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Abstract

Consider a truncated circular unitary matrix which is a pn by pn submatrix of an n by

n circular unitary matrix by deleting the last n− pn columns and rows. Jiang and Qi

(2017) proved that the maximum absolute value of the eigenvalues (known as spectral

radius) of the truncated matrix, after properly normalized, converges in distribution

to the Gumbel distribution if pn/n is bounded away from 0 and 1. In this paper we

investigate the limiting distribution of the spectral radius under one of the following

four conditions: (1). pn → ∞ and pn/n → 0 as n → ∞; (2). (n − pn)/n → 0 and

(n− pn)/(log n)
3 → ∞ as n → ∞; (3). n− pn → ∞ and (n− pn)/ log n → 0 as n → ∞

and (4). n− pn = k ≥ 1 is a fixed integer. We prove that the spectral radius converges

in distribution to the Gumbel distribution under the first three conditions and to a

reversed Weibull distribution under the fourth condition.
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1 Introduction

The early study of large random matrices was stimulated by analysis of high-dimensional

data. One example is Wishart’s (1928) investigation on large covariance matrices whose

statistical properties are mainly determined by eigenvalues and eigenvectors from the point

view of a principal components analysis. Since then, the random matrix theory has been

developed very rapidly and found many applications in areas such as heavy-nuclei atoms

(Wigner, 1955), number theory (Mezzadri and Snaith, 2005), quantum mechanics (Mehta,

2004), condensed matter physics (Forrester, 2010), wireless communications (Couillet and

Debbah, 2011).

The study of random matrices has greatly been motivated by Tracy and Widom’s (1994,

1996) work. They show that the largest eigenvalues of the three Hermitian matrices (Gaus-

sian orthogonal ensemble, Gaussian unitary ensemble and Gaussian symplectic ensemble)

converge to some special distributions that are now known as the Tracy-Widom laws. Sub-

sequently, the Tracy-Widom laws have found their applications in the study of problems

such as the longest increasing subsequence (Baik et al., 1999), combinatorics, growth pro-

cesses, random tilings and the determinantal point processes (see, e.g., Tracy and Widom

(2002), Johansson (2007) and references therein) and the largest eigenvalues in the high-

dimensional statistics (see, e.g., Johnstone (2001, 2008) and Jiang (2009)). Some recent

research focuses on the universality of the largest eigenvalues of matrices with non-Gaussian

entries; see, for example, Tao and Vu (2011), Erdős et al. (2012) and the references therein.

Consider a non-Hermitian matrix M with eigenvalues z1, · · · , zn. The largest absolute

values of the eigenvalues max1≤j≤n |zj | is refereed to as the spectral radius of M. The

spectral radii of the real, complex and symplectic Ginibre ensembles are investigated by

Rider (2003, 2004) and Rider and Sinclair (2014), and it is proved that the spectral radius

for the complex Ginibre ensemble converges to the Gumbel distribution. This indicates

that non-Hermitian matrices exhibit quite different behaviors from Hermitian matrices in

terms of the limiting distribution for the largest absolute values of the eigenvalues.

A very recent paper by Jiang and Qi (2017) studies the largest radii of three rotation-

invariant and non-Hermitian random matrices: the spherical ensemble, the truncation of

circular unitary ensemble and the product of independent complex Ginibre ensembles. It is

proved in the paper that the spectral radii converge to the Gumbel distribution and some

new distributions.

The circular unitary ensemble is an n × n random matrix with Haar measure on the

unitary group, and it is also called Haar-invariant unitary matrix. Let U be an n × n

circular unitary matrix. The n eigenvalues of the circular unitary matrix U are distributed

over {z ∈ C : |z| = 1} , where C is the complex plane, and their joint density function is

given by
1

n!(2π)n
·

∏
1≤j<k≤n

|zj − zk|2;

2



see, e.g., Hiai and Petz (2000).

For n > p ≥ 1, write

U =

(
A C∗

B D

)

where A, as a truncation of U, is a p × p submatrix. Let z1, · · · , zp be the eigenvalues of

A. Then their density function is

C ·
∏

1≤j<k≤p

|zj − zk|2
p∏

j=1

(1− |zj |2)n−p−1 (1.1)

where C is a normalizing constant. See, e.g., Zyczkowski and Sommers (2000).

