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Abstract: The limiting distribution of the quantile estimate for the autoregressive

coefficient of a near-integrated first order autoregressive model with infinite vari-
ance errors is derived. Since the limiting distribution depends on the unknown

density function of the errors, an empirical likelihood ratio statistic is proposed

from which confidence intervals can be constructed for the near unit root model

without knowing the density function. Numerical simulations are conducted to

compare the performance of the empirical likelihood method and the least squares
procedure. It is found that the empirical likelihood method outperforms the least

squares procedure in general.
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1. Introduction

Consider the first-order autoregressive (AR(1)) model

Yt,n = αnYt−1,n + εt, t = 1, . . . , n, (1.1)

where αn = αn(ϕ) = 1 − ϕ/n, ϕ is a real number, Y0,n = 0 for all n, and {εt}
is a sequence of i.i.d. random variables. This is called a near-integrated AR(1)

model. If ϕ = 0, (1.1) reduces to the traditional unit root model.

There is an extensive literature on unit root estimation and testing for

the case ϕ = 0. For example, Dickey and Fuller (1979) and Chan and Tran

(1989) studied the least squares estimation of a nonstationary AR(1) model when

E(ε2t ) <∞ and E(ε2t ) = ∞, respectively; Callegari, Cappuccio and Lubian (2003)

extended the results in Chan and Tran (1989) to the case where a drift exists;

Knight (1989, 1991) studied M estimation and least absolute deviations estimate

for the case E(ε2t ) = ∞; Herce (1996) studied least absolute deviations estimate

for the case E(ε2t ) <∞; Shin and So (1999) proposed Cauchy M -estimate when

εt may have infinite variance; a sequential estimate was proposed by Lai and Sieg-

mund (1983) for the case E(ε2t ) < ∞; rank tests of unit root were investigated
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by Hasan and Koenker (1997) for the case E(ε2t ) < ∞, and by Hasan (2001)

for the case E(ε2t ) = ∞; Ling and Li (1998) studied the maximum likelihood

procedure for nonstationary time series with GARCH errors; Ahn, Fotopoulos

and He (2001) compared different testing procedures for the unit root with infi-

nite variance errors; tests based on the bootstrap were proposed by Horváth and

Kokoszka (2003).

Although the study of the unit root AR(1) model has been actively pursued

by statisticians and econometricians alike, a related question that needs to be

addressed is what happens to the limiting distribution of the test statistics when

the autoregressive parameter αn is close to one? Equivalently, for finite sample

theory or analysis of tests under local alternatives such as αn = 1 − ϕ/n, what

kind of approximation should be used for the distribution of the test statistics?

To answer this question, Chan and Wei (1987) proposed the triangular array

framework (1.1), which they called the nearly nonstationary AR(1) model, and

established the limiting distributions of the least squares statistics for αn under

the assumption that the conditional variance of εt is finite. Similar results can

also be found in Phillips (1987). Further studies of least squares estimate of a

near-integrated AR(1) model and related issues are given in Chan (1988, 1990)

and the references therein.

In addition to the popular least squares procedure, another important tech-

nique examined by econometricians is the so-called quantile regression, which

has been receiving considerable attention in the literature since the seminal work

of Koenker and Basset (1978). Recent advances can be found, for example, in

Koenker and Xiao (2002) and Ling and McAleer (2004). Most of the research,

however, has focused on the case where E(ε2t ) <∞. In this paper, we investigate

quantile regression estimation for (1.1) when E(ε2t ) = ∞. This model is different

from the models studied in Knight (1989, 1991), where the median of εt is as-

sumed to be zero and ϕ = 0. Since quantile estimates are more robust, as will be

seen in Section 4, they offer better inferential procedures than the least squares

method when the underlying series is heavy-tailed.

The paper is organized as follows. In Section 2, the asymptotic limit of

the quantile regression estimate is derived. An empirical likelihood method for

constructing a confidence interval for the parameter αn is proposed in Section 3.

A simulation study is presented in Section 4. Proofs are given in Section 5.

