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Abstract

In this paper we present a model for autonomous
driving behavior useful for creating ambient traffic as
well as experiment specific scenarios for driving simu-
lation. This model follows roadways, obeying the rules
of the road. It reacts to nearby vehicles and traffic
control devices. The model supports a range of behav-
iors including passing, lane changes, and safe naviga-
tion through intersections. The model is parametrized
by traits that influence the personality of the driver
such as aggressiveness, attentiveness, impatience, and
law-abidingness. In addition, the model responds to
behavior-oriented directives that can be used to coor-
dinate groups of vehicles for the creation of complex
scenarios. In this paper, we present the details of the
behavior model and an example of its use in creating
a scenario.

1 Introduction

Interactive driving simulation requires microscopic
simulation of driving behavior for synthetic vehicles
that is consistent and believable. Vehicle motions
must be smooth and continuous. Cars cannot dis-
cretely jump from lane to lane as they typically do
in macroscopic driving simulators. Within this frame-
work, it is important to control the global properties
of traffic such as density and flow. These properties
must naturally fall out of the behaviors of individuals.
In addition, it is important to create specific situations
and circumstances that require coordinated actions of
groups of vehicles to occur within a backdrop of am-
bient traffic.

In this paper, we demonstrate how a single, compu-
tational framework can be used to generate interesting
scenarios from ambient traffic composed of microscop-
ically simulated autonomous vehicles. We present a
detailed driving behavior model and an example of its
use in creating an interesting scenario. In Section 2

we outline HCSM, the modeling framework used to
define behaviors and scenarios. Section 3 describes
the HCSM model for driving behavior, as well as a
directable traffic light model. Use of these models
is demonstrated in an intersection hazard scenario in
Section 4.

1.1 Related work

The development of appropriate driving models and
scenario creation tools for virtual driving environ-
ments draws on aspects of both macroscopic and mi-
croscopic traffic simulation. TRAF-NETSIM [11] is a
well-known program for macroscopic simulation of ur-
ban traffic. Work in the SmartPATH project[5, 4] en-
compasses both macroscopic traffic management and
microscopic-level vehicle modeling, simulation, and
control in order to support evaluation of Intelligent
Vehicle Highway Systems (IVHS). Examples of micro-
scopic driving models suitable for real-time virtual en-
vironment applications can be found in [12, 3, 13].

2 The Hierarchical Concurrent State
Machine (HCSM) Framework

In this section we briefly outline the HCSM pro-
gramming framework[1]. HCSM is based on commu-
nicating, hierarchical state machines that grew out
of our experiences programming the control of high-
degree-of-freedom mechanisms in multibody dynam-
ics simulations [6, 8] and working with vehicle models
and scenarios in the Iowa Driving Simulator[9]. We
built HCSM around an extended state machine model
that facilitates creation of scenarios and complex au-
tonomous agents by providing abstraction, communi-
cation, and arbitration mechanisms.

State machines of various forms have long been used
to model reactive behavior. Harel[7] provides an ex-
cellent description of the weaknesses of single-level fi-
nite state machines for programming complex reactive



systems, and introduces the Statecharts formalism to
address them. The hierarchical concurrent state ma-
chines of HCSM are similar to Statecharts in several
ways. An HCSM state machine can be defined recur-
sively; it is either a leaf machine or contains a number
of child HCSM state machines. In a sequential HCSM
state machine, only one child HCSM is active at a
time.! The active child HCSM can change based on
the firing of transitions. In a concurrent HCSM state
machine, all children are active at once and there are
no transitions. Concurrency allows behaviors to be
decomposed into a set of possibly, but not necessarily,
orthogonal components. When combined with hierar-
chical abstraction, this significantly reduces the com-
plexity of programming behaviors.

HCSM state machines provide a different commu-
nication mechanism than Statecharts. Conceptually,
a state machine has a control panel consisting of “but-
tons” and “dials” that provide a communication inter-
face between the state machine and the world outside
it. The behavior of the state machine may be influ-
enced by sending messages to the machine, “pushing”
buttons or “setting” dials to achieve some desired ef-
fect. Buttons and dials address the critical need for
means to create agents that are not purely reactive,
but instead are partly reactive and also controllable
or directable.

