
Statistica Sinica 29 (2019), 203-224
doi:https://doi.org/10.5705/ss.202016.0336

MAXIMUM PENALIZED LIKELIHOOD ESTIMATION FOR

THE ENDPOINT AND EXPONENT OF A DISTRIBUTION

Fang Wang, Liang Peng, Yongcheng Qi and Meiping Xu

Capital Normal University, Georgia State University,

University of Minnesota, Duluth and

Beijing Technology and Business University

Abstract: Consider a random sample from a regularly varying distribution function

with a finite right endpoint θ and an exponent α of regular variation. The primary

interest of the paper is to estimate both the endpoint and the exponent. Since the

distribution is semiparametric and the endpoint and the exponent reveal asymp-

totic properties of the right tail for the distribution, inference can only be based

on a few of the largest observations in the sample. The conventional maximum

likelihood method can be used to estimate both α and θ, see e.g., Hall (1982) and

Drees, Ferreira and de Haan (2004) for the regular case, α ≥ 2, and Smith (1987)

and Peng and Qi (2009) for the irregular case, α ∈ (1, 2). A global maximum of the

likelihood function doesn’t exist if one allows α ∈ (0, 1], and a local maximum exists

with probability tending to one only if α > 1. We propose a penalized likelihood

method to estimate both parameters. The estimators derived from this exist for

all α > 0 and any sample such that the largest two observations are distinct. We

present the asymptotic distributions for the proposed maximum penalized likeli-

hood estimators. A simulation study shows that the proposed method works very

well for the irregular case, and has even better finite sample performance than the

conventional maximum likelihood method for the regular case.

Key words and phrases: Endpoint, exponent, irregular case, limiting distribution,

maximum likelihood.

1. Introduction

Let F be a distribution function with a finite right endpoint θ. For

1− F (x) = c(θ − x)α + o{(θ − x)α} as x ↑ θ, (1.1)

where c > 0 is a constant and α > 0 is called the exponent of F , statisti-

cal inference for θ and α has been of importance in the applications of ex-

treme value theory; see, e.g., de Haan and Ferreira (2006); Einmahl and Magnus

(2008); Einmahl and Smeets (2011). When the underlying distribution function

is F (x) = 1 − (1 − x/θ)α for x ∈ [0, θ] and some α, θ > 0, it is easy to check
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that the Fisher information with respect to θ is finite for α > 2 and infinite for

α ≤ 2. Therefore, finding an efficient inference for the endpoint θ depends on

whether α > 2 or α ≤ 2. These are called the regular case and the irregular case,

respectively, in the literature.

Taking a high threshold un and approximating the tail probability 1− F (x)

for x ≥ un by the parametric family c(θ − x)α, a type of maximum likelihood

(ML) method can be employed to estimate both θ and α. See, e.g., Hall (1982);

Drees, Ferreira and de Haan (2004) for the regular case, and Smith (1985, 1987);

Smith and Weissman (1985); Woodroofe (1974); Zhou (2009); Peng and Qi (2009)

for the irregular case. For some other inference procedures for the endpoint,

such as resampling, minimum distance, high order moments, Bayesian inference

and others, we refer to Athreya and Fukuchi (1997); Falk (1995); Hall and Wang

(1999, 2005); Loh (1984); Girard, Guillou and Stupfler (2012a,b); Beirlant, Fraga

Alves and Gomes (2016); Fraga Alves and Neves (2014); Fraga Alves, Neves and

Rosário (2017). Bias correction and interval estimation for the endpoint are

available in Hall and Park (2002); Li and Peng (2009); Li, Peng and Xu (2011);

Li, Peng and Qi (2011). Instead of assuming (1.1), Fraga Alves and Neves (2014)

estimated the finite right endpoint of a distribution function by assuming that

the underlying distribution is in the domain of attraction of Gumbel distribution.

Assume X1, . . . , Xn are independent and identically distributed random vari-

ables having a distribution function F satisfying (1.1). Let Xn,1 ≤ · · · ≤ Xn,n

denote the order statistics of X1, . . . , Xn, and let k = kn be a sequence of integers

satisfying k/n→ 0 as n→∞. When our (2.4) holds with ρ < 0, it is known that

Xn,n − θ = Op(n
−1/α). When α > 2, an endpoint estimator based on the largest

k order statistics can have a faster rate of convergence than n−1/α, especially

for a larger α. Although many existing endpoint estimators work for all α > 0,

their convergence rate is usually slower than n−1/α when α < 2. For example,

the estimators in Girard, Guillou and Stupfler (2012a,b) have the rate of conver-

gence n−1/2p
α/2−1
n for some pn such that np−αn →∞, if α < 2, which implies that

n−1/2p
α/2−1
n /n−1/α → ∞. This is understandable since their estimators have a

normal limit. Given the information that α < 2, one can select the value of pn
as large as possible in the estimators by Girard, Guillou and Stupfler (2012a,b)

such that n−1/2p
α/2−1
n /n−1/α →∞ at an arbitrarily slow rate. In this sense, one

can argue that these estimators are essentially optimal for the irregular case. To

achieve the exact rate of convergence as the maximum for the irregular case, a

simple strategy suggested by Remark 4.5.5 of de Haan and Ferreira (2006) is to

either use two different endpoint estimators for the regular case and the irreg-



MAXIMUM PENALIZED LIKELIHOOD METHOD 205

ular case, or to employ different choices of sample fraction in the construction

of an endpoint estimator. This depends on how effectively one can distinguish

the regular case and the irregular case. Likelihood-based estimators via (1.1)

only exist for α > 1 and the corresponding endpoint estimators have the same

rate of convergence as Xn,n in the irregular case (see Hall (1982)). Based on

exceedances and a generalized Pareto distribution, Smith (1987) estimated the

endpoint separately for the regular case and the irregular case.

Likelihood-based approaches have been shown to be efficient for the regular

case (see Coles and Dixon (1999); Pauli and Coles (2001)), but they are prob-

lematic for the irregular case (see Hall (1982); Smith (1987)). The problem of

interest here is to find a method which is efficient as the likelihood approach in

the regular case and overcomes the difficulties of the likelihood approach in the

irregular case.

Treat Xn,n−k+1, . . . , Xn,n as k left-censored observations above the threshold

un = Xn,n−k. By temporarily assuming that 1−F (x) = c(θ−x)α for un < x < θ,

the censored likelihood function for Xn,n−k, . . . , Xn,n, up to a constant scale, is

given by

L(θ, c, α) =


k∏
j=0

cα(θ −Xn,n−k+j)
α−1

{1− c(θ −Xn,n−k)
α
}n−k−1

. (1.2)

By maximizing the likelihood one can find ML estimators for the parameters θ, c,

and α (if it is unknown). Hall (1982) derived the limiting distribution for the ML

estimator for θ when α > 2 is known, and the joint limiting distribution for the

ML estimators for θ and α when α > 2 is unknown. The limiting distribution

for the ML estimator of θ was also obtained in Hall (1982) when 1 < α < 2 is

known and k ≥ 2 is fixed rather than divergent.

If α ∈ (0, 1) is known, the ML estimator for θ is Xn,n, at which the likelihood

function L(θ, c, α) is infinite. Hence, it is biased and always underestimates θ.

On the other hand, when α > 0 is unknown, the endpoint θ is the only parameter

that can be estimated and the ML estimator for θ is Xn,n, since L(Xn,n, c, α) is

infinite for any α ∈ (0, 1). The ML estimator of θ is also Xn,n if α = 1. Thus,

when α > 0 is unknown, jointly estimating θ and α by the maximum likelihood

estimation in Hall (1982) is impossible unless we impose the constraint α > 1.

We seek a method that avoids using the maximum observation as an esti-

mator for the endpoint θ, can estimate θ and α simultaneously for all α > 0 at

the same rate of convergence as the maximum for estimating θ in the irregular

case. We propose a penalized likelihood method to achieve these goals so as to
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improve the inference in Hall (1982). After showing that the corresponding score

equations exist a solution for any given sample and k ≥ 2 (as long as the largest

two observations are distinct), we derive the limiting distribution for the new

endpoint estimator when α > 0 is known, and the joint limiting distribution for

the new estimators of θ and α when α > 0 is unknown. In particular, we show

that the limiting distribution for this estimator of α is normal for all α > 0 and,

for the new estimator of θ, that the limiting distribution is normal if α ≥ 2 and

non-normal if α < 2.

The rest of the paper is organized as follows. Section 2 presents the pe-

nalized likelihood approach and the main asymptotic results of the paper. In

Section 3 some simulation studies are reported that compared the performance

of the new estimators with the maximum likelihood estimators in Hall (1982),

with the high-order moments estimator for the endpoint by Girard, Guillou and

Stupfler (2012b). Some discussion on these estimators is given as well. Further

comparisons with the endpoint estimator proposed in Fraga Alves and Neves

(2014), and with the moment estimator for the tail index proposed by Dekkers,

Einmahl and de Haan (1989) can be found in Section S1 of the Supplement Ma-

terials. In Section 4, data sets on the men’s and women’s 100 meters dash are

analyzed, and results from our likelihood method are compared with those us-

ing the moment method. More details on the data application are available in

Section S2 of the Supplement. Proofs are given in Section S3 of the Supplement.

2. Methodologies and Main Results

Throughout we assume our observations X1, . . . , Xn are independent and

identically distributed random variables with distribution function F satisfying

(1.1). Let Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn with

k = kn such that k/n → 0 as n → ∞. If we directly maximize the censored

likelihood function L(θ, c, α) at (1.2), the resulting estimator for θ is Xn,n when

α ∈ (0, 1]. This underestimates the endpoint, and α is not estimable when

α ∈ (0, 1). Moreover, given the sample X1, . . . , Xn and k ≥ 2, the score equations

with respect to L(θ, c, α) may have no solution even for α > 1.

Here we add a penalization multiplier to L(θ, c, α) such that the penalized

likelihood function is always bounded, and the corresponding score equations

always exist, and have a solution for any given sample and k, as long as the largest

two observations are distinct. Take p(θ, α,Xn,n−k, . . . , Xn,n) to be a general

penalization function such that
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L1(θ, c, α) = L(θ, c, α)p(θ, α,Xn,n−k, . . . , Xn,n)

is bounded globally. Since L(θ, c, α) is unbounded as θ → Xn,n, we need p(θ, α,

Xn,n−k, . . . , Xn,n)→ 0 as θ → Xn,n. A simple choice then is

p(θ, α,Xn,n−k, . . . , Xn,n) =
θ −Xn,n

α(θ −Xn,n−k)
,

where the numerator ensures that the penalization goes to zero as θ → Xn,n,

but the denominator slows the convergence to avoid over-penalization, and the

involved α is to ensure that the corresponding score equations always have a

solution. Using this penalization, the penalized likelihood function is

L1(θ, c, α) = ck+1αk(θ −Xn,n)α(θ −Xn,n−k)
α−2

×


k−1∏
j=1

(θ −Xn,n−k+j)
α−1

{1− c(θ −Xn,n−k)
α
}n−k−1

for θ > Xn,n, and zero otherwise. The maximum penalized likelihood estimators

are obtained by maximizing this likelihood function. When both α and θ are un-

known, Hall (1982)’s estimator and the maximum penalized likelihood estimator

for θ are defined as the smallest solutions to m(θ) = 0 and g(θ) = 0, respectively,

where m(θ) is defined in (3.2) and g(θ) is defined in (2.15). In a simulation study,

we had plotted functions m(θ) and g(θ) against θ for some samples drawn from

the reverse Gamma distribution with true θ = 0 and n = 200, which clearly

shows that maximum likelihood estimate in Hall (1982) may not exist, but that

the proposed maximum penalized likelihood estimate always exists.

We consider the cases of known α and unknown α separately. When α is

assumed to be known, we focus on the endpoint estimation. When α is unknown,

we estimate θ and α jointly. Throughout we let (α0, θ0) denote the true value of

(α, θ).