Assume p = pn depends on n and set c = limn→∞
pn
n . Życzkowski and Sommers

(2000) show that the empirical distribution of zi’s converges to the distribution with density

proportional to 1
(1−|z|2)2 for |z| ≤ c if c ∈ (0, 1). Dong et al. (2012) prove that the empirical

distribution goes to the circular law and the arc law as c = 0 and c = 1, respectively. See

also Diaconis and Evans (2001) and Jiang (2009, 2010) and references therein for more

results.

Jiang and Qi (2017) have proved that the spectral radius max1≤j≤p |zj | for the truncated
circular unitary ensemble converges to the Gumbel distribution when the dimension of the

truncated truncated circular unitary matrix is of the same order as the dimension of the

original circular unitary matrix, see Theorem 1 in section 2.

In this paper we consider heavily truncated and lightly truncated circular unitary matri-

ces and investigate the limiting distribution of the spectral radii for those truncated circular

unitary matrices. Our results complement that in Jiang and Qi (2017).

The rest of the paper is organized as follows. The main results in this paper are given

in section 2 and their proofs are provided in section 3.

2 Main Results

Consider the pn × pn submatrix A, truncated from a n × n circular unitary matrix U in

section 1. Denote the pn eigenvalues as z1, · · · , zpn with the joint density function given by

(1.1).

For completeness, we first quote a theorem in Jiang and Qi (2017) on the limiting

distribution of the spectral radii max1≤j≤pn |zj | before we give our results in the paper.

THEOREM 1 Assume that z1, · · · , zpn have density as in (1.1) and there exist constants

h1, h2 ∈ (0, 1) such that h1 < pn
n < h2 for all n ≥ 2. Then (max1≤j≤pn |zj | − An)/Bn

converges weakly to the Gumbel distribution Λ(x) = exp(−e−x), x ∈ R, where An = cn +
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1
2(1− c2n)

1/2(n− 1)−1/2an, Bn = 1
2(1− c2n)

1/2(n− 1)−1/2bn,

cn =
(pn − 1

n− 1

)1/2
, bn = b

( nc2n
1− c2n

)
, an = a

( nc2n
1− c2n

)
with

a(y) = (log y)1/2 − (log y)−1/2 log(
√
2π log y) and b(y) = (log y)−1/2

for y > 3.

Note that in Theorem 1, a restriction on the dimension pn of the truncated circular

unitary matrix A is made as follows: there exist some 0 < h1 < h2 < 1 such that h1n <

pn < h2n for all large n. In this paper we are devoted to study of the spectral radii

max1≤j≤pn |zj | in the following conditions:

pn → ∞ and
pn
n

→ 0 as n → ∞; (2.1)

n− pn
(log n)3

→ ∞ and
n− pn

n
→ 0 as n → ∞; (2.2)

n− pn → ∞ and
n− pn
log n

→ 0 as n → ∞; (2.3)

n− pn = k ≥ 1 is fixed integer. (2.4)

The main results of the paper are the following theorems:

THEOREM 2 Under condition (2.1) or (2.2), (max1≤j≤pn |zj |−An)/Bn converges weakly

to the Gumbel distribution Λ(x) = exp(−e−x), x ∈ R, where An and Bn are defined as in

Theorem 1.

THEOREM 3 Under condition (2.3), (max1≤j≤pn |zj | − An)/Bn converges weakly to the

Gumbel distribution Λ(x) = exp(−e−x), x ∈ R, where An = (1 − an/n)
1/2 and Bn =

an/(2nkn), where an is given by

1

(kn − 1)!

∫ an

0
tkn−1e−tdt =

kn
n
.

where kn = n− pn.

THEOREM 4 Under condition (2.4), 2n1+1/k

((k+1)!)1/k
(max1≤j≤pn |zj | − 1) converges weakly to

the reversed Weibull distribution Wk(x) defined as

Wk(x) =

{
exp(−(−x)k), x ≤ 0;

1, x > 0.
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We notice that the limiting distribution of the spectral radii depends on the dimension

of truncated matrices. Our results in Theorems 2, 3 and 4 indicate that the limiting distri-

bution of the spectral radii of the truncated circular unitary matrices is Gumbel distribution

Λ if the parameter kn = n−pn, the number of truncated columns and rows diverges. When

the truncation is very light, that is, kn = n− pn = k ≥ 1 is a fixed integer, the limiting dis-

tribution of the spectral radii of the truncated matrices is the reversed Weibull distribution

Wk.