2. Quantile Regression Estimation

Herein, when no confusion arises, write Yt,n as Yt in (1.1). Let α(τ) = αn

and β(τ) denote the τ -th quantile of εt. Let ρτ (u) = u(τ − I(u < 0)), θ(τ) =

(β(τ), α(τ))T, andXt =(1, Yt−1)
T. If we let Qt(τ |t−1) denote the τ -th conditional



QUANTILE INFERENCE FOR NEAR-INTEGRATED AUTOREGRESSIVE TIME SERIES 17

quantile of Yt conditional on Yt−1, then Qt(τ |t − 1)=XT
t θ(τ). Hence, it follows

from Koenker and Bassett (1978) that the quantile regression estimate is

θ̂(τ) = argminθ(τ)

n
∑

t=1

ρτ (Yt −XT
t θ(τ)). (2.1)

Unless otherwise stated, all limits are taken as n tends to infinity. We assume

the following conditions throughout.

Condition 1. There exists an > 0 such that a−1
n

∑n
t=1 εt converges in distribu-

tion to a stable law with index η ∈ (0, 2);

Condition 2. The distribution function F of εt has a continuous Lebesgue

density f , which is positive on {u : 0 < F (u) < 1}.
The main result is the following.

Theorem 1. Assume (1.1) holds with αn = αn(ϕ), and Conditions 1 and 2 hold.

Then

Dn(θ̂(τ) − θ0(τ))
d→ 1

f(β0(τ))
Σ−1

(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
, (2.2)

where Dn = diag(
√
n, an

√
n), θ0(τ) = (β0(τ), αn,0)

T denotes the true value of

θ(τ), Σ =
∫ 1
0 (1, S1(s))

T(1, S1(s)) ds, and W (τ, s) and S1(s) are two independent

stochastic processes whose specific forms are given in Lemma 2 in Section 5. In

particular,

an

√
n(α̂(τ) − αn,0)

d→ 1

f(β0(τ))

∫ 1
0 S1(s) dW (τ, s) −W (τ, 1)

∫ 1
0 S1(s) ds

∫ 1
0 S

2
1(s) ds− (

∫ 1
0 S1(s) ds)2

, (2.3)

{

n
∑

t=1

Y 2
t−1 −

(

n
∑

t=1

Yt−1

)2} 1

2

(α̂(τ) − αn,0)
d→ N

(

0,
τ(1 − τ)

f2(β0(τ))

)

. (2.4)

3. Empirical Likelihood

Although the limiting distribution given in (2.4) is normal, its form involves

the unknown density f of the error distribution. As a result, a confidence interval

for αn based on the normal approximation requires an estimate of the unknown

density function f . To circumvent this difficulty, we propose to use the empirical

likelihood method. Chuang and Chan (2002) recently apply the method to unit

root AR models with finite variance errors. In this paper, a profile empirical

likelihood method of Qin and Lawless (1994) is adopted to study the near unit
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root AR(1) model with infinite variance errors. We refer to Owen (2001) for a

comprehensive description of the empirical likelihood method.

Let p = (p1, . . . , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for

i = 1, . . . , n. The empirical likelihood is defined as

L(θ(τ)) = sup
{

Πn
t=1pt :

n
∑

t=1

pt = 1,
n

∑

t=1

ptXtψτ (Yt −XT
t θ(τ)) = 0

}

,

where ψτ (u) = τ − I(u < 0).

By the method of Lagrange multipliers, we have

pt =
1

n
{1 + λTXtψτ (Yt −XT

t θ(τ))}−1, t = 1, . . . , n, (3.1)

where λ = (λ1, λ2)
T satisfies

1

n

n
∑

t=1

Xtψτ (Yt −XT
t θ(τ))

1 + λTXtψτ (Yt −XT
t θ(τ))

= 0. (3.2)

The empirical likelihood ratio is

l(θ(τ)) = 2

n
∑

t=1

log{1 + λTXtψτ (Yt −XT
t θ(τ))}

and the profile empirical likelihood ratio is lp(α(τ)) = minβ(τ) l(θ(τ)).

Theorem 2. Under the conditions of Theorem 1, lp(αn,0) − minθ(τ) l(θ(τ))
d→

χ2(1).