2.1. Estimating θ with known α

Suppose the parameter α = α0 > 0 is known and we are interested in

estimating θ. We maximize L1 with respect to c and θ, and denote the estimators

of c and θ as ĉ and θ̂, respectively. By differentiating the log-likelihood function

logL1 with respect to θ and c, we have ĉ = {(k + 1)/n}(θ̂ −Xn,n−k)
−α0 , and θ̂

is the solution to

h(θ) :=
θ −Xn,n−k
θ −Xn,n

+

(
1− 1

α0

) k−1∑
j=1

θ −Xn,n−k
θ −Xn,n−k+j

− 2

α0
− k = 0. (2.1)
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Assume that Xn,n > Xn,n−1. Since

h(Xn,n+) =∞, h(∞) = −k + 1

α0
< 0 and h(θ) is continuous, (2.2)

there exists at least one root to (2.1). We have that

h(θ) =
Xn,n −Xn,n−k
θ −Xn,n

+
α0 − 1

α0

k−1∑
j=1

Xn,n−k+j −Xn,n−k
θ −Xn,n−k+j

− k + 1

α0
(2.3)

is strictly decreasing in θ ∈ (Xn,n,∞) when α0 ≥ 1. Therefore the estimator θ̂ is

unique if α0 ≥ 1 and Xn,n > Xn,n−1. If α0 ∈ (0, 1), then

h′(θ)(θ −Xn,n)2 =
1− α0

α0

k−1∑
j=1

(Xn,n−k+j −Xn,n−k)(θ −Xn,n)2

(θ −Xn,n−k+j)2
−Xn,n −Xn,n−k

is increasing in θ if Xn,n > Xn,n−1, which implies that the equation h′(θ) = 0 has

at most one root in (Xn,n,∞). As h′(Xn,n+) = −∞, we conclude that i) h′(θ) < 0

for all θ > Xn,n, or ii) there exists a unique θ∗ > Xn,n such that h′(θ) < 0 for

θ ∈ (Xn,n, θ
∗), h′(θ∗) = 0 and h′(θ) > 0 for θ > θ∗, or iii) there exists a unique

θ∗ > Xn,n such that h′(θ) < 0 for θ ∈ (Xn,n, θ
∗) ∪ (θ∗,∞) and h′(θ∗) = 0. Thus,

h(θ) is either i) a decreasing function on (Xn,n,∞), or ii) a decreasing function

on (Xn,n, θ
∗) and an increasing function on (θ∗,∞), or iii) a decreasing function

on (Xn,n, θ
∗) ∪ (θ∗,∞), which implies that there exists a unique estimator θ̂ for

α0 ∈ (0, 1) by using (2.2) when Xn,n > Xn,n−1. In conclusion, there exists a

unique solution to (2.1) for all α > 0, any k ≥ 2, when Xn,n > Xn,n−1.

We show that the estimator θ̂ is strongly consistent under some general

conditions.

Theorem 1. Assume that F has a finite right endpoint θ and is continuous in

a neighborhood of θ. If k ≥ 2 and k/n→ 0 as n→∞, then θ̂
a.s.→ θ0 as n→∞.

Consistency does not require k → ∞ as n → ∞. In order to derive the

asymptotic distribution for the proposed endpoint estimator, we need a second

order regular variation condition to control the asymptotic bias of the proposed

estimator. Suppose there exist functions a(t) > 0 and A(t)→ 0 such that

lim
t→∞

{U(tx)− U(t)}/a(t)− (xγ0 − 1)/γ0

A(t)
= Hγ0,ρ(x) :=

1

ρ

(xγ0+ρ − 1

γ0 + ρ
−x

γ0 − 1

γ0

)
,

(2.4)

where U(t) is the inverse function of 1/(1 − F ), γ0 = −1/α0 < 0, and ρ ≤
0. Here Hγ0,0(x) is defined as limρ↑0Hγ0,ρ(x). When (2.4) holds, |A(t)| is a

regularly varying function with exponent ρ and (1.1) holds with c = [limt→∞{θ0−
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U(t)}t−γ0 ]1/γ0 ; see Lemma 4 in the Supplement for an explicit expression of U .

It is expected that the asymptotic distribution of the endpoint estimator is

quite different for the case α > 2 and the case α < 2. A typical technique in

handling the irregular case α < 2 is via conditional characteristic functions as in

Woodroofe (1974). Our analyses are more complicated since the new endpoint

estimator is valid for all α > 0 instead of α > 1 as in Woodroofe (1974).

Let

ϕx =

{
(−x)−1, if x < 0,

∞, if x ≥ 0,

Hλ,x(y) =


∫ ϕ1/λ

x

0
Gλ,v,x

{
1

1−λ

(
y− vλ

1+vλx

)}
v−2 exp(−v−1)dv, λ ∈

(
1

2
, 1

)
,∫ ϕ1/λ

x

0

[
1−Gλ,v,x

{
1

1−λ

(
y− vλ

1+vλx

)}]
v−2 exp(−v−1)dv, λ > 1,

and write Λλ(x) = Hλ,x(0) for x ∈ R, where Gλ,v,x is a distribution function with

the characteristic function fλ,v,x given by

fλ,v,x(t) =



exp

(∫ v

0

{
exp

(
it

yλ

1 + yλx

)
− 1− it yλ

1 + yλx

}
y−2dy

−it
(∫ v

0

y2λ−2x

1 + yλx
dy+

vλ−1

1− λ

))
, λ ∈

(
1

2
, 1

)
exp

(∫ v

0

{
exp

(
it

yλ

1 + yλx

)
− 1

}
y−2dy

)
, λ > 1.

Theorem 2. Assume (2.4) holds and k = kn satisfies one of the following con-

ditions:

k →∞, k

n
→ 0, k1/2A

(n
k

)
→ 0 if α0 > 2; (2.5)

k →∞, k

n
→ 0, k1/2(log k)−1/2A

(n
k

)
→ 0 if α0 = 2; (2.6)

k →∞, k

n
→ 0, k1+γ0A

(n
k

)
→ 0 if α0 ∈ (1, 2); (2.7)

k →∞, k

n
→ 0 if α0 ∈ (0, 1]. (2.8)

Then we have

n−γ0k1/2+γ0c−γ0(θ̂ − θ0)
d→ N(0, (1 + 2γ0)) if α0 > 2; (2.9)

(n log k)1/2c(θ̂ − θ0)
d→ N(0, 1) if α0 = 2; (2.10)

n−γ0c−γ0(θ̂ − θ0)
d→ Λ−γ0 if α0 ∈ (0, 2), α0 6= 1; (2.11)



210 WANG ET AL.

n−γ0c−γ0(θ̂ − θ0)
d→ 1− Z if α0 = 1, (2.12)

where Z is a standard exponential random variable.

Remark 1. (a) From (2.3), θ̂ = Xn,n + (k + 1)−1(Xn,n −Xn,n−k) when α0 = 1,

and it is asymptotically unbiased in the sense that its limiting distribution has

a zero mean. An anonymous referee has drawn our attention to the jackknife

estimators for the endpoint in Miller (1964); Robson and Whitlock (1964). The

two estimators for θ in Miller (1964); Robson and Whitlock (1964) are given,

respectively, by

θ̂Miller = Xn,n +
n− 1

n
(Xn,n −Xn,n−1), θ̂RW = Xn,n + (Xn,n −Xn,n−1).

Our estimator θ̂ = Xn,n + (k + 1)−1(Xn,n − Xn,n−k) has a similar form. For a

brief comparison, let F be a uniform (0, θ) with θ > 0. Then the mean squared

errors for the three estimators are

σ2
Miller(n) := E(θ̂Miller − θ)2 =

2θ2(n2 − n+ 1)

n2(n+ 1)(n+ 2)
, (2.13)

σ2
RW (n) := E(θ̂RW − θ)2 =

2θ2

(n+ 1)(n+ 2)
,

σ2
N (n, k) := E(θ̂ − θ)2 =

k + 2

k + 1

θ2

(n+ 1)(n+ 2)
.

These mean squared errors can be obtained by using the formulas for the vari-

ances and covariances of order statistics from uniform distributions (see, e.g.,

Section 3.4 in Balakrishnan and Cohen (1991)); (2.13) is available in Miller

(1964). One can see that σ2
RW (n) > σ2

Miller(n) > σ2
N (n, k) for n ≥ 4, k ≥ 1.

Since k →∞, we have

lim
n→∞

σ2
N (n, k)

σ2
Miller(n)

=
1

2
and lim

n→∞

σ2
N (n, k)

σ2
RW (n)

=
1

2
.

(b) The conditions (2.6)–(2.8) are weaker than (2.5). The condition (2.8)

imposes the weakest condition on k, and the second-order convergence rate A

is not involved, although the second-order regular variation condition (2.4) is

assumed. Some intuitive explanations are as follows. We have Xn,n − θ0 =

Op(n
−1/α) under (2.4) with ρ < 0, which means Xn,n is further from the endpoint

for a larger α. If α > 2, an endpoint estimator using the upper k order statistics

generally has the rate of convergence n−1/αk−1/2+1/α, which is faster than n−1/α

when the second order approximation error is smaller. In this case, the second

order approximation rate determines that k cannot be too large in order to ensure

that the bias is negligible. However, when α is smaller, many observations are
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quite close to the endpoint. Hence, in the irregular case, the rate of convergence

n−1/α cannot be improved and so the second order approximation does not play

a role in determining the asymptotic distribution, unlike in the regular case.

(c) It can be shown that the estimator ĉ = {(k + 1)/n}(θ̂ −Xn,n−k)
−α0 for

c is consistent.

2.2. Estimating θ and α jointly

When both θ and α are unknown, we can develop our new estimators of c,

θ, and α via maximizing the penalized likelihood function L1(θ, c, α), obtaining

the estimator (θ̃, c̃, α̃) of (θ, c, α). By solving score equations, we have c̃ = {(k +

1)/n}(θ̃ −Xn,n−k)
−α̃,

α̃−1 =
1

k

k∑
j=1

log
θ̃ −Xn,n−k

θ̃ −Xn,n−k+j

, (2.14)

and θ̃ is the smallest root to the equation

g(θ) :=

k∑
j=1

( θ −Xn,n−k
θ −Xn,n−k+j

− 1
)

(2.15)

− 1

k

(
k∑
j=1

log
θ −Xn,n−k
θ −Xn,n−k+j

)(
2 +

k−1∑
j=1

θ −Xn,n−k
θ −Xn,n−k+j

)
= 0

for θ > Xn,n.

When θ is known, the best estimator for α−1 in a certain class of distributions

is the uniform minimum variance unbiased (UMVU) estimator α−1
n given by

α−1
n =

1

k

k∑
j=1

log
θ −Xn,n−k
θ −Xn,n−k+j

, (2.16)

see, e.g., Falk (1995). The estimator of α−1 given by (2.14) is coincident with

(2.16) if θ̃ happens to be θ. Thus, if θ̃ gives a good estimate for θ, α̃−1 should

perform well as an estimator of α−1.

If Xn,n−1 < Xn,n, we have g(Xn,n+) =∞. By using Taylor’s expansion one

can verify that g(θ) < 0 if θ is large enough. Hence, it follows from the continuity

of g(θ) that there exists at least one root to (2.15) for any given sample and k

such that Xn,n−1 < Xn,n. Unlike the case of known α, we cannot show that there

is a unique solution when θ and α are jointly estimated.

Here are the joint limiting distributions for the estimators θ̃ and α̃.
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Theorem 3. Assume condition (2.4) holds and

k →∞, k

n
→ 0, k1/2A

(n
k

)
→ 0 as n→∞. (2.17)

(i) If α0 > 2, then

{
n−γ0k1/2+γ0c−γ0(θ̃ − θ0), k1/2(α̃−1 − α−1

0 )
} d→ N(0,Σ), (2.18)

where

Σ =

(
γ−2

0 (1 + γ0)2(1 + 2γ0) (−γ0)−1(1 + γ0)(1 + 2γ0)

(−γ0)−1(1 + γ0)(1 + 2γ0) (1 + γ0)2

)
;

(ii) If α0 ∈ (0, 2], then

k1/2(α̃−1 − α−1
0 )

d→ N(0, γ2
0), (2.19)

θ̃ has the same limiting distribution as θ̂ given in Theorem 2, and α̃−1 and θ̃ are

asymptotically independent.

Remark 2. (a) The estimator for α is always asymptotically normal, and the

estimator for θ, when α is unknown, behaves as if α were known in the irregular

case α ≤ 2. The condition (2.17) is required this time for all cases; it is needed

only for (2.19).

(b) It can be shown that the estimator c̃ = {(k + 1)/n}(θ̃ − Xn,n−k)
−α̃ is

consistent for c, which can be used to construct confidence intervals for θ in the

regular case.

(c) In (2.18), n−γ0k1/2+γ0 = (n/k)1/α0k1/2 →∞.

2.3. Selection of the sample fraction

Theorems 2 and 3 provide answers to how one can select the sample fraction

k so as to achieve the desired asymptotic distributions for estimators of the tail

index and the endpoint. One has that condition (2.5) implies conditions (2.6) and

(2.7), since both (log kn)−1/2 and kγ0n = k
−1/α0
n go to zero as n → ∞. Therefore

a choice of kn satisfying (2.5) can be employed for Theorems 2 and 3.