HCSM state machines also differ from Statecharts
by explicitly incorporating a notion of the activity per-
formed by the state machine. Whenever an HCSM
machine is executed, it outputs a value (or set of val-
ues) determined by the activity function associated
with the machine. Specifically, an activity function
computes an HCSM’s output as a function of the val-
ues of (1) local variables, (2) input parameters, (3)
messages received by buttons and dials, and (4) values
output by child HCSMs. The values output by top-
level HCSM machines are used as control inputs for en-
tities modeled in the simulation environment. Activ-
ity functions provide a means for arbitrating between
or resolving the possibly conflicting values output by
concurrent child state machines competing to control
the same resources. Activity functions are also useful
in sequential state machines, since they provide a way
to modify, filter, or otherwise change values passed up
from lower level behaviors.

As demonstrated below, HCSM provides a uniform
framework both for modeling the basic entity behav-
iors (e.g. driving) as well as for coordinating and di-
recting the actions of multiple agents in scenarios. We

1For convenience, we often refer to the child state machines
of a sequential HCSM as the states of the machine.

call HCSM state machines used for the latter purpose
directors. See [1] for a detailed definition and descrip-
tion of HCSM.

3 Behavior Models

For basic driving experiments we need to model the
autonomous behavior of vehicles and traffic lights. In
this paper, we focus on a driving environment that
includes one- and two-lane city streets and one lane
rural highways. We assume that vehicles can access
a database to gain information about nearby vehicles,
road paths, roadway logic, and the state of upcoming
traffic lights. In our system, a separate software com-
ponent provides this information[2, 10]. The outputs
of the HCSM behavior models are used as control in-
puts to physical models of entities. For a traffic light,
this is the color of the light at the current time. Vehicle
behavior models output values to control acceleration
and heading. The output values are passed to a kine-
matic or dynamic vehicle model. At present, we use
a kinematic vehicle model that computes a new posi-
tion, heading, and velocity based on the control values
and the current position, heading, and velocity.

We first describe a directable traffic light model and
follow with a vehicle behavior model. The traffic light
model serves as a simple example in which to introduce
the HCSM methodology and notation.

3.1 Traffic Light Behavior Model

Traffic lights are modeled with a simple sequential
state machine that cycles through three states for the
red, green, and yellow signals. Internal (local) vari-
ables specify the intervals spent in each phase during
normal operation.

Experiments frequently call for the pattern of light
changes to be synchronized with the approach of the
subject’s vehicle. For example, we may want a light
to turn yellow a short time before the subject reaches
an intersection. It is important to give the subject the
impression that the traffic light is operating normally
— the timing of the phase change should appear to be
happenstance.

The traffic light HCSM supports three kinds of in-
put that control its behavior. Two of these have an
immediate effect on the conditions that regulate state
transitions. The third causes a change in the tim-
ing sequence for a temporary period to meet a target
event at a future time. The immediate behavior of the
light can be influenced by messages to either change
to the next phase or stay in the current phase. These
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Figure 1: HCSM traffic light model

mechanisms provide a simple, direct means to change
the phase of the light. However, for many experiments
it is important to create enabling conditions that re-
quire greater anticipation of the upcoming event. The
sequencing pattern can be modified by specifying a fu-
ture time at which a specific transition is to take place.
The state machine will uniformly compress or expand
intervals between the current time and the given time
so that the correct transition takes place at the given
time. The normal progression of states is maintained
and the smallest possible change is made in the nor-
mal cycle that will place the transition at the desired
time.

It is usually not possible to anticipate the exact
time of a future event in an interactive simulation.
Subjects vary their speeds in unpredictable ways and
encounter different ambient traffic. However, we can
progressively refine the timing as the subject nears the
intersection. By continually feeding the current best
estimate of the event time, the traffic light can make
fine adjustments to the scheduled sequence of changes
and accurately meet the required deadline.