Based on this result, a confidence interval for αn,0 with significance level γ is

Iγ = {α : lp(α) − min
θ(τ)

l(θ(τ)) ≤ uγ}, (3.3)

where uγ is the 100γ%-level quantile of χ2(1). This gives a confidence interval for

αn,0 with an asymptotic coverage probability γ, as shown in the next corollary.

Corollary 1. Assume the conditions of Theorem 1 hold. Then, as n → ∞,

P (αn,0 ∈ Iγ) → γ.

4. Simulations

Finite sample performances in terms of standard deviations and coverage

probabilities of the quantile estimate and the least squares estimate are compared

in this section. The least squares estimate α̃n =
∑n

i=1 YiYi−1/
∑n

i=1 Y
2
i was

studied by Chan (1990).
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First, we compared the quantile estimate at τ = 0.5 with the least squares

estimate. We drew 1,000 samples of size n = 50 and 500 from (1.1) with εt a

standard Cauchy. We considered the cases ϕ = 0, 1, 5, 10, 20, 50, 100. The sample

averages of the estimates and the corresponding standard deviations of α̂n and

α̃n are given in Table 1. It shows that the quantile estimate performs better than

the least squares estimate both in terms of precision and standard errors. This

improvement is more prominent for moderate sample size, such as n = 50.

Table 1. Estimates of α̂n and α̃n. Numbers in bracket are the corresponding
standard deviations.

n = 50

αn 1 0.98 0.9 0.8 0.6 0 -1

α̂n 0.985 0.966 0.889 0.790 0.591 -0.003 -0.997

(0.040) (0.036) (0.042) (0.044) (0.046) (0.054) (0.014)

α̃n 0.929 0.918 0.852 0.760 0.571 -0.006 -0.934

(0.098) (0.100) (0.102) (0.104) (0.102) (0.093) (0.092)

n = 500

αn 1 0.998 0.99 0.98 0.96 0.9 0.8

α̂n 0.9998 0.9978 0.9898 0.9798 0.9599 0.8999 0.7998

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

α̃n 0.9923 0.9911 0.9842 0.9744 0.9546 0.8947 0.7950

(0.014) (0.014) (0.016) (0.018) (0.022) (0.028) (0.032)

Second, we compared the confidence intervals in terms of coverage accuracy
based on the empirical likelihood method in Section 3 with those based on the
limit of least squares estimate. Let g(φ) denote the limit of n(α̃n − αn) and
zγ denote the 100γ%-level quantile of g(φ). Values of zγ can be found in Chan
(1990). A γ level confidence interval based on the above approximation is

I∗γ = (α̃n −
z1− γ

2

n
, α̃n −

z γ

2

n
). (4.1)

We drew 1,000 samples of size n = 500 from (1.1) with εt a standard Cauchy.
Again, we considered ϕ = 0, 1, 5, 10, 20, 50, 100 with the true coverage probabil-
ities γ = 0.90 and 0.95. Table 2 shows the coverage probabilities for Iγ using
the empirical likelihood given in (3.3) with I∗γ using the least squares given in
(4.1). Once again, the empirical likelihood method clearly outperforms the least
squares approximation method.

In conclusion, these simulations furnish strong evidence that the proposed
quantile estimate procedure provides a reliable alternative for the least squares
procedure when conducting statistical inference for near-integrated AR(1) mod-
els. Furthermore, the improvement exhibited by the empirical procedure is more
striking for series with moderate lengths.
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Table 2. Coverage probabilities with n = 500.

αn 1 0.998 0.99 0.98 0.96 0.9 0.8

I0.90 0.922 0.913 0.929 0.927 0.929 0.930 0.919

I∗
0.90

0.865 0.877 0.887 0.885 0.861 0.855 0.808

I0.95 0.954 0.952 0.967 0.963 0.963 0.965 0.957

I∗
0.95

0.932 0.930 0.940 0.940 0.927 0.924 0.937

5. Proofs

For convenience, introduce the following notation:

Sn(s) = a−1
n

[ns]
∑

t=1

εt, Tn(s) = a−1
n Y[ns], Wn(τ, s) = n−

1

2

[ns]
∑

t=1

ψτ (εt − β0(τ))

Vn = a−1
n n−

1

2

n
∑

t=1

Yt−1ψτ (εt − β0(τ)).