First, we show that there always exists a sequence of integers {k̄n} satis-

fying (2.5). To see that max1≤k≤k̄n
√
k|A(n/k)| → 0 as n → ∞, let B(t) =

sups≥t |A(s)|. Since A(t) → 0 as t → ∞ regardless of ρ, B(t) is non-increasing

and vanishes at infinity. If we define k̄n as the integer part of min{
√
n,B−1(

√
n)},

then k̄n → ∞ and k̄n/n → 0 as n → ∞, and
√
k̄n|A(n/k̄n)| ≤ {B(

√
n)}1/2 → 0

as n→∞. Then

max
1≤k≤k̄n

√
k

∣∣∣∣A(nk)
∣∣∣∣ ≤ max

1≤k≤k̄n

√
k

∣∣∣∣B (nk)
∣∣∣∣ ≤ {B(

√
n)}1/2 → 0 as n→∞.
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A choice of k satisfying (2.5) can be obtained via estimating the second order

regular variation parameter ρ when (2.4) holds with some ρ < 0. Since |A(t)| is

regularly varying with exponent ρ, we can apply Potter’s bound and prove that

(2.5) holds for any sequence of positive integers k = kn with kn ∼ cnβ for c > 0,

and β ∈ (0,−2ρ/(1− 2)ρ). For estimating ρ, we refer to Gomes, de Haan and

Peng (2002).

A plot of the estimator against the sample fraction can be helpful in deter-

mining a sample fraction that can be used for inference. To construct confidence

intervals or test some hypotheses, one looks for a sample fraction that results

in an estimator with a negligible bias. Denote the estimators of α and θ given

in (2.14) and (2.15) as α̃(k) and θ̃(k). When (2.4) holds, both estimators may

fluctuate wildly when the values of k are small, and are relatively stable in a

range of the sample fraction k from small to relatively large. The existence of

such relatively stable ranges is implied by the asymptotic bias of the estimators.

Hence for each estimator, one can observe a turning point for k, followed by an

upward or a downward trend. We will examine several examples of this.

We consider some distribution functions given in (3.5) with parameters τ1, τ2

> 0. These distributions are related to the Burr distributions. The exponent of

such a distribution with parameters τ1 and τ2 is α = τ1τ2, and its endpoint is

θ = 0. We generated a random sample of size 1,000 each from the distribution

with (τ1, τ2) = (1, 2), or (1, 1), or (1, 0.5). The corresponding plots are given in

Figure 1. The dashed lines in these plots are the true values of α and θ.

For the distribution with (τ1, τ2) = (1, 2), both plots suggest the use of

k = 63, and the corresponding estimates for α and θ are 1.8344 and 0.014626,

respectively. For the distribution with (τ1, τ2) = (1, 1), both plots suggest the

use of k = 183, and the corresponding estimates for α and θ are 0.9731 and

0.0004992, respectively. For the distribution with (τ1, τ2) = (1, 0.5), the plot for

the estimates of α suggests the use of k = 183 with an estimate 0.5212 for α. The

estimates for θ have no significant difference in the full range 1 ≤ k ≤ 999, and

all estimates are between −1.944× 10−07 and 1.747× 10−07. Therefore, choosing

any large k results in a satisfactory estimate.

3. Simulation Study and Further Discussions

Our comparison study consists of three parts. In the first part, we compare

the performance of our likelihood method with Hall’s conventional likelihood

method. We consider the biases and mean squared errors for estimators for
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Figure 1. Plots of estimates for α and θ based a random sample of size 1,000 from
distribution (3.5) with parameters with (τ1, τ2) = (1, 2), (1, 1), (1, 0.5), respectively.

both the endpoint and the exponent of the distribution. In the second part,

we compare the performance of the endpoint estimators based on our likelihood

method with the high-order moments method proposed in Girard, Guillou and

Stupfler (2012b). In the third part, we compare the new estimators with the
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estimators in Fraga Alves and Neves (2014); Dekkers, Einmahl and de Haan

(1989).

We use θ̃N and α̃−1
N to denote our estimators θ̃ and α̃−1 defined in Section 2.2.

3.1. Comparisons with the conventional likelihood method

Here the comparisons are with the conventional ML estimators proposed in

Hall (1982), and the negative Hill estimator (see, e.g., Falk (1995) or Section

3.6.2 in de Haan and Ferreira (2006)).

When α = α0 ≥ 2 is known, Hall’s ML estimator for θ is the unique solution

of
k∑
j=1

(
θ −Xn,n−k
θ −Xn,n−k+j

− 1

)
− k + 1

α0 − 1
= 0, (3.1)

say θ̂H . When α = α0 ∈ (1, 2), Hall (1982) defined the estimator of θ by using

a linear combination of a fixed number of largest order statistics. Theoretically,

this could be extended to the case α0 ∈ (1, 2). This works only when α0 > 1.

When α0 ≤ 1, the conventional ML estimator for θ is simply Xn,n.

If α ≥ 2 is unknown, it follows from Hall (1982) that Hall’s estimator for θ,

denoted as θ̃H , is the smallest solution of

m(θ) :=
k + 1∑k

j=1 log((θ −Xn,n−k)/(θ −Xn,n−k+j))

− k + 1∑k
j=1 (Xn,n−k+j −Xn,n−k)/(θ −Xn,n−k+j)

− 1 = 0 (3.2)

and the estimator for α−1 is

α̃−1
H =

1

k + 1

k∑
j=1

log
θ̃H −Xn,n−k

θ̃H −Xn,n−k+j

. (3.3)

To make a fair comparison, we chose the solution of (3.2) closest to the true value

of θ, and if there is no root at all, we took θ̃H = Xn,n, as Hall (1982) suggested,

and the estimator for α as the negative Hill estimator in (3.4).

When α ≤ 1, the conventional ML estimator for θ is Xn,n, but the con-

ventional ML estimator for α does not exist. In this case, the negative Hill

estimator,

α̃−1
NH =

1

k

k−1∑
j=1

log
Xn,n −Xn,n−k
Xn,n −Xn,n−k+j

(3.4)

can serve as an estimator of α−1. If α ∈ (0, 2), this estimator behaves asymptot-
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ically like the UMVU estimator of α−1 in some ideal models as if θ were known

(see, e.g., Falk (1995)): (2.19) holds for the estimator α̃−1
NH .

We conducted a simulation study on several distribution functions, including

the reverse Gamma distributions with density function

f(x, α, θ) =
(θ − x)α−1

Γ(α)
exp(−(θ − x)), x < θ,

and the reverse Weibull distributions with density function

f(x, α, θ) = α(θ − x)α−1 exp(−(θ − x)α), x < θ.

We only present the results for the reverse Gamma distributions since results are

similar for others.

In the simulation we took the true value of θ to be zero and selected different

values of α = 0.5, 1, 2, and 3.

We generated N = 1,000 random samples of size n with n set at 100, 200,

500 and 1,000, and the values of k selected accordingly. For each combination of

n and k, we calculated the estimates for θ and α by the different methods and

then computed the biases and root mean squared errors of estimators for θ and

α−1.

Table 1 contains the results for the cases α = 0.5 and 1. We only compared

θ̃N and α̃−1
N with the negative Hill estimator α̃−1

NH given by (3.4), and the endpoint

estimator given by θ̃M = Xn,n. The column for θ̃M has both the biases and root

mean squared errors for different values of k as they are the same since the

estimators θ̃M do not depend on k. Our estimators for both θ and α−1 are less

biased than the estimators θ̃M and α̃−1
NH , with comparable root mean squared

errors.

Table 2 presents the simulation results for the cases α = 2 and 3. We

reported simulation results for θ̃N and α̃−1
N and the estimators θ̃H and α̃−1

H in

Hall (1982). Based on the results in Table 2, clearly our method is superior to the

conventional ML method for both estimators of θ and α−1. For both estimators

of θ and α−1, our estimators have the smallest biases; the root mean squared

errors for the new estimators for θ are smaller in most cases, and the root mean

squared errors for α−1 are the smallest among the three estimators for all cases

reported in the table. The performance of the Hall estimators for α−1 is much

worse than that of the negative Hill estimators, especially when k is small.

The choice of an optimal k is always challenging in extreme value theory,

and needs more complicated justifications. The rate of convergence of the new

endpoint estimator is independent of k for the irregular case, so one could employ
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Table 1. Biases (upper values) and root mean-squared errors (lower values in the paren-
theses) of estimators of θ and α−1 when unknown α = 0.5 and 1: θ̃N and α̃−1

N are our

estimators for θ and α−1, θ̃M = Xn,n is the largest observation, and α̃−1
NH is the negative

Hill estimator as defined in (3.4).

estimators of θ estimators of α−1

α n k θ̃N θ̃M α̃−1
N α̃−1

NH

0.5 100 20 6.34 × 10−5 −1.63 × 10−4 −0.0431 −0.2779
(4.45 × 10−4) (3.84 × 10−4) (0.4849) (0.4728)

30 1.82 × 10−5 −1.63 × 10−4 −0.0001 −0.1881
(3.81 × 10−4) (3.84 × 10−4) (0.3862) (0.3769)

0.5 200 20 2.29 × 10−5 −4.24 × 10−5 −0.0763 −0.3051
(1.29 × 10−4) (9.66 × 10−5) (0.4976) (0.4930)

40 2.33 × 10−6 −4.24 × 10−5 −0.0171 −0.1701
(8.50 × 10−5) (9.66 × 10−5) (0.3328) (0.3370)

0.5 500 30 1.64 × 10−6 −6.82 × 10−6 −0.0710 −0.2492
(1.80 × 10−5) (1.69 × 10−5) (0.3759) (0.3980)

60 −3.83 × 10−7 −6.82 × 10−6 −0.0258 −0.1399
(1.54 × 10−5) (1.69 × 10−5) (0.2639) (0.2769)

0.5 1,000 50 −2.66 × 10−8 −1.76 × 10−6 −0.0397 −0.1689
(4.42 × 10−6) (4.77 × 10−6) (0.2854) (0.3043)

100 −3.20 × 10−7 −1.76 × 10−6 −0.0087 −0.0884
(4.35 × 10−6) (4.77 × 10−6) (0.2024) (0.2101)

1.0 100 20 5.08 × 10−3 −1.02 × 10−2 0.0253 0.0088
(2.12 × 10−2) (1.48 × 10−2) (0.2990) (0.2189)

30 2.04 × 10−3 −1.02 × 10−2 0.0767 0.0533
(1.62 × 10−2) (1.48 × 10−2) (0.2446) (0.1893)

1.0 200 20 3.12 × 10−3 −5.03 × 10−3 −0.0191 −0.0246
(1.05 × 10−2) (7.01 × 10−3) (0.2900) (0.2153)

40 9.95 × 10−4 −5.03 × 10−3 0.0467 0.0335
(6.97 × 10−3) (7.01 × 10−3) (0.2015) (0.1627)

1.0 500 30 9.80 × 10−4 −2.01 × 10−3 −0.0126 −0.0128
(3.94 × 10−3) (2.83 × 10−3) (0.2362) (0.1834)

60 2.91 × 10−4 −2.01 × 10−3 0.0250 0.0193
(2.51 × 10−3) (2.83 × 10−3) (0.1539) (0.1304)

1.0 1,000 50 2.47 × 10−4 −1.02 × 10−3 −0.0016 −0.0040
(1.41 × 10−3) (1.45 × 10−3) (0.1694) (0.1400)

100 6.55 × 10−5 −1.02 × 10−3 0.0195 0.0157
(1.18 × 10−3) (1.45 × 10−3) (0.1121) (0.0989)

a k obtained by any existing data-driven method for estimating an endpoint.

Rather than choosing an optimal k, we conducted a simulation study for sample

size n = 1,000 and different values for α by allowing a large range of values of k.