3.2 Vehicle Behavior Model

Figures 2 and 3 present a directable HCSM state
machine modeling driving behavior for navigating city
streets and rural highways. It reacts to the movement
of surrounding traffic and upcoming traffic lights. The
structure of the driving state machine is shown in Fig-
ure 2. The flow of data through the machine and the

resolution of competing outputs from concurrent child
state machines is shown in Figure 3.

The top level state machine has four dials that can
be set by external directors to influence the driving
behavior of the vehicle. The Speedfactor dial influ-
ences vehicle’s proclivity to follow the posted speed
limit. Positive settings tend to increase normal driv-
ing speeds and negative settings tend to decrease nor-
mal driving speeds. The Changelane and Turn dials
influence the vehicle’s disposition to change lanes or
turn at the next intersection. The IgnoreLight dial
instructs the state machine to disregard traffic lights.
In the example below, we demonstrate how these dials
can be used to coordinate the motions of a group of
vehicles to create conditions for a scenario.

Driving behavior is decomposed into sub-behaviors
responsible for cruising on an open road, vehicle fol-
lowing, lane tracking, turning at intersections, and
highway passing. The CRUISE and FOLLOW state ma-
chines control the speed of the vehicle along a continu-
ous stretch of road. The TRACKLANE state machine is
responsible for steering the vehicle so that it tracks the
center line of a lane. It also encapsulates decisions to
change lanes and steers the vehicle from lane to lane.
The TURN and PAss state machines are concerned
with negotiating turns at intersections and managing
highway passing maneuvers, respectively. In the re-
mainder of this section we describe the inner workings
of the child state machines that contribute to driving
behavior and explain how their output is integrated
by the resolver (i.e. activity function) to produce safe
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Figure 2: Vehicle behavior structure

driving behavior.

Sub-behavior models

The CRUISE state machine attends to posted speed
limits and upcoming traffic lights. When no traffic
light is visible, it computes an acceleration propor-
tional to the difference between the current speed and
its desired speed. The desired speed is based on the
posted limit and the SpeedFactor input which deter-
mines the vehicle’s tendency to comply with speed
regulations. The child machine STOPVEHICLE is in
the INACTIVE state and produces a null output value
whenever the vehicle is distant from an intersection.
As the vehicle approaches an intersection the DECEL-
ERATE state is activated to bring the vehicle to a stop.
The resolver places higher priority on the output of the
STOPVEHICLE child machine whenever it produces a
non-null value. By itself, the CRUISE state machine
could drive along one lane roads with no other traffic
present.

The FOLLOWVEHICLE state machine is responsible
for maintaining a safe separation between the vehicle
and the car traveling ahead it in the same lane. It is
activated when the headway is less than minimum ac-
ceptable separation based on the time to close the gap
at the current speed. When active, the state machine
uses a PD controller to maintain a speed-dependent

separation distance.

The role of the TRACKLANE state machine is to
compute steering control values that will track a lane
of the road. This state machine also steers the ve-
hicle between adjacent lanes that have same direction
of traffic flow. In state NORMAL, TRACKLANE queries
the road database to determine the path of the road
on which the vehicle is driving. It determines a target
position on the lane centerline to which the vehicle
should head and then calculates a change in the steer-
ing angle necessary to direct the vehicle to the target
position.

On multi-lane roads, the vehicle may decide to
change lanes. The intent to change lanes may be due
to the presence of a slow moving vehicle interfering
with travel or may be stimulated by input from the
parent state machine. Before a lane change can be
initiated there must be an opening in an adjacent lane
into which to move. Given the intention and an open-
ing, the state machine will make a transition to the
CHANGELANE state machine. This state produces
changes in steering angle that will guide the vehicle
into the adjacent lane. Once the vehicle has completed
the lane change, the TRACKLANE state machine sends
the identifier of the new lane as output. The parent
state machine uses this information to update a local
variable that records the lane logically occupied and
tracked by the vehicle.
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Figure 3: Vehicle behavior dataflow

The TURN state machine is responsible for nego-
tiating turns at intersections. This machine waits in
a dormant state, producing a null output value, until
the vehicle nears an intersection. At this time, a de-
cision is made to either turn at the intersection or to
continue on the same road through the intersection.
The turn decision is based on the road density, road
type, and the internal goals of the state machine. The
decision is also influenced by input from the parent
state machine.