Lemma 1. Under the conditions of Theorem 1,

(Sn(s1),Wn(τ, s2))
d→ (S(s1),W (τ, s2)) (5.1)

in D{[0, 1]2}, where S(·) and W (·, ·) are independent, S(s) is a stable process

with index η, and W (τ, s) is a rescaled Brownian bridge for fixed s, and a Brow-

nian motion with variance τ(1 − τ) for fixed τ . Thus, for each fixed pair (τ, s),

W (τ, s) ∼ N(0, τ(1 − τ)s).

Proof. Equation (5.1) follows from the arguments in Resnick and Greenwood

(1979).

Lemma 2. Under the conditions of Theorem 1, we have

Tn(·) = a−1
n Y[n·]

d→ S1(·) (5.2)

in D[0, 1] and

Vn
d→

∫ 1

0
S1(s) dW (τ, s), (5.3)

where S1(t) = S(t) − ϕ
∫ t
0 e

ϕ(s−t)S(s)ds, and W (·, ·) and S(·) are defined in

Lemma 1.

Remark 1. Note that S1(t) defined above is the analog of the Ornstein-Uhlenbeck

process in the finite variance case.
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Proof of Lemma 2.

Tn(s) = a−1
n

[ns]
∑

j=1

εj +

[ns]
∑

i=1

(α[ns]−i+1
n − α[ns]−i

n )a−1
n

i
∑

j=1

εj

= a−1
n

[ns]
∑

j=1

εj −
ϕ

n

[ns]
∑

i=1

α[ns]−i
n a−1

n

i
∑

j=1

εj

= Sn(s) − ϕ

∫ n−1([ns]+1)

0
(1 − ϕ

n
)[ns]−[nu]Sn(u)du.

Therefore, (5.2) follows directly from Lemma 1. The rest of the proof follows

along the lines of the proof of Lemma 1 in Knight (1989) by noting that

a−1
n n−

1

2

n
∑

t=1

Yt−1ψτ (εt − β0(τ)) =

∫ 1

0
Tn(s−)dWn(s).

Proof of Theorem 1. Put ν = (ν1, ν2)
T = Dn(β(τ) − β0(τ), α(τ) − αn)T and

Zn(ν) =

n
∑

t=1

{ρτ (εt − β0(τ) − νTD−1
n Xt) − ρτ (εt − β0(τ))}.

Since ρτ (u− v) − ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v) − I(0 < u < v)}, we

have

Zn(ν) = −
n

∑

t=1

{νTD−1
n Xtψτ (εt − β0(τ))}

+

n
∑

t=1

{εt − β0(τ) − νTD−1
n Xt}I(0 > εt − β0(τ) > νTD−1

n Xt)

−
n

∑

t=1

{εt − β0(τ) − νTD−1
n Xt}I(0 < εt − β0(τ) < νTD−1

n Xt)

= I1 + I2 + I3, say . (5.4)

It follows from Lemma 2 that

I1 = −νT(Wn(τ, 1), Vn)T
d→ −νT(W (τ, 1),

∫ 1

0
S1(s) dW (τ, s))T (5.5)

and max1≤t≤n |√nνTD−1
n Xt|≤|ν1|+|ν2|max1≤t≤n |a−1

n Yt−1| d→ |ν1|+|ν2| sup0≤s≤1

|S1(s)|. Thus,

max
1≤t≤n

|
√
nνTD−1

n Xt| = Op(1). (5.6)
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Adopt the following definitions:

Ztn(ν) = (νTD−1
n Xt − εt + β0(τ))I(ν

TD−1
n Xt > εt − β0(τ) > 0)

I(0 <
√
nνTD−1

n Xt ≤ n
1

4 );

Ft = σ(εs; s ≤ t); µtn(ν) = E(Ztn(ν)|Ft−1);

Atn(ν) = νTD−1
n XtI(0 <

√
nνTD−1

n Xt ≤ n
1

4 ).

From (5.6) and Lemma 2 it is easy to see that I3 =
∑n

t=1 Ztn(ν) + op(1) and

n
∑

t=1

A2
tn(ν) =

n
∑

t=1

(νTD−1
n Xt)

2I(νTD−1
n Xt > 0) + op(1)

d→
∫ 1

0
νT(1, S(s))T(1, S(s))νI

(

0 < νT(1, S(s))T
)

ds.