We took all k from 10 to 100 and plot averages of the N = 1,000 estimates and
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Table 2. Biases (upper values) and root mean-squared errors (lower values in the paren-
theses) of estimators of both θ and α−1 when unknown α = 2 and 3: θ̃N and α̃−1

N are

our estimators for θ and α−1, θ̃H and α̃−1
H are Hall’s ML estimators for θ and α−1.

estimators of θ estimators of α−1

α n k θ̃N θ̃H θ̃M α̃−1
N α̃−1

H α̃−1
NH

2 100 20 0.0240 −0.0856 −0.1312 0.1292 1.0329 0.2124
(0.1690) (0.1741) (0.1495) (0.2696) (1.3986) (0.2797)

30 −0.0047 −0.1031 −0.1312 0.1757 0.6758 0.2404
(0.1348) (0.1462) (0.1495) (0.2601) (0.9265) (0.2835)

2 200 20 0.0257 −0.0497 −0.0918 0.0783 0.8839 0.1824
(0.1257) (0.1526) (0.1042) (0.2380) (1.2884) (0.2524)

40 0.0011 −0.0650 0.0918 0.1242 0.3547 0.1998
(0.0945) (0.0973) (0.1042) (0.1998) (0.5332) (0.2359)

2 500 30 0.0158 −0.0300 −0.0567 0.0505 0.3784 0.1565
(0.0739) (0.0733) (0.0640) (0.1827) (0.6703) (0.2083)

60 0.0007 −0.0368 −0.0567 0.0868 0.1783 0.1605
(0.0528) (0.0551) (0.0640) (0.1482) (0.2480) 0.1884

2 1,000 50 0.0070 −0.0218 −0.0405 0.0460 0.1589 0.1380
(0.0465) (0.0452) (0.0458) (0.1435) (0.2781) (0.1760)

100 −0.0024 −0.0250 −0.0405 0.0773 0.1296 0.1382
(0.0336) (0.0374) (0.0458) (0.1206) (0.1629) (0.1589)

3 100 20 −0.0236 −0.2450 −0.3883 0.1934 0.7759 0.3047
(0.3827) (0.4208) (0.4182) (0.2955) (1.1699) 0.3543

30 −0.0724 −0.2768 0.3883 0.2281 0.5350 0.3220
(0.3556) (0.3915) (0.4182) (0.2954) (0.7622) (0.3557)

3 200 20 −0.0056 −0.1660 −0.3036 0.1499 0.6478 0.2734
(0.3099) (0.3588) (0.3263) (0.2621) (1.0532) (0.3255)

40 −0.0526 −0.2018 −0.3036 0.1748 0.3157 0.2775
(0.2654) (0.2900) (0.3263) (0.2306) (0.4342) (0.3051)

3 500 30 0.0077 −0.1052 −0.2196 0.1049 0.2946 0.2375
(0.2239) (0.2409) (0.2347) (0.2012) (0.5224) (0.2771)

60 −0.0336 −0.1287 −0.2196 0.1270 0.1954 0.2298
(0.1703) (0.1911) (0.2347) (0.1727) (0.2387) (0.2502)

3 1,000 50 0.0034 −0.0685 −0.1719 0.0855 0.1598 0.2079
(0.1649) (0.1907) 0.1833 (0.1562) (0.2384) (0.2347)

100 −0.0321 −0.0955 −0.1719 0.1123 0.1570 0.1997
(0.1277) (0.1437) 0.1833 (0.1448) (0.1849) 0.2147

their root mean squared errors for α−1 and θ in Figures 2 and 3, respectively.

Here the true value for α is 3. Our estimators are superior to Hall’s over the

range of values selected for k in terms of biases and root mean squared errors.

Our estimators are competitive in that they can be applied directly without

requiring any prior information on the parameters. They have satisfactory large
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Figure 2. Estimated biases (left) and root mean-squared errors (right) of the new esti-
mator and Hall’s estimator for α−1 with sample size n = 1,000.

Figure 3. Estimated biases (left) and root mean-squared errors (right) of the new esti-
mator and Hall’s estimator for θ with sample size n = 1,000.

sample properties as well as very good small sample performance. Since the

asymptotic distribution for the estimator of the endpoint is nonnormal for certain

values of α, a simple unified interval estimate would be provided by a subsample

bootstrap method. Further research is needed for constructing an efficient unified

interval estimation procedure for the endpoint.

3.2. Comparisons with high-order moments method

Girard, Guillou and Stupfler (2012b) proposed a high-order moments esti-

mator for endpoint θ based on the empirical moment-generating function

µ(p) =
1

n

n∑
j=1

epXj , p > 0.

The high-order moments estimator for θ is then

Θn =
1

a

{
log

µ(pn)

µ(pn + 1)
− log

µ((a+ 1)pn)

µ((a+ 1)(pn + 1))

}
,

where a > 0 is a fixed constant and pn is a sequence of constants such that pn →
∞ as n→∞. Under certain conditions involving the underlying distribution F
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and pn, they showed that Θn is asymptotically normal. For our estimators, as

well as for many other estimators such as moment estimators (see, Aarssen and

de Haan (1994)), the parameter k represents the proportion of the sample that is

used in the estimation. The high-order moments estimator uses all data points,

and parameters p and a may be related to weights of the data points used in the

estimation. In general, it seems not easy to compare the performance of different

estimation methods at specific levels of their tuning parameters when the tuning

parameters in different methods have different roles.

Girard, Guillou and Stupfler (2012b) compared the performance of their

estimator with the maximum value estimator (Xn,n) and the moment estimator

in terms of the optimal mean absolute errors, under two types of distributions.

The first one was

1− F (x) =
{

1 + (−x)−τ1
}−τ2 , x < 0 (3.5)

with τ1, τ2 > 0. A random variable X with distribution (3.5) can be written as

X = −1/Y , where Y has a Burr(1, τ1, τ2) type III distribution.

The second distribution employed was

1− F (x) =

∫ ∞
log(1−1/x)

λ2te−λtdt, x < 0 (3.6)

with λ > 0. A random variable X with distribution (3.6) can be written as

X = −1/(eY − 1), where Y has a Gamma(2, λ) distribution.

Models (3.5) and (3.6) have a right endpoint θ = 0. Choose one distribu-

tion from (3.5) or (3.6). Their simulations compared the high-order moments

estimator, the maximum value estimator and the moment estimator for θ. From

their Table 1, Girard, Guillou and Stupfler (2012b) asserted that the high-order

moments estimator outperforms over other two estimators in all cases.

We compared our likelihood estimator with the high-order moments estima-

tor using the setups of Girard, Guillou and Stupfler (2012b). We took distribu-

tions from (3.5) and (3.6), generated N = 1,000 replicates of random samples

of size n = 500 each, chose the same values for p and a, and used the same

choices for parameters in the two distributions. We computed our estimate for θ

with choices k ∈ {5, 10, 15, . . . , 300} and then estimated the corresponding opti-

mal mean absolute error. Our simulation results are reported in Table 3, showing

that the estimated optimal mean absolute errors for the our estimator are smaller

than those for the high-order moments estimator.
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Table 3. Comparisons of the endpoint estimators based on high-order moments (HOM)
method and maximum penalized likelihood (MPL) method in terms of optimal mean
absolute errors.

Distribution −1/Burr(1, τ1, τ2) Distribution −1/(exp(Gamma(2, λ))− 1)
Parameters
\methods

HOM MPL
Parameters
\methods

HOM MPL

(τ1, τ2) = (1, 1) 1.48 · 10−3 1.40 · 10−3 λ = 1 1.68 · 10−4 1.57 · 10−4

(τ1, τ2) = (5/6, 6/5) 1.50 · 10−3 1.42 · 10−3 λ = 5/4 7.94 · 10−4 7.47 · 10−4

(τ1, τ2) = (2/3, 3/2) 1.55 · 10−3 1.47 · 10−3 λ = 5/3 3.87 · 10−3 3.60 · 10−3

(τ1, τ2) = (1/2, 2) 1.72 · 10−3 1.63 · 10−3 λ = 5/2 2.03 · 10−2 1.83 · 10−2

4. Data Applications

We analyzed two data sets: the fastest personal times of 100-meters for

men and women recorded from January 1, 1991 to June 19, 2008. The aim is

to predict the ultimate world records for these two events. The current Men’s

record is 9.58 seconds, run by Usain Bolt at the 2009 World Championships; the

Women’s record is 10.49 seconds, run by Florence Griffith-Joyner at the 1988

Olympic Trials. These records are not included in the data sets because they

were not set in this time period.

The two datasets have been studied in Einmahl and Smeets (2011) by using

the moment estimators proposed in Dekkers, Einmahl and de Haan (1989). The

dataset for men’s 100 meters consists of 762 best personal times ranging from

9.72 to 10.30 (seconds), while the dataset for women’s 100 meters has 479 data

points ranging from 10.65 to 11.38 (seconds).

Times for the two events are available in hundredths of seconds and thus

there are many ties in the data sets. A smoothed method was used as in Einmahl

and Magnus (2008); Einmahl and Smeets (2011); given m(m ≥ 2) athletes with

equal personal best time y (in seconds), smooth them equally over the interval

(y − 0.005, y + 0.005) by the m data points y − 0.005 + 0.01(2j − 1)/(2m), j =

1, . . . ,m. We calculated speeds in kilometers per hour and analyzed those. Our

estimates as well as the results from the moment method in Einmahl and Smeets

(2011) are listed in Table 4.

We compared results from the two different estimation methods. For men’s

100 meters, our estimate gives an estimated ultimate men’s world record 9.48

seconds, 0.10 seconds lower than the current world record 9.58 seconds, while

the moment method provides an estimate of 9.51 seconds. Both methods yield

the same 95% lower confidence limit 9.21 seconds. For the women’s 100 me-

ters, our method gives an estimate 10.40 seconds, 0.09 seconds lower than the
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Table 4. Ultimate world records in speed (km/h) and time (seconds).

Events Current World Estimation Tail Endpoint Endpoint 95% Lower
Record Method Index (speed) (time) Limit (time)

100-m men 9.58 Moment −0.19 37.85 9.51 9.21
Likelihood −0.18 37.95 9.48 9.21

100-m women 10.49 Moment −0.18 34.85 10.33 9.88
Likelihood −0.20 34.62 10.40 10.13

current world record. The moment method yields a much lower estimate 10.33

seconds, 0.16 seconds lower than the current world record, a much bigger room

for improvement. For the 95% lower confidence limit for women’s 100 meters,

our method gives 10.12 seconds, while the moment method has a much smaller

estimate 9.88 seconds. We can further calculate a 99% upper confidence limit

for the speed endpoint, 10.40 + 0.5606 × 2.326 = 35.92 (kilometers per hour)

and thus 99% lower confidence limit of 360/35.92 = 10.02 seconds for the time

endpoint. If we think the 99% lower confidence limit as a possible true endpoint

then, by comparing it with the current world record 10.49 seconds established

almost thirty years ago, we may well expect that it will be a long way for female

athletes to achieve a personal best time within 10.00 seconds, a time shorter than

the 99% lower confidence limit for women’s 100 meters ultimate world record.

Supplementary Materials

We have conducted some further simulation study to compare our new esti-

mators with the endpoint estimator proposed in Fraga Alves and Neves (2014)

and with the moment estimator for the tail index proposed by Dekkers, Einmahl

and de Haan (1989). The comparison results can be found in Section S1 of the

Supplement. Some details on the data application can be found in Section S2 of

the Supplement. The proofs of the theorems in Section 2 are available in Section

S3 of the Supplement.
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Supplementary Material

We present some further comparisons with the endpoint estimator proposed in Fraga Alves and

Neves (2014) and with the moment estimator for the tail index proposed by Dekkers, Einmahl

and de Haan (1989) in Section S1. All proofs of the theorems in Section 2 are given in Section

S2.

S1 Further comparisons on estimators for endpoint

and tail index

Per the request of an anonymous referee, we carry out the following two

comparison studies: (A) comparison between our new estimator for the end-
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point and the endpoint estimator proposed in Fraga Alves and Neves (2014)

and (B) comparison between our new estimator for the tail index and the

moment estimator in Dekkers, Einmahl and de Haan (1989). Throughout

the referred equation and theorem numbers without a letter are those in

the original paper.

The endpoint estimator in Fraga Alves and Neves (2014) is defined as

θ̂FAN(2k − 1) = Xn,n +
k−1∑
i=0

aki(Xn,n−k −Xn,n−k−i), (S1.1)

where aki = (log 2)−1(log(k+ i+ 1)− log(k+ i)) for 0 ≤ i ≤ k− 1. We will

call it FAN estimator. This estimator was originally proposed to estimate

the endpoint for distributions in the Gumbel max-domain of attraction.

Fraga Alves, Neves and Rosário (2017) have extended the setting to (1.1).

The moment estimator for the tail index γ = −1/α proposed by Dekkers,

Einmahl and de Haan (1989) is given by

γ̂M(k) = M
(1)
n,k + 1− 1

2

(
1−

(M
(1)
n,k)

2

M
(2)
n,k

)−1
, (S1.2)

where M
(j)
n,k = 1

k

∑k
i=1(log(Xn,n−k+i)− log(Xn,n−k))

j for j = 1, 2. A natural

requirement for the moment estimator γ̂M(k) is that all the data involved

in the estimation must be positive, which implies that the endpoint θ must

be positive. Otherwise, one can add a positive constant to all observations

to fulfill this requirement.
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For empirical comparison, we will use the same setting as in Section 3.2,

that is, we use both distributions defined in (3.26) and(3.27), choose the

sample size n = 500, and repeat the experiment 1000 times. We calculate

the averages and estimate the mean absolute errors (L1 errors) of the two

aforementioned estimators. The simulation results for distribution (3.27)

are somewhat similar to those for distribution (3.26), and so we will report

simulation results for distribution (3.26) only.