It is obvious that the case when kn = n− pn is of order between log n and (log n)3 has

not been covered in Theorems 1 to 4. We conjecture that max1≤j≤pn |zj |, after properly

normalized, converges in distribution to the Gumbel distribution in this case.

3 Proofs

Set kn = n − pn and define a(x) and b(x) as in Theorem 1. Define ϕ(x) = 1√
2π
e−x2/2

and Φ(x) = 1√
2π

∫ x
−∞ e−t2/2 dt for x ∈ R, the density function and the cumulative distri-

bution of the standard normal, respectively. The symbol Cn ∼ Dn as n → ∞ means that

limn→∞
Cn
Dn

= 1.

For random variables {Xn; n ≥ 1} and constants {an; n ≥ 1}, we write Xn = Op(an)

if limx→+∞ lim supn→∞ P (|Xn
an

| ≥ x) = 0. It is well known that Xn
anbn

→ 0 in probability as

n → ∞ if Xn = Op(an) and {bn; n ≥ 1} is a sequence of constants with limn→∞ bn = ∞.

Let Ui, i ≥ 1 be a sequence of i.i.d. random variables uniformly distributed over (0, 1),

and U1:n ≤ U2:n ≤ · · · ≤ Un:n be the order statistics of U1, U2, · · · , Un for each n ≥ 1. Then

from page 14 on the book by Balakrishnan and Cohen (1991), we know that the cumulative

distribution function of Ui:n is given by

Fi:n(x) =

n∑
r=i

(
n

r

)
xr(1− x)n−r =

n!

(i− 1)!(n− i)!

∫ x

0
ti−1(1− t)n−idt, 0 ≤ x ≤ 1 (3.1)

for each 1 ≤ i ≤ n, and the probability density function (pdf) of Ui:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
xi−1(1− x)n−i, 0 < x < 1. (3.2)

This is the so-called Beta distribution, denoted by Beta(i, n− i+ 1).

From (3.2), Upn−j+1:n−j has a Beta(pn − j + 1, kn) distribution with pdf given by

fpn−j+1:n−j(x) =
(n− j)!

(pn − j)!(kn − 1)!
xpn−j(1− x)kn−1, x ∈ (0, 1).

For each n ≥ 2, let {Ynj ; 1 ≤ j ≤ pn} be independent random variables such that Ynj

and (Upn−j+1:n−j)
1/2 have the same distribution. Jiang and Qi (2017) have shown that
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max1≤j≤pn |zj | and max1≤j≤pn Ynj have the same distribution, that is

P
(

max
1≤j≤pn

|zj |2 ≤ t
)
= P

(
max

1≤j≤pn
Y 2
nj ≤ t

)
=

pn∏
j=1

Fpn−j+1:n−j(t). (3.3)

for any 0 < t < 1, and

1− F1:kn(x) ≤ 1− F2:kn+1(x) ≤ · · · ≤ 1− Fpn:n−1(x) (3.4)

for x ∈ (0, 1). See the proof of Theorem 2 in Jiang and Qi (2017).

3.1 Preliminary Lemmas

We will present some useful lemmas before we prove our main results.

LEMMA 3.1 Suppose {ln; n ≥ 1} is sequence of positive integers. Let znj ∈ [0, 1) be real

numbers for 1 ≤ j ≤ ln such that max1≤j≤ln znj → 0 as n → ∞. Then lim
n→∞

ln∏
j=1

(1− znj) ∈

(0, 1) exists if and only if the limit lim
n→∞

ln∑
j=1

znj =: z ∈ (0,∞) exists and the relationship of

the two limits is given by

lim
n→∞

ln∏
i=1

(1− zni) = e−z. (3.5)

Proof. From the Taylor expansion

log(1− x) = −x+O(x2) as x → 0,

which implies log(1−znj) = −znj+O(z2nj) uniformly over 1 ≤ j ≤ ln since max1≤j≤ln znj →
0 as n → ∞. Therefore,

ln∏
j=1

(1− znj) = exp(

ln∑
j=1

log(1− znj)) = exp(−(1 +O( max
1≤j≤ln

znj))

ln∑
j=1

znj)

The lemma can be easily concluded from the above expression. �

LEMMA 3.2 Let {ln} be a sequence of positive integers such that ln → ∞ and for each

n, {znj , 1 ≤ j ≤ ln} are non-negative numbers such that znj is non-increasing in j with

zn1 > 0. Then for any sequence of positive integers {rn}satisfying that rn < ln for all large

n and rn/ln → 1 as n → ∞, we have ∑ln
j=1 znj∑rn
j=1 znj

→ 1

as n → ∞.
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Proof. It suffices to show that ∑ln
j=rn+1 znj∑rn
j=1 znj