Hence

n
∑

t=1

µtn(ν) =
n

∑

t=1

∫ β0(τ)+Atn(ν)

β0(τ)
{Atn(ν) + β0(τ) − x}f(x) dx

=

n
∑

t=1

∫ β0(τ)+Atn(ν)

β0(τ)

{

∫ Atn(ν)+β0(τ)

x
ds

}

f(x) dx

=

n
∑

t=1

∫ β0(τ)+Atn(ν)

β0(τ)

{

∫ s

β0(τ)
f(x) dx

}

ds

=

n
∑

t=1

∫ β0(τ)+Atn(ν)

β0(τ)
{F (s) − F (β0(τ)} ds

=

n
∑

t=1

∫ β0(τ)+Atn(ν)

β0(τ)
(s− β0(τ))f(β0(τ))(1 + op(1)) ds

=
1

2

n
∑

t=1

f(β0(τ))A
2
tn(ν)(1 + op(1))

=
1

2
f(β0(τ))

n
∑

t=1

(νTD−1
n Xt)

2I(νTD−1
n Xt > 0) + op(1).

Since max1≤t≤nAtn(ν) = op(1),

n
∑

t=1

E(Z2
tn(ν)|Ft−1) ≤ ( max

1≤t≤n
Atn(ν))

n
∑

t=1

µtn(ν)
p→ 0.
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Thus we have

I3 =
1

2
f(β0(τ))

n
∑

t=1

(νTD−1
n Xt)

2I(νTD−1
n Xt > 0) + op(1),

I2 =
1

2
f(β0(τ))

n
∑

t=1

(νTD−1
n Xt)

2I(νTD−1
n Xt < 0) + op(1).

Therefore

Zn(ν) = −νT(Wn(τ, 1), Vn)T +
1

2
f(β0(τ))

n
∑

t=1

(νTD−1
n Xt)

2 + op(1)

d→−νT
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
+

1

2
f(β0(τ))ν

TΣν,

where Σ =
∫ 1
0 (1, S1(s))

T(1, S1(s))ds.

Since Zn(ν) has convex sample paths, the above convergence implies uniform

convergence on compact sets. Thus, (2.2) follows from Lemma 2.2 of Davis,

Knight and Liu (1992). Equations (2.3) and (2.4) can be checked easily.

Proof of Theorem 2. Let θ̄0(τ, ν) = (β0(τ) + n−1/2ν, αn,0)
T, Zt(θ̄0) = XtΨτ

(Yt −XT
t θ̄0(τ, ν)), and λ = (λ1, λ2)

T be the solution of (1/n)
∑n

t=1(Zt(θ̄0))/(1+

λTZt(θ̄0)) = 0. Thus λ̄ = (λ1, anλ2)
T is the solution of

g(λ̄) =
1

n

n
∑

t=1

Z̄t(θ̄0)

1 + λ̄TZ̄t(θ̄0)
= 0,

where Z̄t(θ̄0) = X̄tΨτ (Yt −XT
t θ̄0(τ, ν)) and X̄t = (1, a−1

n Yt−1)
T.

Our first step is to prove that

||λ̄|| = Op(n
− 1

2 ) locally uniformly in ν. (5.7)

Write λ̄ = ρλ0, where ρ ≥ 0 and ||λ0|| = 1. Since the probabilities pt appearing

in the definition of lp(αn,0) are given by pt = n−1(1 + λTZt(θ̄0))
−1 = n−1(1 +

λ̄TZ̄t(θ̄0))
−1, we have 1 + λ̄TZ̄t(θ̄0) ≥ 0, i.e.,

|1 + λ̄TZ̄t(θ̄0)|−1 = |1 + ρλ0Z̄t(θ̄0)|−1 ≥
(

1 + ρ max
1≤t≤n

||Z̄t(θ̄0)||
)−1

.
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Hence

0 = ||g(λ̄)|| = ||g(ρλ0)||
≥ |λT

0 g(ρλ0)|

=
1

n

∣

∣

∣
λT

0 {
n

∑

t=1

Z̄t(θ̄0) − ρ

n
∑

t=1

Z̄t(θ̄0)λ
T
0 Z̄t(θ̄0)

