{-\frac{i}{\hbar}Ht} |\psi_S(0)\rangle. \]

(4.36)

From (4.35) and (4.36) we obtain

\[\langle \hat{A}_S \rangle(t) = \langle \psi_S(0) | e^{\frac{i}{\hbar}Ht} \hat{A}_S e^{-\frac{i}{\hbar}Ht} | \psi_S(0) \rangle \]

\[= \langle \psi_H | \hat{A}_H(t) | \psi_H \rangle \]

\[= \langle \hat{A}_H(t) \rangle \]

(4.37)

where

\[\hat{A}_H(t) = e^{\frac{i}{\hbar}Ht} \hat{A}_S e^{-\frac{i}{\hbar}Ht} \]

(4.38)

\[|\psi_H\rangle \equiv |\psi_S(0)\rangle. \]

(4.39)

It is easy to calculate the time evolution of operators in Heisenberg picture,

\[\frac{d\hat{A}_H(t)}{dt} = \frac{d}{dt} e^{\frac{i}{\hbar}Ht} \hat{A}_S e^{-\frac{i}{\hbar}Ht} + e^{\frac{i}{\hbar}Ht} \hat{A}_S \frac{d}{dt} e^{-\frac{i}{\hbar}Ht} \]

\[= \frac{i}{\hbar} \hat{H} e^{\frac{i}{\hbar}Ht} \hat{A}_S e^{-\frac{i}{\hbar}Ht} - e^{\frac{i}{\hbar}Ht} \hat{A}_S \frac{i}{\hbar} \hat{H} e^{-\frac{i}{\hbar}Ht} \]

\[= \frac{i}{\hbar} \left(\hat{H} \hat{A}_H(t) - \hat{A}_H(t) \hat{H} \right) \]

\[= \frac{i}{\hbar} [\hat{H}, \hat{A}_H(t)] \]

(4.40)
where the commutator is defined as
\[
[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}.
\] (4.41)

Expression (4.40) is known as the Heisenberg equations. It reduces to the Hamiltonian equations of motion in classical mechanics with the identification we described above
\[-\frac{i}{\hbar} \{\cdot, \cdot\} \rightarrow \{\cdot, \cdot\} \equiv \frac{\partial}{\partial q} \frac{\partial}{\partial p} - \frac{\partial}{\partial p} \frac{\partial}{\partial q}
\] (4.42)
i.e. commutators replaced by Poisson brackets,
\[
\frac{dp}{dt} = \{p, H\} = -\frac{\partial H}{\partial q}
\] (4.43)
\[
\frac{dq}{dt} = \{q, H\} = \frac{\partial H}{\partial p}
\] (4.44)

Once again (4.40) is related to (2.56) through identification (4.42).

4.6 Density matrix

If the exact knowledge of the quantum microstate is not available, the system is said to be in a not pure, but mixed state. Such states are not specified by a unique vector in Hilbert space, but by a collection of vector \{\ket{\varphi_\alpha}\} with relative probabilities \{p_\alpha\}, such that
\[
\sum_\alpha p_\alpha = 1.
\] (4.45)
And the entropy of a mixed state is defined as
\[
S \equiv \sum_\alpha p_\alpha \log p_\alpha.
\] (4.46)

Then, the ensemble average of a given operator \(\hat{O}\) is given by
\[
\langle \hat{O} \rangle = \sum_\alpha p_\alpha \langle \varphi_\alpha | \hat{O} | \varphi_\alpha \rangle.
\] (4.47)
In a given set of orthonormal basis, $|\psi_n\rangle$, the above expression takes the following form

$$\langle \hat{O} \rangle = \sum_{\alpha,n,m} p_\alpha \langle \varphi_\alpha | \psi_n \rangle \langle \psi_n | \varphi_\alpha \rangle =$$

$$= \sum_{n,m} \left(\sum_\alpha p_\alpha \langle \psi_m | \varphi_\alpha \rangle \langle \varphi_\alpha | \psi_n \rangle \right) \langle \psi_n | \varphi_\alpha \rangle =$$

$$= \sum_{n,m} \langle \psi_m | \hat{\rho} | \psi_n \rangle \langle \varphi_\alpha | \psi_m \rangle =$$

$$= \sum_{n,m} \langle \psi_m | \hat{\rho} \varphi_\alpha \rangle | \psi_m \rangle =$$

$$= \text{Tr}(\hat{\rho} \hat{O}) \quad (4.48)$$

where the so-called density matrix is defined as

$$\hat{\rho} \equiv \sum_\alpha p_\alpha | \varphi_\alpha \rangle \langle \varphi_\alpha |. \quad (4.49)$$

This is the Hermitian operator which replaces the probability distribution function in classical phase space.

Let $|\psi_n\rangle$ be the energy eigenstates, then

$$\langle \psi_n | i\hbar \frac{\partial}{\partial t} \hat{\rho}(t) | \psi_m \rangle = i\hbar \frac{\partial}{\partial t} \sum_\alpha p_\alpha \langle \psi_n | \varphi_\alpha(t) \rangle \langle \varphi_\alpha(t) | \psi_m \rangle =$$

$$= \sum_\alpha p_\alpha \left(\langle \psi_n | i\hbar \frac{\partial}{\partial t} | \varphi_\alpha \rangle \langle \varphi_\alpha | \psi_m \rangle + \langle \psi_n | \varphi_\alpha \rangle i\hbar \frac{\partial}{\partial t} \langle \varphi_\alpha | \psi_m \rangle \right)$$

$$= \sum_\alpha p_\alpha \left(\langle \psi_n | \hat{H} | \varphi_\alpha \rangle \langle \varphi_\alpha | \psi_m \rangle + \langle \psi_n | \varphi_\alpha \rangle \left(-i\hbar \frac{\partial}{\partial t} \langle \varphi_\alpha | \varphi_\alpha \rangle \right) \right)$$

$$= \sum_\alpha p_\alpha \left((E_n \langle \psi_n | \varphi_\alpha \rangle \langle \varphi_\alpha | \psi_m \rangle - E_m \langle \psi_n | \varphi_\alpha \rangle \langle \psi_m | \varphi_\alpha \rangle) \right)$$

$$= \langle \psi_n | \hat{\rho} (E_n - E_m) | \psi_m \rangle$$

$$= \langle \psi_n | \hat{H} \hat{\rho} - \hat{\rho} \hat{H} | \psi_m \rangle \quad (4.50)$$

Thus, independently of basis we get the Von Neumann equation:

$$i\hbar \frac{\partial}{\partial t} \hat{\rho}(t) = [\hat{H}, \hat{\rho}], \quad (4.51)$$

which is a quantum version of Liouville’s equation obtained (once again) by a formal substitution of Poisson brackets with commutator, i.e. $\{,\} \rightarrow -\frac{i}{\hbar} [\cdot]$.

\[CH. 4. \ POSTULATES \ OF \ QUANTUM \ MECHANICS\]