→ 0 (3.6)

as n → ∞. In fact, from the monotonicity of znj , we have znj ≤ 1
rn

∑rn
j=1 znj for rn + 1 ≤

j ≤ ln. Hence
ln∑

j=rn+1

znj ≤
ln − rn

rn

rn∑
j=1

znj

which implies ∑ln
j=rn+1 znj∑rn
j=1 znj

≤ ln − rn
rn

→ 0,

proving (3.6). �
For the rest of the proofs, define

znj = 1− Fpn−j+1:n−j(tn), 1 ≤ j ≤ pn, (3.7)

where tn ∈ (0, 1) will be specified later in the proof of each theorem. From (3.4),

zn1 ≥ zn2 ≥ · · · ≥ znpn ≥ 0. (3.8)

Obviously, we have for 1 ≤ j ≤ pn.

znj =
(n− j)!

(pn − j)!(kn − 1)!

∫ 1

tn

tpn−j(1− t)kn−1dt

=
(n− j)!

(pn − j)!(kn − 1)!

∫ 1−tn

0
(1− t)pn−jtkn−1dt. (3.9)

LEMMA 3.3 Assume that 1 ≤ pn < n and pn → ∞ as n → ∞. Let {rn} satisfy the

condition in Lemma 3.2 with ln = pn. Assume αn > 0 and βn are real numbers such that

limn→∞ P (Y 2
n1 > βn + αnx) = 0 for any x ∈ R. If (max1≤j≤rn Y

2
nj − βn)/αn converges in

distribution to a cdf G, then (max1≤j≤pn Y
2
nj−βn)/αn converges in distribution to the same

distribution G.

Proof. Note that (max1≤j≤rn Y
2
nj − βn)/αn converges in distribution to the cdf G if and

only if

lim
n→∞

P ( max
1≤j≤rn

Y 2
nj ≤ βn + αnx) = G(x) (3.10)

for every continuity point x of G with G(x) ∈ (0, 1). We need to prove the above expression

is still true when rn is replaced by pn. Now fix x, a continuity point of G with G(x) ∈ (0, 1).

Set tn = tn(x) = βn + αnx and define znj as in (3.7). Note that (3.8) holds, zn1 → 0 as

n → ∞,

P ( max
1≤j≤rn

Y 2
nj ≤ βn + αnx) =

rn∏
j=1

(1− znj)
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and

P ( max
1≤j≤pn

Y 2
nj ≤ βn + αnx) =

pn∏
j=1

(1− znj).

By using Lemma 3.1 and (3.10) we have
∑rn

j=1 znj → z = − logG(x) which, together with

Lemma 3.2, implies
∑pn

j=1 znj → z = − logG(x). Once again we have from Lemma 3.1 that

lim
n→∞

P ( max
1≤j≤pn

Y 2
nj ≤ βn + αnx) =

pn∏
j=1

(1− znj) = e−z = G(x).

This completes the proof of the lemma. �

LEMMA 3.4 Let Zn be nonnegative random variables such that (Z2
n − βn)/αn converges

weakly to a cdf G(x), where αn > 0 and βn > 0 are constants satisfying that limn→∞ αn/βn =

0. Then
Zn − β

1/2
n

αn/(2β
1/2
n )

converges weakly to G. (3.11)

Proof. Set Wn = (Z2
n − βn)/αn. We have Z2

n = βn + αnWn = βn(1 + αn
βn

Wn). Then by

Taylor’s expansion

Zn = β1/2
n (1 +

αn

βn
Wn)

1/2 = β1/2
n (1 +

αn

2βn
Wn +Op(

αn

βn
)2)

and thus we have
Zn − β

1/2
n

αn/(2β
1/2
n )

= Wn +Op(
αn

βn
),

which implies (3.11). �

LEMMA 3.5 (Lemma 2.2 of Jiang and Qi (2017)) Let {jn, n ≥ 1} and {xn, n ≥ 1} be

positive numbers with limn→∞ xn = ∞ and limn→∞ jnx
−1/2
n (log xn)

1/2 = ∞. For fixed

y ∈ R, if {cn,j , 1 ≤ j ≤ jn, n ≥ 1} are real numbers such that limn→∞max1≤j≤jn |cn,jx
1/2
n −