1 + ρλT
0 Z̄t(θ̄0)

∣

∣

∣

≥ ρ

n
λT

0

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
T

1 + ρλT
0 Z̄t(θ̄0)

λ0 −
1

n

∣

∣

∣
λT

0

n
∑

t=1

Z̄t(θ̄0)
∣

∣

∣

≥ ρ

n

{

1 + ρ max
1≤t≤n

||Z̄t(θ̄0)||
}−1

λT
0

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
Tλ0 −

1

n

∣

∣

∣
λT

0

n
∑

t=1

Z̄t(θ̄0)
∣

∣

∣
.

That is,

ρ
{ 1

n
λT

0

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
Tλ0 − ( max

1≤t≤n
||Z̄t(θ̄0)||)

1

n
|

n
∑

t=1

λT
0 Z̄t(θ̄0)|

}

≤ 1

n
|

n
∑

t=1

λT
0 Z̄t(θ̄0)|. (5.8)

Note that

n
∑

t=1

Z̄t(θ̄0) =

n
∑

t=1

X̄tΨ
F (β0(τ)+n−

1
2 ν)

(εt − β0(τ) − n−
1

2 ν)

+
n

∑

t=1

X̄t{τ − F (β0(τ) + n−
1

2 ν)}. (5.9)

By Lemma 2,

|| 1
n

n
∑

t=1

Z̄t(θ̄0)|| = Op(n
− 1

2 ) locally uniformly in ν. (5.10)

Write

1

n

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
T

=
1

n

n
∑

t=1

X̄t{Ψ2
τ (εt − β0(τ) − n−

1

2 ν) − Ψ2
τ (εt − β0(τ))}X̄t

+τ(1 − τ)
1

n

n
∑

t=1

X̄t(1, a
−1
n Yt−1) + (2τ − 1)

1

n

n
∑

t=1

X̄tΨτ (εt − β0(τ))X̄
T
t

= I1 + I2 + I3. (5.11)
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Similar to (5.10) we have, by Lemma 2,

I1 = op(1), I2
d→ Σ̄, I3 = op(1) (5.12)

locally uniformly in ν, where Σ̄ = τ(1 − τ)Σ. Hence

1

n
λT

0

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
Tλ0

d→ λT
0 Σ̄λ0 (5.13)

locally uniformly in ν. It is straightforward to show that

max
1≤t≤n

||Z̄t(θ̄0)|| = op(
√
n) locally uniformly in ν a.s.. (5.14)

Thus (5.7) follows from (5.8), (5.10), (5.13) and (5.14). Furthermore,

λ̄ =
( 1

n

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
T
)−1 1

n

n
∑

t=1

Z̄t(θ̄0) + op(n
− 1

2 )

and

l(θ̄0(τ, ν)) = n
[ 1

n

n
∑

t=1

Z̄t(θ̄0)
]T[ 1

n

n
∑

t=1

Z̄t(θ̄0)Z̄t(θ̄0)
T
]−1[ 1

n

n
∑

t=1

Z̄t(θ̄0)
]

+ op(1)

(5.15)

locally uniformly in ν. Similarly

l(θ0(τ)) = n
[ 1

n

n
∑

t=1

Z̄t(θ0)
]T[ 1

n

n
∑

t=1

Z̄t(θ0)Z̄t(θ0)
T
]−1[ 1

n

n
∑

t=1

Z̄t(θ0)
]

+ op(1).

(5.16)

By Lemmas 1 and 2,

√
n
{ 1

n

n
∑

t=1

Z̄t(θ̄0) −
1

n

n
∑

t=1

Z̄t(θ0)
}

=
√
n
{ 1

n

n
∑

t=1

X̄tΨ
F (β0(τ)+n−

1
2 ν)

(Yt −XT
t θ̄0(τ, ν))

+
1

n

n
∑

t=1

X̄t[F (β0(τ)) − F (β0(τ) + n−
1

2 ν)] − 1

n

n
∑

t=1

X̄tΨτ (Yt −XT
t θ0(τ))