In Figures 1 and 2, we plot the averages of the estimates and their L1

errors for the endpoint based on our new penalized likelihood method (New

Estimator) and Fraga Alves and Neves’s (2014) method (FAN Estimator)

against the sample fraction k. We note that the FAN Estimator θ̂FAN(2k−

1) in (S1.1) employs 2k upper order statistics while the New Estimator

θ̃N(k) = θ̃ given in Theorem 3 is based on k + 1 upper order statistics.

To make a fair comparison, two types of estimators are compared when the

same number of observations are involved in the estimation. More precisely,

we will compare θ̂FAN(k) and θ̃N(k) for k = 2p− 1, p = 3, 4, · · · , 102.

We have repeated our simulation study for distribution (3.26) by se-

lecting various values for (τ1, τ2). We choose (τ1, τ2) = (0.5, 1.0), (1.0, 0.5),

(0.5, 2.0), (1.0, 2.0), (0.5, 3.0), (1.0, 3.0). For distribution (3.26), θ = 0 and

α = τ1τ2. Therefore, our study covers cases of α = 0.5, 1, 1.5, 2 and 3.
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In Figures 3 and 4, we plot the averages of the estimates and their

L1 errors for the index 1/α based on our new penalized likelihood method

(New Estimator) and the moment estimator (Moment Estimator) against

the sample fraction k. Since the moment estimator γ̂M(k) defined in (S1.2)

is used to estimate γ = −1/α, we actually plot the estimated means and L1

errors for α̃−1N given in (2.16) and −γ̂M(k). Since the moment estimator can

only be applied to positive observations, all our samples in the study are

drawn from the population 20 + X, where X is a random variable having

distribution (3.26). The values of (τ1, τ2) selected in this study are the same

as in the simulation for the endpoint. The sample fraction k is taken from

5 to 200 with an increment 5.

In conclusion, we observe from Figures 1 and 2 that the maximum

penalized likelihood estimator for endpoint is very stable against the sample

fraction in terms of the bias and the mean absolute error, and the FAN

estimator can perform better when the upper order statistics employed in

the estimation are relatively dense near the endpoint. Also we observe

from Figures 3 and 4 that the maximum penalized likelihood estimator is

superior to the moment estimator.
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Figure 1: Estimated means (left) and estimated L1 errors (right) for two endpoint esti-

mators: New Estimator as the smallest solution to (2.17) and FAN Estimator defined in

(S1.1). The samples are taken from distribution (3.26), where θ = 0 and α = τ1τ2
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Figure 2: Estimated means (left) and estimated L1 errors (right) for two endpoint esti-

mators: New Estimator as the smallest solution to (2.17) and FAN Estimator defined in

(S1.1). The samples are taken from distribution (3.26), where θ = 0 and α = τ1τ2
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Figure 3: Estimated means (left) and estimated L1 errors (right) for two estimators for

α−1: New Estimator α̃−1
N defined in (2.16) and minus Moment Estimator −γ̂M (k), where

γ̂M (k) is defined in (S1.2). The samples are taken from population 20 +X, where X has

distribution (3.26) and α = τ1τ2
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Figure 4: Estimated means (left) and estimated L1 errors (right) for two estimators for

α−1: New Estimator α̃−1
N defined in (2.16) and minus Moment Estimator −γ̂M (k), where

γ̂M (k) is defined in (S1.2). The samples are taken from population 20 +X, where X has

distribution (3.26) and α = τ1τ2
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S2 Details on data applications

Einmahl and Smeets (2011) tested extreme-value conditions for the two

data sets. They applied the moment estimators for both the tail index

γ = −1/α and the endpoint θ. It is important to decide the sample fraction

or threshold k in the estimation, and this can be done by minimizing the

so-called asymptotic mean squared errors (AMSE). They estimated γ by

identifying some k-regions over which the AMSEs are relative small and

stable and then used the average of all estimates of γ in these regions as

the final estimate for the tail index for each event. Next, they estimated

the endpoint for speed for each event by identifying k-regions and using the

average of estimates for the endpoints over the regions. The two k-regions

for men’s 100 meters and women’s 100 meters are 110− 200 and 80− 210,

respectively.

First, we compare the performance of our likelihood method with the

moment method. We estimate the speed endpoint and tail index for each

of the two events and plot the estimates based on the likelihood method

and the moment method in Figures 5 and 6, respectively. Note that the

estimates for the endpoints in the moment method in Einmahl and Smeets

(2011) use the same (fixed) estimates for tail index while in our study the

estimates of γ depend on the sample fraction k. Therefore, our plots for
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moment estimates and the endpoints are different from those in Einmahl

and Smeets (2011). We notice that there are similar patterns or trends for

two types of estimation methods. But our likelihood estimators are more

stable than the moment estimators in general.

Second, we decide a single value of sample fraction k for our likelihood

estimates in the k-regions as the moment methods by Einmahl and Smeets

(2011) so that we don’t have to worry about violation of the extreme-value

condition. For men’s 100 meters, we check the k-region 110-200 and find out

that both estimates for the tail index and the endpoint are highly stable

when k changes from 140 to 160. We select k = 160 and the resulting

estimates for γ and θ are −0.18 and 37.96. Based on Theorem ??, the

standard error for the endpoint estimate is 0.6837, and thus a 95% upper

confidence limit is 37.95 + 1.645× 0.6937 = 39.09. From formula t = 36/s,

the estimates for the time endpoint and its 95% lower confidence limit are

9.48 and 9.21, respectively. Similarly, for women’s 100 meters, we find out

that both our estimates for the tail index and the endpoint are highly stable

when k changes from 100 to 200 which is within the k-region 80− 210, and

thus we are able to decide the sample fraction k = 200. The corresponding

estimates are listed in Table 4. The results for the moment method from

Einmahl and Smeets (2011) are also listed in Table 4 for comparison. The
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standard error of the likelihood estimate for the speed endpoint is 0.5606

for women’s 100 meters.
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Figure 5: Our new likelihood estimates and the moment estimates for tail index γ =

−1/α and the endpoint θ for speed (in km/h) for men’s 100 meters.

S3 Proofs of Theorems 1, 2 and 3 in Section 2

S3.1 Some notation and lemmas

Let V1, · · · , Vn be i.i.d. random variables with distribution function 1−1/x

for x ≥ 1 and Vn,1 ≤ · · · ≤ Vn,n denote the order statistics of V1, · · · , Vn.

Since U(V1), · · · , U(Vn) are iid random variables with the distribution F , for
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Figure 6: Our new likelihood estimates and the moment estimates for tail index γ =

−1/α and the endpoint θ for speed (in km/h) for women’s 100 meters.

convenience we assume Xi = U(Vi) for 1 ≤ i ≤ n and hence Xn,i = U(Vn,i)

for 1 ≤ i ≤ n.

Consider another independent sequence of i.i.d. random variables V ∗1 ,

· · · , V ∗k with distribution function 1 − 1/x for x ≥ 1. Denote V ∗k,1 ≤ · · · ≤

V ∗k,k as their order statistics. It is well known that

{Vn,n−k+j/Vn,n−k}kj=1
d
= {V ∗k,j}kj=1, (S3.3)

see Page 71 of de Haan and Ferreira (2006). That is, {Vn,n−k+j/Vn,n−k}kj=1

are distributed the same as the order statistics of a sample of size k from

the distribution function 1 − 1/x for x ≥ 1. In the sequel, we will simply



S3. PROOFS OF THEOREMS 1, 2 AND 3 IN SECTION 213

denote Vn,n−k+j/Vn,n−k by V ∗k,j for 1 ≤ j ≤ k.

Set Sk(λ) =
∑k

j=1(V
∗
k,j)

λ =
∑k

j=1(V
∗
j )λ for λ > 0 and define for x ∈ R,

Qk =
√
k
(1

k

k∑
j=1

log V ∗k,j − 1
)
,

T
(k)
λ,x =

k−1∑
j=1

(V ∗k,j)
λ

1 + (V ∗k,j/k)λx
for λ > 1/2

and

R
(k)
λ,x =


1
kλ

(
(V ∗
k,k)

λ

1+(V ∗
k,k/k)

λx
+ (1− λ)(T

(k)
λ,x − k−1

1−λ)
)

if λ ∈ (1/2, 1),

1
kλ

(
(V ∗
k,k)

λ

1+(V ∗
k,k/k)

λx
+ (1− λ)T

(k)
λ,x

)
if λ > 1.

Let {Yn} be a sequence of random variables and {an} be a sequence

of positive constants. Assume {An} is a sequence of measurable sets. If

P ({|Yn/an| > ε} ∩ An) → 0 for every ε > 0, then we say Yn/an con-

verges in probability to zero on An and denote it by Yn = op(an) on An.

If limε→∞ lim supn→∞ P ({|Yn/an| > ε} ∩ An) = 0, then we say Yn/an is

bounded on An and denote it by Yn = Op(an) on An.

The following two lemmas are very helpful and easy to prove, and the

details of the proofs are omitted here.

Lemma 1. Yn = op(an) if and only if for every δ ∈ (0, 1) there exists a

sequence of measurable sets {An} with P (An) ≥ δ for all large n such that

Yn = op(an) on An. The same conclusion is true if op(an) is replaced by

Op(an).
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Lemma 2. Let {Yn} and {Zn} be two sequences of random variables such

that Yn − Zn = op(1). If the limiting distribution of Zn exists and is con-

tinuous at x, then limn→∞ P (Yn ≤ x) = limn→∞ P (Zn ≤ x).

The following lemma deals with limits of V ∗k,k, Sk(λ) and Qk.

Lemma 3. (i) V ∗k,k/k
d→ exp(−x−1) (x > 0).

(ii) If λ ∈ (0, 1), then 1
k
Sk(λ)

p→ 1
1−λ .

(iii) If λ ∈ (0, 1/2), then 1√
k

(
Sk(λ)− k

1−λ

)
d→ N(0, λ2

(1−λ)2(1−2λ)).

(iv) If λ = 1/2, then 1√
k log k

(
Sk(1/2)− 2k

)
d→ N(0, 1).

(v) If λ = 1, then Sk(λ)
k log k

p→ 1.

(vi) If λ > 1, then Sk(λ)
kλ

= Op(1).

(vii) Qk
d→ N(0, 1) as k →∞. If λ ∈ (0, 1/2), then ( 1√

k
(Sk(λ)− k

1−λ), Qk)
d→

N(0,Σ1), where

Σ1 =
( λ2(1− λ)−2(1− 2λ)−1 λ(1− λ)−2

λ(1− λ)−2 1

)
;

if λ = 1/2, then 1√
k log k

(Sk(1/2) − 2k) and Qk are asymptotically indepen-

dent.

Proof. (i) follows from a direct calculation that for x > 0, P (V ∗k,k/k ≤

x) = (1 − 1
kx

)k for large k such that kx > 1, which has a limit exp(−x−1)

as k → ∞. See, also, de Haan and Ferreira (2006). Parts (ii) to (vii)

follow from the classic theory of probability (see, eg, Loève (1977)) since
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Sk(λ) =
∑k

j=1(V
∗
j )λ is the sum of k i.i.d. random variables for each λ > 0.

Note that the mean E((V ∗1 )λ) = 1
1−λ is finite only if λ ∈ (0, 1) and the

variance V ar((V ∗1 )λ) = λ2

(1−λ)2(1−2λ) is finite if λ ∈ (0, 1/2). Therefore, part

(ii) is a consequence of the classic law of large numbers and part (iii) follows

from the standard central limit theorem. When λ ≥ 1/2, the distribution

of (V ∗1 )λ is in the domain of attraction of a 1/λ-stable law. If λ = 1/2, the

stable law is normal and part (iv) follows from Loève (1977), page 364. IF

λ > 1, Sk(λ)/kλ converges in distribution to a 1/λ-stale law and part (vi)

follows immediately. If λ = 1, (Sk(1)− k log k)/k converges in distribution

to a 1-stable law, which implies part (v). The first part of (vi) follows from

the standard central limit theorem, and the second part follows from the

multivariate central limit theorem since

(
1√
k

(Sk(λ)− k

1− λ
), Qk) =

1√
k

k∑
j=1

(
(V ∗j )λ − 1

1− λ
, log V ∗j − 1

)
and Σ1 is the covariance matrix of (V ∗1 )λ and log V ∗1 . �

Lemma 4. Under condition (2.6) there exists a regularly varying function

A1(t) ∼ A(t) such that

θ0 − U(t) = btγ0
(
− 1

γ0
− 1

γ0 + ρ
A1(t)

)
for all large t

where b = limt→∞ t
−γ0a(t) = cγ0(−γ0), and c is given in (1.1).