If a decision is made to turn, then a transition is
taken to the ACTIVETURN state. The two child ma-
chines, TRACKCORRIDOR and TURNVELOCITY, con-
trol steering and acceleration, respectively, as the ve-
hicle approaches and drives through the intersection.
The TRACKCORRIDOR machine outputs changes in
steering angle to track turning corridors defined in the
database. The SLOWTOTURN state machine monitors
the speed of the vehicle as it approaches the intersec-
tion and produces acceleration values to appropriately
prepare the vehicle for turning. The TURNVELOCITY
machine is responsible for managing the speed of the
vehicle through the intersection. On turns that require
the vehicle to traverse lanes of opposing traffic (e.g.
left turns on two-way streets), the TURNVELOCITY
state machine must find a gap in the oncoming traffic

through which the vehicle can safely drive. When no
gap exists, the GAPACCEPT state causes the vehicle
to enter into the intersection and pause until a gap
opens. When a gap is found, the GO state produces
accelerations to drive the vehicle through the intersec-
tion.

The PAsS state machine executes passing maneu-
vers on two lane, rural highways. As with lane
changes, passing requires both an intention to pass and
the correct enabling circumstances. The motivation
to pass derives from a combination of an urge to drive
faster than the vehicle being followed and personality
characteristics such as aggression and patience. To
enable passing, the road must be marked to permit
passing and there must be a gap in the oncoming traf-
fic sufficiently large to perform the maneuver. Given
both the intention and an opportunity to pass, the
state machine enters the COMMIT state. This state
produces both an acceleration and a change in steer-
ing angle to drive the vehicle into the passing lane.
Once the vehicle is situated in the passing lane, con-
trol passes to the PASSLEADER state that propels the
vehicle ahead of the vehicle to be passed. When the
vehicle is ahead of the vehicle to be passed, COMPLETE
becomes the active state. This states controls reentry
into the normal lane.



After the vehicle initiates the pass it continues
to monitor oncoming traffic while in the ComMIT,
PASSLEADER, and COMPLETE states. If an oncom-
ing vehicle poses a serious threat of colliding with the
vehicle, a transition is taken to the BAILOUT state.
The BAILOUT state chooses the quickest escape route
out of the passing lane. This may involve a hurried
completion of the pass or a radical deceleration in an
attempt to abort the pass and slide behind the vehicle
that was to be passed.

Resolution of competing behaviors

The resolution function must arbitrate among the five
child machines that compete for control of the vehicle.
Because child state machines generate control values
to satisfy specific goals and circumstances (e.g. don’t
collide with the vehicle ahead or stop for red lights), it
is generally not sensible to combine output values in
an attempt to partially satisfy the concerns of several
child machines. The combined value typically leaves
one or many goals unmet and can lead to disastrous
outcomes. For example, if the resolution function av-
eraged the accelerations computed by the CRUISE and
FoLLow state machines it would cause the vehicle to
ram slow moving vehicles it encountered on high-speed
roadways. The more effective strategy is to assign con-
trol to a single child state machine on the basis of the
values produced or by following predetermined prior-
ities.

In most circumstances, the demands of safe driving
place upper limits on the speed at which we travel —
our speed should be less than the posted limit, we slow
for sharp turns, we slow to stop, and we slow for pokey
drivers. It is rarely the case that a circumstance jus-
tifies suspension of these limits to accomplish a task
or react to a critical situation. Most of the time, the
cautious strategy of driving at the maximum speed
that satisfies all the constraints imposed by the envi-
ronment will move us expeditiously and safely along
the road. Our resolution function accomplishes this
by using a “most conservative” rule that chooses the
minimum acceleration output value.