}

=
(

W (F (β0(τ) + n−
1

2 ν), 1),

∫ 1

0
S1(s) dW (F (β0(τ) + n−

1

2 ν), s)
)T

−F ′(β0(τ))ν
1

n

n
∑

t=1

X̄t −
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
+ op(1)

= −F ′(β0(τ))ν
(

1,

∫ 1

0
S1(s) ds

)T
+ op(1). (5.17)
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Hence, by (5.13), (5.15), (5.16) and (5.17),

l(θ̄0(τ, ν)) − l(θ0(τ))

= [F ′(β0(τ))]
2ν2

(

1,

∫ 1

0
S1(s) ds

)

Σ−1
(

1,

∫ 1

0
S1(s) ds

)T

−2F ′(β0(τ))ν
(

1,

∫ 1

0
S1(s) ds

)

Σ−1
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
+ op(1).

By minimizing the above relation with respective to ν, we obtain

l(θ0(τ)) − lp(αn,0) =
{(

1,

∫ 1

0
S1 ds

)

Σ̄−1
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T}2/

{(

1,

∫ 1

0
S1(s) ds

)

Σ̄−1
(

1,

∫ 1

0
S1(s) ds

)T}

+ op(1)

=W (τ, 1)2/[τ(1 − τ)] + op(1). (5.18)

Define θ̃0(τ, ν1, ν2) = (β0(τ)+n−
1

2 ν1, αn,0 +n−
1

2 ν2)
T. Similar to (5.15), we have

l(θ̃0(τ, ν1, ν2)) = n
[ 1

n

n
∑

t=1

Z̄t(θ̃0)
]T[ 1

n

n
∑

t=1

Z̄t(θ̃0)Z̄t(θ̃0)
T
]−1[ 1

n

n
∑

t=1

Z̄t(θ̃0)
]

+ op(1)

(5.19)

locally uniformly in ν1 and ν2. It follows from Lemmas 1 and 2 that

√
n
{ 1

n

n
∑

t=1

Z̄t(θ̃0) −
1

n

n
∑

t=1

Z̄t(θ0)
}

=
√
n
{ 1

n

n
∑

t=1

X̄tΨ
F (β0(τ)+n−

1
2 ν1+a−1

n Yt−1n−
1
2 ν2)

(Yt −XT
t θ̃0(τ, ν1, ν2))

+
1

n

n
∑

t=1

X̄t[F (β0(τ)) − F (β0(τ) + n−
1

2 ν1 + a−1
n Yt−1n

− 1

2 ν2)]

− 1

n

n
∑

t=1

X̄tΨτ (Yt −XT
t θ0(τ))

}

= −F ′(β0(τ))Σ(ν1, ν2)
T + op(1). (5.20)

Hence, by (5.13), (5.19), (5.16) and (5.20),

l(θ̃0(τ, ν1, ν2)) − l(θ0(τ))

= [F ′(β0(τ))]
2(ν1, ν2)ΣΣ̄−1Σ(ν1, ν2)

T

−2F ′(β0(τ))(ν1, ν2)ΣΣ̄−1
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
+ op(1).
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By minimizing the above equation with respective to ν1 and ν2, we obtain

l(θ0(τ)) − min
θ(τ)

l(θ(τ))

=
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)

Σ̄−1
(

W (τ, 1),

∫ 1

0
S1(s) dW (τ, s)

)T
+ op(1)

=W (τ, 1)2
∫ 1

0
S2

1(s) ds− 2W (τ, 1)

∫ 1

0
S1(s) ds

∫ 1

0
S1(s) dW (τ, s)

+
{

∫ 1

0
S1(s) dW (τ, s)

}2/{

τ(1 − τ)
[

∫ 1

0
S2

1(s) ds−
(

∫ 1

0
S1(s) ds

)2]}

+op(1). (5.21)

Hence, by (5.18), (5.21) and the fact that S1(s1) and W (τ, s2) are independent

processes,

lp(αn,0) − min
θ(τ)

l(θ(τ)) =
{

∫ 1

0
S1(s) dW (τ, s) −W (τ, 1)

∫ 1

0
S1(s) ds

}2/

{

τ(1 − τ)
[

∫ 1

0
S2

1(s) ds−
(

∫ 1

0
S1(s) ds

)2]}

+ op(1)

d→ χ2(1).
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