Proof. From Theorem 2.3.6 of de Haan and Ferria (2006) there exists a
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function A1(t) ∼ A(t) such that for any ε > 0 and δ > 0

|
U(tx)−U(t)

btγ0
− xγ0−1

γ0

A1(t)
− xγ0+ρ − 1

γ0 + ρ
| ≤ εxγ0+ρ max(xδ, x−δ)

for all t as tx ≥ t0 for some t0 > 0. Since limx→∞ U(x) = θ0, we get the

desired result by selecting δ < −γ0 and letting x→∞. �

In Lemmas 5, 6 and 7 below and their proofs we use eix to denote the

complex number cosx+ i sinx.

Lemma 5. Let x ∈ R and v > 0 be any constants such that 1 + vλx > 0.

(i) Conditional on V ∗k,k = kv,

T̂λ,x :=
1

kλ
(T

(k)
λ,x −

k − 1

1− λ
)

d→ Gλ,v,x if λ ∈ (
1

2
, 1)

and

T̂λ,x :=
1

kλ
T

(k)
λ,x

d→ Gλ,v,x if λ ∈ (1,∞).

(ii) Conditional on V ∗k,k = kv, Qk converges in distribution to the standard

normal, and Qk and T̂λ,x are asymptotically independent for λ ∈ (1
2
, 1) and

λ ∈ (1,∞).

Proof. (i) Conditional on V ∗k,k = kv, the vector (V ∗k,1, · · · , V ∗k,k−1) has the

same joint distribution as that of the order statistics from k− 1 iid random

variables Y1(v), · · · , Yk−1(v) with a distribution function Fk,v given by

Fk,v(y) =
1− y−1

1− (kv)−1
for 1 < y < kv.
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Therefore, for each fixed x ∈ R and v > 0 such that 1 + vλx > 0 we have

that

P (T
(k)
λ,x ≤ s|V ∗k,k = kv) = P (

k−1∑
j=1

Y λ
j (v)

1 + (Yj(v)/k)λx
≤ s) for s ∈ R.

Set Zj = k−λ(
Y λj (v)

1+(Yj(v)/k)λx
− 1

1−λ). Then we have

G
(k)
λ,v,x(s) := P (

1

kλ
(T

(k)
λ,x −

k − 1

1− λ
) ≤ s|V ∗k,k = kv) = P (

k−1∑
j=1

Zj ≤ s).

We can check that

δn(t) := E(eitZj )− 1

=
1

1− (kv)−1

∫ kv

1

(
exp{it( (y/k)λ

1 + (y/k)λx
− k−λ(1− λ)−1)} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it( yλ

1 + yλx
− k−λ(1− λ)−1)} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
} exp{−itk−λ(1− λ)−1} − 1

)
y−2dy

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
}(1− itk−λ(1− λ)−1)− 1

)
y−2dy + o(

1

k
)

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
}(1− itk−λ(1− λ)−1))− 1

)
y−2dy + o(

1

k
)

=
1

k(1− (kv)−1)

∫ v

1/k

(
exp{it yλ

1 + yλx
} − 1− it yλ

1 + yλx

)
(1− itk−λ(1− λ)−1)y−2dy

+
1

k(1− (kv)−1)

∫ v

1/k

(
(1 + it

yλ

1 + yλx
)(1− itk−λ(1− λ)−1)− 1

)
y−2dy + o(

1

k
).

Some further manipulations show that

δn(t) =
1

k

∫ v

0

(
exp{it yλ

1 + yλx
} − 1− it yλ

1 + yλx

)
y−2dy

−it
k

( ∫ v

0

y2λ−2x

1 + yλx
dy +

vλ−1

1− λ
)

+ o(
1

k
).

Note that the conditional characteristic function of
∑k−1

j=1 Zj is (1 + δn(t))k.
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Thus

(1 + δn(t))k → fλ,v,x(t).

Similarly, the case for λ > 1 can be verified.

(ii) The proof is standard by showing the convergence of the character-

istic functions E(eit1Qk |V ∗k,k = kv)→ e−t
2
1/2 and

E(eit1Qkeit2T̂λ,x|V ∗k,k = kv)→ e−t
2
1/2fλ,v,x(t2)

for (t1, t2) in a neighborhood of (0, 0). The details are omitted here. �

The following two lemmas consider the limiting distributions of R
(k)
λ,x

and Qk.

Lemma 6. Let λ ∈ (1
2
, 1) or λ ∈ (1,∞).

(i) If x ≥ 0, then

R
(k)
λ,x

d→ Hλ,x;

(ii) If x < 0, then conditional on 1 + (V ∗k,k/k)λx > 0,

R
(k)
λ,x

d→ exp{(−x)1/λ}Hλ,x.

Proof. Note that

R
(k)
λ,x =

(V ∗k,k/k)λ

1 + (V ∗k,k/k)λx
+ (1− λ)T̂λ,x,

where T̂λ,x is defined in Lemma 5. We have shown in Lemma 5 that for any
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x ∈ R and v > 0 such that 1 + vλx > 0

f
(k)
λ,v,x(t) := E(eitT̂λ,x|V ∗k,k = kv)→ fλ,v,x(t) (S3.4)

where fλ,v,x is the characteristic function of Gλ,v,x. Since f
(k)
λ,v,x(t) is not

defined when kv ∈ (0, 1], for convenience, we set f
(k)
λ,v,x(t) = fλ,v,x(t) when

kv ∈ (0, 1].

Denote `k(v) := v−2(1 − (kv)−1)kI(kv > 1), i.e., the density function

of V ∗k,k. Set `(v) = v−2 exp(−v−1)I(v > 0), which is the density function

of the distribution function exp(1− v−1), v > 0. We can easily verify that∫∞
0
|`k(v)− `(v)|dv → 0 as k →∞. In view of the dominated convergence

theorem and (S3.4) we have

∫ ∞
0

|f (k)
λ,v,x((1− λ)t)− fλ,v,x((1− λ)t)|`(v)dv → 0.

When x > 0, the constraint 1 + vλx > 0 is trivial and thus

E(eitR
(k)
λ,x) = E

(
E(eitR

(k)
λ,x|V ∗k,k/k)

)
=

∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1−λ)t)`k(v)dv,
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from which we have as k →∞

|E(eitR
(k)
λ,x)−

∫ ∞
0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv|

≤ |
∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv

−
∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`(v)dv|

+

∫ ∞
0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`(v)dv

−
∫ ∞
0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv|

≤
∫ ∞
0

|`k(v)− `(v)|dv +

∫ ∞
0

|f (k)
λ,v,x((1− λ)t)− fλ,v,x((1− λ)t)|`(v)dv

→ 0.

It is easily seen that
∫∞
0

exp(it( vλ

1+vλ
))fλ,v,x((1−λ)t)`(v)dv is the character-

istic function of the distribution Hλ,x. This proves part (i) of the lemma.

When x < 0, the natural constraint 1 + (V ∗k,k/k)λx > 0 is equivalent to

V ∗k,k/k ∈ (0, ϕx). Therefore, we have

E
(
eitR

(k)
λ,x |1 + (V ∗k,k/k)λx > 0

)
= 1

P (1+(V ∗
k,k/k)

λx>0)

∫ ϕx
0

exp(it( vλ

1+vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv.

From Lemma 3 (i) we get P (1 + (V ∗k,k/k)λx > 0) = P (V ∗k,k/k < ϕx) →

exp(−(−x)1/λ). Similar to the proof for part (i), we have as k →∞∫ ϕx

0

exp(it(
vλ

1 + vλ
))f

(k)
λ,v,x((1− λ)t)`k(v)dv

→
∫ ϕx

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv.
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Hence, we get

E
(
eitR

(k)
λ,x|1 + (V ∗k,k/k)λx > 0

)
→ exp((−x)1/λ)

∫ ϕx

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1− λ)t)`(v)dv.

The limiting function is the characteristic function of the distribution

exp{(−x)1/λ}Hλ,x(y)

which is the conditional distribution of V λ(1 + V λx) + (1 − λ)Zλ,x given

V < ϕ
1/λ
x , where Zλ,x and V are two random variables such that V has

a distribution exp(−v−1), v > 0, and the conditional distribution of Zλ,x

given V = v is Gλ,v,x defined in Section 2. This completes the proof of the

lemma. �

Lemma 7. Let λ ∈ (1
2
, 1) or λ ∈ (1,∞).

(i) If x ≥ 0, then R
(k)
λ,x and Qk are asymptotically independent.

(ii) If x < 0, then conditional on 1 + (V ∗k,k/k)λx > 0, R
(k)
λ,x and Qk are

asymptotically independent.

Proof. We will sketch the proof for part (i) only. The proof for part (ii) is

similar. From Lemma 5 we have

f
(k)
λ,v,x(t, s) := E(eitT̂λ,x+isQk |V ∗k,k = kv)→ fλ,v,x(t) exp(−s

2

2
),

which is parallel to (S3.4) in the proof of Lemma 6. Note that exp(− s2

2
) is

the characteristic function of the standard normal and is free of v. The rest
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of the proof follows the exactly same lines as those in the proof of Lemma 6.

We then obtain that

|E(eitT̂λ,x+isQk)−
( ∫ ∞

0

exp(it(
vλ

1 + vλ
))fλ,v,x((1−λ)t)`(v)dv

)
exp(−s

2

2
)| → 0

as k →∞, which implies the asymptotic independence in part (i). �

Before proving our theorems, we derive some useful inequalities. It

follows from Lemma 4 that there exists a C > 0 such that for all large t

|θ0 − U(tx)

θ0 − U(t)
− xγ0| ≤ Cxγ0A1(t) for all x ≥ 1.

Write

δ(t, x) = (
θ0 − U(tx)

θ0 − U(t)
− xγ0)/xγ0 .

Then |δ(t, x)| ≤ CA1(t) uniformly in x ≥ 1 for all large t, and

U(tx)− U(t)

θ0 − U(t)
= 1− xγ0(1 + δ(t, x)).

Now for each j, 1 ≤ j ≤ k, plug in t = Vn,n−k and x =
Vn,n−k+j
Vn,n−k

in the above

equation we have

Xn,n−k+j −Xn,n−k

θ0 −Xn,n−k
= 1−

(Vn,n−k+j
Vn,n−k

)γ0(1 + εn,j) = 1− (V ∗k,j)
γ0(1 + εn,j),

(S3.5)

where εn,j = δ(Vn,n−k,
Vn,n−k+j
Vn,n−k

). Since A1(t) is regularly varying with expo-

nent ρ and kVn,n−k/n → 1 in probability, we get A1(Vn,n−k)/A1(n/k) → 1
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in probability, and thus we have

εn := max
1≤j≤k

|εn,j| = Op(A(n/k)).

For every θ > Xn,n, define

τ =
θ −Xn,n−k

θ0 −Xn,n−k
(S3.6)

and thus θ = Xn,n−k + τ(θ0 − Xn,n−k) for τ >
Xn,n−Xn,n−k
θ0−Xn,n−k

. Then we can

write

θ −Xn,n−k+j

θ −Xn,n−k
= 1− Xn,n−k+j −Xn,n−k

θ −Xn,n−k

= 1− Xn,n−k+j −Xn,n−k

τ(θ0 −Xn,n−k)

=
(V ∗k,j)

γ0(1 + (τ − 1)(V ∗k,j)
−γ0 + εn,j)

τ
. (S3.7)

For each given δ ∈ (0, 1) define

An = {1 + (τ − 1)(V ∗k,k)
−γ0 > δ} ∩ {εn < δ/2}

and

Bn = {1 + (τ − 1)(V ∗k,k)
−γ0 > δ} ∩ {(τ − 1)(V ∗k,k)

−γ0 <
1

δ
} ∩ {εn < δ/3}.

Define βn,j and ξn,j such that

θ −Xn,n−k

θ −Xn,n−k+j
= τ(V ∗k,j)

−γ0 − (τ − 1)(V ∗k,j)
−2γ0 + βn,j (S3.8)

and

θ −Xn,n−k

θ −Xn,n−k+j
=

τ(V ∗k,j)
−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

(1 + ξn,j). (S3.9)
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Then, from (S3.7) we can show for all large n,

|βn,j| ≤ (τ − 1)2(V ∗k,j)
−2γ0 +

5τ

δ
{(τ − 1)2(V ∗k,j)

−3γ0 + (V ∗k,j)
−γ0εn} (S3.10)

uniformly in 1 ≤ j ≤ k and τ on An and

max
1≤j≤n

|ξn,j| ≤
2

δ
εn uniformly in τ on Bn.