1| = 0, then

lim
n→∞

jn∑
j=1

(
1− Φ((j − 1)cn,j + a(xn) + b(xn)y)

)
= e−y; (3.12)

lim
n→∞

jn∑
j=1

1

(j − 1)cn,j + a(xn) + b(xn)y
ϕ((j − 1)cn,j + a(xn) + b(xn)y

)
= e−y. (3.13)

LEMMA 3.6 (Lemma 2.3 of Jiang and Qi (2017) or Proposition 2.10 of Reiss (1981))

Let B be the collection of all Borel sets on R. Then there exists a constant C > 0 such that
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for all r > k ≥ 1,

sup
B∈B

∣∣∣P( r3/2√
(r − k)k

(
Ur−k+1:r −

r − k

r

)
∈ B

)
−
∫
B
(1 + l1(t) + l2(t))ϕ(t)dt

∣∣∣
≤ C ·

( r

(r − k)k

)3/2
where for i = 1, 2, li(t) is a polynomial in t of degree ≤ 3i, depending on r and k, and all

of its coefficients are of order O(
(

r
(r−k)k

)i/2
).

LEMMA 3.7 Define Vpn−j+1:n−j as in (3.25). Assume that kn = n − pn → ∞ and

kn/n → 0 as n → ∞. Then for any δn > 0 such that δn → ∞ and δn = o(k
1/6
n )

P (Vpn−j+1:n−j > x) = (1 + o(1))(1− Φ(x)) (3.14)

uniformly over 0 ≤ x ≤ δn, 1 ≤ j ≤ pn − kn as n → ∞.

Proof. Set βnj(x) =
pn−j
n−j + ((pn−j)kn)1/2

(n−j)3/2
x = pn−j

n−j (1+
k
1/2
n

(n−j)1/2(pn−j)1/2
x). Then 1−βnj(x) =

n−pn
n−j − ((pn−j)kn)1/2

(n−j)3/2
x = kn

n−j (1 − (pn−j)1/2

(n−j)1/2k
1/2
n

x), and the density function of Vpn−j+1:n−j is

given by

hj(x) =
((pn − j)kn)

1/2

(n− j)3/2
fpn−j+1:n−j(βnj(x))

=
((pn − j)kn)

1/2

(n− j)3/2
(n− j)!

(pn − j)!(kn − 1)!
βnj(x)

pn−j(1− βnj(x))
kn−1

=
(pn − j)pn−j+1/2k

kn+1/2
n

(n− j)n−j+1/2

(n− j)!

(pn − j)!kn!
(1− (pn − j)1/2

(n− j)1/2k
1/2
n

x)−1 (3.15)

× (1 +
k
1/2
n

(n− j)1/2(pn − j)1/2
x)pn−j(1− (pn − j)1/2

(n− j)1/2k
1/2
n

x)kn . (3.16)

To estimate hj(x), we need Stirling’s formula:

j! = jj+1/2e−j+ε(j)
√
2π, where

1

12j + 1
< ε(j) <

1

12j
(3.17)

and Taylor’s expansion: 1 − t = exp(log(1 − t)) = exp(−t − 1
2 t

2 + O(t3)) as t → 0. By

applying Stirling’s formula to kn!, (pn − j)! and (n− j)!, the product in (3.15) is equal to
1+o(1)√

2π
(1 + o(1)) for |x| = o(k

1/6
n ) uniformly over 1 ≤ j ≤ pn − kn as n → ∞. By applying

Taylor’s expansion to (1 + k
1/2
n

(n−j)1/2(pn−j)1/2
x)pn−j and (1− (pn−j)1/2

(n−j)1/2k
1/2
n

x)kn , the product in
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(3.16) is equal to

exp
( (pn − j)k

1/2
n x

(n− j)1/2(pn − j)1/2
− 1

2

(pn − j)knx
2

(n− j)(pn − j)
+O(

(pn − j)k
3/2
n |x3|

(n− j)3/2(pn − j)3/2
)
)

× exp
(
− kn(pn − j)1/2x

(n− j)1/2k
1/2
n

− 1

2

kn(pn − j)x2

(n− j)kn
+O(

kn(pn − j)3/2|x|3

(n− j)3/2k
3/2
n

)
)

= exp
((pn − j)1/2k

1/2
n x

(n− j)1/2
− 1

2

knx
2

(n− j)
+O(

k
3/2
n |x3|

(n− j)3/2(pn − j)1/2
)
)