An exception to the “most conservative” rule is
made for passing. While passing, the passing vehi-
cle may drive faster than the posted limit in order to
overtake the vehicle to be passed. In order to coordi-
nate the stages of the passing maneuver, the passing
sub-state machine is assigned complete control of the
vehicle for the duration of the maneuver. By assuming
control, the passing sub-state machine must accept re-
sponsibility for all aspects of driving. A drawback of
this approach is that it can lead to duplication of be-

haviors modeled in other state machines. For example,
if vehicles are allowed to pass in gangs, then the pass-
ing state machine must include its own treatment of
following behavior to avoid colliding with other pass-
ing vehicles. However, we found the benefit of co-
herence in the stages of passing outweighed possible
redundancies.

In contrast to speed control, which involves simulta-
neous attention to many factors, steering control typ-
ically involves mutually exclusive tactics. The driver
chooses to either track the current lane, change lanes,
turn at an intersection, or pass. Each tactic prescribes
a separate action. Some of these tactics can only be
used in highly restricted situations — the vehicle can
only turn at intersections and should not pass near in-
tersections. We leave the context dependent determi-
nation of the appropriateness of a tactic to the internal
decision making apparatus of the state machines. The
resolution function imposes an ordering on the state
machines that produce steering output values: PAss,
TURN, TRACKLANE. Whenever two or more state
machines produce non-null values, priority is given to
the machine that appears first in the order. Thus,
Pass supersedes TRACKLANE when PASS is produc-
ing steering output.

4 An Example Scenario

In this section we demonstrate how to build a com-
plex scenario using this vehicle model as the central
component. Directors are used to detect events and
modify the actions of vehicles and a traffic light to
create a consistent and cohesive experience.

Our example scenario involves a subject’s response
to a vehicle driving through a red light into the path
of the oncoming subject’s vehicle. It is not possible
to choose the vehicle to perform the violation off-line
because of possible interferences in the traffic flow. Be-
cause human subjects drive at different rates they will
arrive at the intersection at different times. Thus, we
cannot guarantee that a particular car will be prop-
erly positioned, waiting at the intersection for the red
light on the crossing road, when the subject arrives.
Instead, a director is used to conscript an appropriate
scenario vehicle to run the light as the subject nears
the intersection. The scenario requires coordination of
the ambient traffic to create consistent circumstances
for the event.

Figure 4 illustrates how three concurrent directors
can be used to direct the traffic surrounding the driver,
synchronize phases of the traffic light to the approach
of the subject’s vehicle, and select a vehicle on the
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Figure 4: Multiple directors can be used to orchestrate complex situations involving large numbers of objects.

crossing road to perform the violation. All of the direc-
tors are activated by a trigger in the road that senses
the approach of the subject vehicle.

To create a clear path in front of the subject vehi-
cle that will allow the violator to enter the intersec-
tion, the Clear Lane Director sets the Speedfactor
dials on vehicles ahead the subject’s vehicle, instruct-
ing them to increase their speed. To give the subject
room to maneuver, the Speedfactor of vehicles behind
the subject vehicle is decreased and oncoming traffic
is told to turn right. Thus, a pocket of vacant road is
created around the subject vehicle.

The Synchronize Light Director is responsible
for synchronizing the sequencing of the traffic light to
the approach of the subject vehicle. In this scenario,
we chose to have the light be in a green state when
the subject reaches the intersection. This is accom-
plished by estimating the subject’s arrival time at the
intersection and sending this information to the traffic
light model via the TargetEvent message.

Lastly, the Conscripted Vehicle Director mon-
itors the distance between the subject vehicle and the
upcoming intersection. As the subject approaches the
intersection, a vehicle in the crossing road is selected
to perform the violation. At a moment near the time
when the subject vehicle reaches the intersection, the
violator is sent the NoStop message forcing it to enter
the intersection.

5 Conclusion

In this paper, we presented directable models for
driving and traffic light behavior suitable for use in
real-time virtual driving environments. We demon-
strated how the HCSM framework was used both to
model basic driving behavior and to define directors
used in orchestrating scenarios. This work presents
our first attempt to combining autonomy and di-
rectability in behavior models. There is much yet to
learn about modeling directable driving behavior, and
about creating scenarios involving complex sequences
of events. We believe that experimentation will form
a substantial part of this learning process.
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