S3.2 Proof of Theorem 1

As we have known, there exists a unique solution to h(θ) = 0 as defined in

(2.3) on {Xn,n > Xn,n−1}. Since F is continuous in a neighborhood of θ and

Xn,n−k → θ almost surely, with probability one, Xn,n = Xn,n−1 can occur

only finitely many times (in n). Set A = {Xn,n > Xn,n−1 ultimately}. Then

P (A) = 1. Set B = {θ̂ > θ + ε infinitely often}. If the statement in the

theorem is false, then P (B) > 0 for some ε > 0, and hence P (A ∩ B) > 0.

We have from (2.5) that infinitely often in A ∩B

1 ≤ α0

k + 1

Xn,n −Xn,n−k

θ̂ −Xn,n

+
|α0 − 1|
k + 1

k−1∑
j=1

Xn,n−k+j −Xn,n−k

θ̂ −Xn,n−k+j

≤ α0

k + 1

Xn,n −Xn,n−k

ε
+
|α0 − 1|
k + 1

k−1∑
j=1

Xn,n−k+j −Xn,n−k

ε

≤ 2α0 + 1

ε
(θ −Xn,n−k)

< 1,

which yields a contradiction. This completes the proof. �
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S3.3 Proof of Theorem 2

Define

h1(τ) = h(Xn,n−k + τ(θ0 −Xn,n−k))

and denote τ̂ as the solution to equation h1(τ) = 0. Then it is readily seen

that

θ̂ = Xn,n−k + τ̂(θ0 −Xn,n−k), (S3.11)

or equivalently,

θ̂ − θ0 = (τ̂ − 1)(θ0 −Xn,n−k). (S3.12)

Since k = kn → ∞, we have under condition (2.6) that P (Xn,n >

Xn,n−k) → 1 as n → ∞. Thus, with probability tending to one, the ML

estimator θ̂ is unique, and hence τ̂ is also the unique solution to h1(τ) = 0.

It follows from Lemma 4 that

(θ0 −Xn,n−k)/(n/k)γ0
p→ b/(−γ0) = cγ0 . (S3.13)

We will aim at the limiting distribution of τ̂ − 1 since the limiting distribu-

tion for θ̂ − θ0 follows immediately from (S3.12) and (S3.13).

It is easy to see that for any sequence {τn}, on {Xn,n > Xn,n−k}, τ̂ ≤ τn

if and only if h1(τn) ≤ 0 and τn >
Xn,n−Xn,n−k
θ0−Xn,n−k

, which implies

P (τ̂ ≤ τn) = P (h1(τn) ≤ 0,
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn) + o(1). (S3.14)
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It follows from Lemma 3 and equation (S3.5) that

k−γ0(
Xn,n −Xn,n−k

θ0 −Xn,n−k
−1) = −(

V ∗k,k
k

)γ0(1+op(1))
d→ 1−exp(−(max(0,−x))

− 1
γ0 ).

(S3.15)

Equations (S3.14) and (S3.15) play very important role in getting the lim-

iting distributions of τ̂ .

We will consider four cases: α0 > 2, α0 = 2, α0 ∈ (0, 2), α0 6= 1, and

α0 = 1.

Case 1: α0 > 2. For x ∈ R define τn = τn(x) = 1 + x√
k
. For any δ > 0, we

have that P (An)→ 1 as n→∞. It follows from (S3.8) and Lemma 3 that

on An

|h1(τn) +
1 + γ0
γ0

(
(Sk(−γ0)−

k

1 + γ0
)− (Sk(−γ0)− Sk(−2γ0))

x√
k

)
|

≤ O(
1

k
)(Sk(−2γ0) + Sk(−3γ0)) +O(1)Sk(−γ0)εn

+Op(1)((V ∗k,k)
−γ0 +

(V ∗k,k)
−3γ0

k
)

≤ Op(kA(n/k) + k−γ0).

We have used the fact that Sn(−3γ0) ≤ (V ∗k,k)
−γ0Sk(−2γ0). Set Yn =

h1(τn)/
√
k and Zn = 1+γ0

−γ0

(
1√
k
(Sk(−γ0)− k

1+γ0
) + (Sk(−γ0)− Sk(−2γ0))

x
k

)
.

It follows that Yn − Zn = op(1) under condition (2.7) and

Zn
d→ N(

−x
1 + 2γ0

,
1

1 + 2γ0
)
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from Lemma 3. Then we obtain from Lemma 2 that

lim
n→∞

P (h1(τn) ≤ 0) = Φ(
x√

1 + 2γ0
).

Since (S3.15) implies P (
Xn,n−Xn,n−k
θ0−Xn,n−k

< τn) → 1, we get from (S3.14) that

P (τ̂ ≤ τn(x))→ Φ( x√
1+2γ0

) for all x ∈ R, that is,

√
k(τ̂ − 1)

d→ N(0, 1 + 2γ0),

which together with (S3.12) and (S3.13) yields (2.11).

Case 2: α0 = 2. We can show (2.12) similarly to Case 1 by setting τn =

τn(x) = 1 + x√
k log k

. The details are omitted here.

Case 3: α0 ∈ (0, 2), α0 6= 1. Set τn = τn(x) = 1 + kγ0x. We consider two

cases: x ≥ 0 and x < 0.

Case 3.1: x ≥ 0. It follows from Lemma 3 (i) that for any ε > 0,

there exists a δ > 0 such that P (Bn) > 1 − ε for all large n. We have

from Lemma 5 that T
(k)
−γ0,x = Op(k) if α0 ∈ (1, 2) and T

(k)
−γ0,x = Op(k

−γ0) if

α0 ∈ (0, 1). Therefore, it follows from Lemma 1 and equation (S3.9) that

for α0 ∈ (1, 2)

kγ0h1(τn)

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)

+Op(k
1+γ0)εn

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)

(S3.16)

+Op(k
1+γ0A(n/k)),
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which converges in distribution to H−γ0,x in view of Lemma 5. Since

G−γ0,v,x(y) is continuous in y, it can be verified that H−γ0,x(y) is contin-

uous in y as well. The constraint
Xn,n−Xn,n−k
θ0−Xn,n−k

< τn is fulfilled automatically

since
Xn,n−Xn,n−k
θ0−Xn,n−k

< 1. Therefore, we have from Lemma 2 and (S3.14) that

lim
n→∞

P (τ̂ ≤ τn) = lim
n→∞

P (kγ0h1(τn) ≤ 0) = H−γ0,x(0) = Λ−γ0(x) (S3.17)

when α0 ∈ (1, 2). For α0 ∈ (0, 1) we have

kγ0h1(τn) = kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)T

(k)
−γ0,x

)
+Op(εn)

= kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)T

(k)
−γ0,x

)
+Op(A(n/k)).

Similarly, by using Lemma 5 we obtain (S3.17) for x ≥ 0.

Case 3.2: x < 0. The proof for x < 0 with α0 ∈ (0, 2) and α0 6= 1 is

a little bit complicated since we have to take into account of the constraint

Xn,n−Xn,n−k
θ0−Xn,n−k

< τn. We only consider the case x < 0 and α0 ∈ (1, 2) since

proof for α0 ∈ (0, 1) is similar.

From (S3.5) with j = k and Lemma 3 (i) we have for y < 0

lim
n→∞

P (
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn(y)) = lim

n→∞
P (kγ0(V ∗k,k)

−γ0 < (−y)−1)

= exp(−(−y)−1/γ0), (S3.18)

which is a continuous distribution function. Moreover, it follows from
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(S3.15) that

lim
n→∞

E|I(
Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn(y))−I(kγ0(V ∗k,k)

−γ0 < (−y)−1)| = 0, (S3.19)

where I(A) denotes the indicator function of the event A. For any given

small ε > 0, if δ > 0 is small enough, we have that

E|I(kγ0(V ∗k,k)
−γ0 < (−x)−1)− I(kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)|

= P (kγ0(V ∗k,k)
−γ0 < (−x)−1)− P (kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)

→ exp(−(−x)−1/γ0)− exp(−(−x/(1− δ))−1/γ0)

< ε/2,

which implies that for all large k,

E|I(kγ0(V ∗k,k)
−γ0 < (−x)−1)− I(kγ0(V ∗k,k)

−γ0 < (−x/(1− δ))−1)| < ε.

(S3.20)

Since {(V ∗k,k)−γ0 < (−x/(1− δ))−1} = {1 + (τn(x)− 1)V ∗k,k > δ}, we have

E|I((V ∗k,k)
−γ0 < (−x/(1− δ))−1)− I(Bn)| → 0 as n→∞. (S3.21)

Then it follows from approximation (S3.9) that (S3.16) holds on Bn. Since

δ > 0 can be arbitrarily small, by using (S3.19) with y = x, (S3.20) and
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(S3.21) we can show that

lim
n→∞

P (h1(τn) ≤ 0|Xn,n −Xn,n−k

θ0 −Xn,n−k
< τn)

= lim
n→∞

P (kγ0
( (V ∗k,k)

−γ0

1 + (V ∗k,k/k)−γ0x
+ (1 + γ0)(T

(k)
−γ0,x −

k − 1

1 + γ0
)
)
≤ 0

|1 + (
V ∗k,k
k

)−γ0x > 0)

= exp{(−x)−1/γ0}H−γ0,x(0),

where the last step follows from Lemma 6(ii). Once again we have (S3.17)

by using (S3.14) and (S3.18) with y = x. Hence (2.13) follows from (S3.17)

and (S3.13).

Case 4: α0 = 1. The case α0 = 1 can be verified directly since there is a

close form solutuon θ̂ = Xn,n + (k+ 1)−1(Xn,n−Xn,n−k) as in Remark 1 in

Section 2. Then, it follows from (S3.13) and (S3.15) that

nc(θ̂ − θ0) = k
(Xn,n −Xn,n−k

θ0 −Xn,n−k
− 1
)
(1 +

1

k + 1
)
c(θ0 −Xn,n−k)

(n/k)−1

+
k

k + 1

c(θ0 −Xn,n−k)

(n/k)−1

= k
(Xn,n −Xn,n−k

θ0 −Xn,n−k
− 1)(1 + op(1)) + 1 + op(1)

d→ 1− Z

since the distribution function on the right-hand side of (S3.15) is the same

as that of −Z, where Z is the standard exponential random variable. This

completes the proof of Theorem 2. �
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S3.4 Proof of Theorem 3

Our approach in the proof is first to identify that the estimator θ̃ falls

within a small neighborhood of θ0 and then to use some expansions to get

the asymptotic distributions for both θ̃ and α̃−1. The proof is very lengthy.

We will consider three cases: α0 > 2, α0 = 2, and α0 ∈ (0, 2).

Case 1: α0 > 2. The idea for the proof is somewhat similar to that of

Theorem 6 in Hall (1982). We will split the proof into several steps.

Step 1. Some preparations.

Let {θn} be any sequence of random variables such that

n−γ0(θn − θ0) = op(1). (S3.22)

Define

τn =
θn −Xn,n−k

θ0 −Xn,n−k
.

Then it follows from (S3.13) that

k−γ0(τn − 1) =
n−γ0(θn − θ0)

(n/k)−γ0(θ0 −Xn,n−k)
=
n−γ0

cγ0
(θn − θ0)(1 + op(1)) = op(1).

(S3.23)

Since n−γ0(θ0−Xn,n) converges in distribution to a positive and continuous

random variable, we conclude that P (θn > Xn,n)→ 1.

For any δ ∈ (0, 1), P (An)→ 1 as n→∞. By virtue of (S3.8) we have

θn −Xn,n−k

θn −Xn,n−k+j
= (V ∗k,j)

−γ0
(
1 + (τn − 1)(1− (V ∗k,j)

−γ0) + (V ∗k,j)
γ0βn,j

)
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for 1 ≤ j ≤ k.

From (S3.10) we have

max
1≤j≤k

(V ∗k,j)
γ0|βn,j| = op(1)

and thus

log
θn −Xn,n−k

θn −Xn,n−k+j
= −γ0 log V ∗k,j + (τn − 1)(1− (V ∗k,j)

−γ0)

+
(
(V ∗k,j)

γ0βn,j + (τn − 1)2(V ∗k,j)
−2γ0

)
Op(1),

where Op(1) terms are uniform in j. Therefore we get that

1

k

k∑
j=1

log
θn −Xn,n−k

θn −Xn,n−k+j

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0))

+Op(1)
1

k

k∑
j=1

(V ∗k,j)
γ0|βn,j|+ (τn − 1)2

Sk(−2γ0)

k
Op(1)

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0)) +Op

(
(τn − 1)2 + A(n/k)

)
,

where the last step follows from Lemma 3 and (S3.10). Hence we conclude

that

1

k

k∑
j=1

log
θn −Xn,n−k

θn −Xn,n−k+j
(S3.24)

=
−γ0
k

k∑
j=1

log V ∗k,j + (τn − 1)(1− 1

k
Sk(−γ0)) +Op

(
(τn − 1)2 + A(n/k) +

1

k

)
.
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In a similar manner we obtain that

k∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j

= Sk(−γ0) + (τn − 1)(Sn(−γ0)− Sk(−2γ0)) +Op

(
(τn − 1)2k1−γ0 + kA(n/k)

)
.

Since
θn−Xn,n−k
θn−Xn,n = Op(k

−γ0), we have

k−1∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j
=

k∑
j=1

θn −Xn,n−k

θn −Xn,n−k+j
+Op(k

−γ0).

With some tedious calculations we obtain

g(θn) =
(
Sk(−γ0)−

k

1 + γ0

)
(1 + γ0) +

kγ0
1 + γ0

(1

k

k∑
j=1

log V ∗k,j − 1
)

+
γ30

(1 + γ0)2(1 + 2γ0)
k(τn − 1)(1 + op(1)) (S3.25)

+(τn − 1)2Op(k
1−γ0) +Op

(
kA(n/k) + k−γ0

)
.

From Lemma 3 we get

g(θn)√
k

=
γ30

(1 + γ0)2(1 + 2γ0)

√
k(τn − 1)(1 + op(1)) +Op(1). (S3.26)

Step 2. We show n−γ0(θ̃ − θ0)
p→ 0 as n→∞, that is,

P (n−γ0(θ̃ − θ0) > v)→ 0 for all v > 0 (S3.27)

and

P (n−γ0(θ̃ − θ0) < −v)→ 0 for all v > 0. (S3.28)

We will show (S3.27) here. The proof for (S3.28) is tedious and will be

given in Step 4.
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By setting θn = θ0 ± nγ0/ log log k in (S3.26) we have from (S3.23)

that g(θn)/
√
k

p→ ∓∞, which implies that with probability tending to one,

there exists a root θ ∈ (θ0−nγ0/ log log k, θ0+nγ0/ log log k) to the equation

g(θ) = 0. Since θ̃ is defined to be the smallest solution to g(θ) = 0 we have

P (n−γ0(θ̃ − θ0) > v)→ 0 for all v > 0.

Step 3. Proof of (2.20).

Note that (S3.22) holds with θn = θ̃. Then it follows from (S3.25) and

(S3.24) that

√
k(τ̃ − 1)

=
(1 + γ0)

2(1 + 2γ0)

γ30
√
k

((
Sk(−γ0)−

k

1 + γ0

)
(1 + γ0)

+
γ0

1 + γ0

( k∑
j=1

log V ∗k,j − k
))

+ op(1)

and

√
k(α̃−1 − α−10 ) =

−γ0
√
k(τ̃ − 1)

1 + γ0
− γ0√

k

( k∑
j=1

log V ∗k,j − k
)

+ op(1).

Hence (2.20) follows from Lemma 3 (vii), (S3.12) and (S3.13).

Step 4: Proof of (S3.28).

We will expand g(θ) uniformly for Xn,n < θ < θ0 or equivalently for

Xn,n−Xn,n−k
θ0−Xn,n−k

< τ < 1 via (S3.6). From (S3.5), this latter constraint is

equivalent to {−1− εn,n < (τ − 1)(V ∗k,k)
−γ0 < 0} =: Cn.
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Since P (V ∗k,k/V
∗
k,k−1 > x) = 1/x for x > 1, by setting δ1 = (2/(2−ε))−γ0

(> 1) we have P ((V ∗k,k)
−γ0/(V ∗k,k−1)

−γ0 > δ1) = 1− ε/2 for every ε ∈ (0, 1).

Hence, on {(V ∗k,k)−γ0/(V ∗k,k−1)−γ0 > δ1} ∩ {εn < (δ1 − 1)/2},

−δ1 + 1

2δ1
< (τ − 1)(V ∗k,k−1)

−γ0 < 0

holds uniformly for all τ ∈ Cn, that is, 1 + (τ − 1)(V ∗k,k−1)
−γ0 > δ holds

uniformly on τ ∈ Cn, where δ = (δ1 − 1)/(2δ1). Therefore, on Dn =

{(V ∗k,k)−γ0/(V ∗k,k−1)−γ0 > δ1}∩{εn < δ/3}, we have 1+(τ−1)(V ∗k,k−1)
−γ0 > δ,

and thus by redefining Bn as {1 + (τ − 1)(V ∗k,k−1)
−γ0 > δ} ∩ {εn < δ/3} we

have expansion (S3.9) for 1 ≤ j ≤ k − 1 with maxτ∈Cn max1≤j≤k−1 |ξn,j| ≤

2
δ
εn uniformly on Bn. So we have on Dn (⊆ Bn)

g(θ) = Kn + Jk,τ (1 +Op(εn))(1−Wk,τ +Op(εn))− k

= Kn + Jk,τ (1−Wk,τ )− k + Jk,τ (1 +Wk,τ )Op(εn)

uniformly on τ ∈ Cn, where

Jk,τ = 2 +
k−1∑
j=1

τ(V ∗k,j)
−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

, Wk,τ =
1

k

k−1∑
j=1

log
τ(V ∗k,j)

−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

and

Kn =
θ −Xn,n−k

θ −Xn,n

− Jk,τ
k

(log
θ −Xn,n−k

θ −Xn,n

)(1 +Op(εn)).
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Note that for all τ ∈ Cn

Jk,τ = 2 +
k−1∑
j=1

(V ∗k,j)
−γ0 + (1− τ)

k−1∑
j=1

(V ∗k,j)
−2γ0 − (V ∗k,j)

−γ0

1 + (τ − 1)(V ∗k,j)
−γ0

≥
k−1∑
j=1

(V ∗k,j)
−γ0 + (1− τ)

k−1∑
j=1

((V ∗k,j)
−2γ0 − (V ∗k,j)

−γ0)

=
k

1 + γ0
+Op(

√
k) + (1− τ)k

( 1

1 + 2γ0
− 1

1 + γ0
+ op(1)

)
from Lemma 3. Meanwhile, we have

Wk,τ =
−γ0
k

k−1∑
j=1

log V ∗k,j +
1

k

k−1∑
j=1

log(1 + (1− τ)
(V ∗k,j)

−γ0 − 1

1 + (τ − 1)(V ∗k,j)
−γ0

)

≤ −γ0
k

k−1∑
j=1

log V ∗k,j +
1− τ
k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1 + (τ − 1)(V ∗k,j)
−γ0

≤ −γ0
k

k∑
j=1

log V ∗k,j +
1− τ
k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1− (1 + δ/3)V γ0
k,k(V

∗
k,j)
−γ0

.

It follows from Lemma 3 (vii) that

k∑
j=1

log V ∗k,j = k +Op(
√
k).

Following those arguments in the proof of Lemma 5 and considering the

conditional distribution given on V ∗k,k we can show that on Dn

1

k

k−1∑
j=1

(V ∗k,j)
−γ0 − 1

1− (1 + δ/3)V γ0
k,k(V

∗
k,j)
−γ0

= (
1

1 + γ0
− 1)(1 + op(1)),

which coupled with the above estimates implies that

Jk,r(1−Wk,r)− k ≥
|γ0|3

(1 + γ0)2(1 + 2γ0)
(1− τ)k(1 + op(1)) +Op(k

1/2).
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We also notice that on Dn

Jk,τ = 2 +Op(
k−1∑
j=1

(V ∗k,j)
−γ0) = Op(k)

holds uniformly on τ ∈ Cn, which implies Kn
p→ ∞ uniformly on τ ∈ Cn.

Therefore, we have from the above equations that on Dn

g(θ)√
k
≥ |γ0|3

(1 + γ0)2(1 + 2γ0)
(1− τ)

√
k(1 + op(1)) +Op(1) (S3.29)

holds uniformly for τ ∈ Cn. Since P (Dn) > 1 − ε for all large n and any

given ε > 0, we conclude from Lemma 1 that (S3.29) holds uniformly on

Cn, and thus for every v > 0

min
Xn,n<θ<θ0−nγ0v

g(θ)√
k
≥ Op(1) +

|γ0|3

(1 + γ0)2(1 + 2γ0)

nγ0vk1/2

θ0 −Xn,n−k
(1 + op(1))

= Op(1) +
|γ0|3

(1 + γ0)2(1 + 2γ0)
c−γ0vk1/2+γ0(1 + op(1))

p→ ∞

from (S3.13), which implies (S3.28).

Case 2: α0 = 2. The proof is similar to Case 1, and the details are

omitted here.

Case 3: α0 ∈ (0, 2). A different approach from the case α0 ≥ 2 is needed

in this case. We will approximate the function g defined in (2.17) by the

function h defined in (2.3). Define the lower bound

hL(θ) = h(θ)− an
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and the upper bound

hU(θ) = h(θ) + an,

where {an} is a sequence of constants given by

an =


k1/2(log k)2, if α0 ∈ [1, 2),

k−γ0−1/2(log k)2, if α0 ∈ (0, 1).

Then an/k
−γ0 → 0 as n→∞.

Let θL and θU be the solutions to hL(θ) = 0 and hU(θ) = 0, respectively.

If such solutions are not unique, θL and θU should be interpreted as the

smallest ones.

For α0 ∈ [1, 2), we have an/n→ 0 as n→∞, and both hL and hU are

decreasing functions of θ for θ > Xn,n. Therefore, the solutions to hL(θ) = 0

and hU(θ) = 0 exist and are unique.

We continue to use the notation in the proof of Theorem 2. For α0 ∈

(0, 1), let τn = τn(x) = 1 + kγ0x, and define θn = θn(x) = Xn,n−k +

τn(x)(θ0 − Xn,n−k). Note that h(θn) = h1(τn), where h1 is defined in the

beginning of Section S3.3. It is readily seen that kγ0hU(θn), kγ0hL(θn), and

kγ0h(θn) have the same limiting distribution function. From (S3.17), for

every ε > 0, we can choose an x > 0 such that P (kγ0hL(θn(x)) < 0) >

1 − ε and P (kγ0hU(θn(x)) < 0) > 1 − ε for all large n. This ensures

that P (kγ0hL(θn(xn)) < 0) → 1 and P (kγ0hU(θn(xn)) < 0) → 1 for some
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sequence of constants {xn} with limn→∞ xn = ∞. Since h′L(θ) = h′U(θ) =

h′(θ), we conclude, by using the same arguments in Section 2.1, that with

probability tending to one, the solutions to hL(θ) = 0 and hU(θ) = 0 exist

and are unique in the interval (Xn,n, θn(xn)).

From the proof of Theorem 2 we conclude that the limiting distributions

for θL, θU and θ̂ are the same. Note that θL < θU . By using (S3.9) we can

show that

1

k

k∑
j=1

log
θ −Xn,n−k

θ −Xn,n−k+j
=
−γ0
k

k∑
j=1

log V ∗k,j +Op(|τ − 1|) = −γ0 +Op(k
−1/2)

(S3.30)

uniformly on θ ∈ [θL, θU ]. Similarly, from (S3.8) and Lemma 3 we have

k−1∑
j=1

θ −Xn,n−k

θ −Xn,n−k+j
=


Op(k), if α0 ∈ (1, 2);

Op(k log k), if α0 = 1;

Op(k
−γ0), if α0 ∈ (0, 1)

uniformly on θ ∈ [θL, θU ]. It is easily seen that with probability tending to

one,

hL(θ) ≤ g(θ) ≤ hU(θ)

holds uniformly for θ ∈ [θL, θU ]. Therefore, there exists a root to the equa-

tion g(θ) = 0 in the interval [θL, θU ] with probability tending to one, and

we conclude that P (n−γ0(θ̃ − θ̂) > v) → 0 for v > 0. Similar to the proof

of (S3.28) we can show P (n−γ0(θ̃− θ̂) < −v)→ 0 for v > 0. As a result we
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obtain that

n−γ0(θ̃ − θ̂) p→ 0,

which implies that θ̃ and θ̂ have the same limiting distributions.

For α̃−1, using a similar expansion to (S3.30) we have

α̃−1 =
−γ0
k

k∑
j=1

log V ∗k,j + o(k−1/2),

which together with Lemma 7 yields (2.21). The asymptotic independence

of θ̃ and α̃−1 follows from the asymptotic independence of θ̂ and Qk, which

can be verified from Lemma 7 and the proof of Theorem 2. This completes

the proof. �
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