× exp
(
− k

1/2
n (pn − j)1/2x

(n− j)1/2
− 1

2

(pn − j)x2

(n− j)
+O(

(pn − j)3/2|x|3

(n− j)3/2k
1/2
n

)
)

= exp
(
− x2

2
+O((

1

k
1/2
n

+
1

(pn − j)1/2
)|x|3)

)
= exp

(
− x2

2
+ o(1)

)
for |x| = o(k

1/6
n ) uniformly over 1 ≤ j ≤ pn − kn as n → ∞. Therefore, we have

hj(x) =
1 + o(1)√

2π
exp(−1

2
x2), |x| = o(k1/6n ) (3.18)

uniformly over 1 ≤ j ≤ pn − kn as n → ∞. Next we will give an estimate of the upper

bound of hj(x) for large x. Note that βnj(x) < 1 if and only if x < k
1/2
n (pn−j)1/2

(n−j)1/2
= O(k

1/2
n )

uniformly over 1 ≤ j ≤ pn − kn and thus k
1/2
n x

(n−j)1/2(pn−j)1/2
≤ O( k

1/2
n

n1/2 ) → 0 uniformly over

0 < x < k
1/2
n (pn−j)1/2

(n−j)1/2
, 1 ≤ j ≤ pn − kn as n → ∞. Now by applying Taylor’s expansion to

(1 + k
1/2
n

(n−j)1/2(pn−j)1/2
x)pn−j and inequality

1− t ≤ exp(−t− 1

2
t2), t ∈ (0, 1)

to (1− (pn−j)1/2

(n−j)1/2k
1/2
n

x)kn we get

hj(x) ≤
1 + o(1)√

2π
exp(−1

2
x2), 0 < x <

k
1/2
n (pn − j)1/2

(n− j)1/2
(3.19)

uniformly over 1 ≤ j ≤ pn − kn as n → ∞.

Assume that 0 ≤ x ≤ δn. From (3.19) we have

P (Vpn−j+1:n−j > x) =

∫ k
1/2
n (pn−j)1/2

(n−j)1/2

x
hj(t)dt

≤ (1 + o(1))

∫ k
1/2
n (pn−j)1/2

(n−j)1/2

x
ϕ(t)dt

≤ (1 + o(1))(1− Φ(x))
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uniformly over 0 ≤ x ≤ δn, 1 ≤ j ≤ pn − kn as n → ∞. Therefore, to complete the proof

of the lemma, it suffices to show that

P (Vpn−j+1:n−j > x) ≥ (1 + o(1))(1− Φ(x)) (3.20)

uniformly over 0 ≤ x ≤ δn, 1 ≤ j ≤ pn − kn as n → ∞.

From (3.27), we see that

Φ(y)− Φ(x) = (1 + o(1))(1− Φ(x)), 0 ≤ x = o(y)

uniformly if y → ∞. Since (δnk
1/6
n )1/2 = o(k

1/6
n ), by using (3.18) we have

P (Vpn−j+1:n−j > x) ≥
∫ (δnk

1/6
n )1/2

x
hj(t)dt

= (1 + o(1))

∫ (δnk
1/6
n )1/2

x
ϕ(t)dt

= (1 + o(1))(Φ((δnk
1/6
n )1/2)− Φ(x))

= (1 + o(1))(1− Φ(x)),

proving (3.20). This completes the proof of the lemma. �

3.2 Proofs of the Theorems

Proof of Theorem 2. We need to prove

1

Bn
( max
1≤j≤pn

|zj | −An)
d→ Λ, (3.21)

where An = cn + 1
2(1− c2n)

1/2(n− 1)−1/2an, Bn = 1
2(1− c2n)

1/2(n− 1)−1/2bn,

cn =
(pn − 1

n− 1

)1/2
, bn = b

( nc2n
1− c2n

)
, an = a

( nc2n
1− c2n

)
with a(x) = (log x)1/2 − (log x)−1/2 log(

√
2π log x) and b(x) = (log x)−1/2 for x > 3.

Fix x ∈ R and set tn = tn(x) = c2n+ cn(1− c2n)
1/2(n− 1)−1/2(an+ bnx). For each n ≥ 2,

define znj as in (3.7), that is, znj = 1− Fpn−j+1:n−j(tn(x)) for 1 ≤ j ≤ pn.

Since Y 2
nj and Upn−j+1:n−j are identically distributed, we have

P
(
max
1≤j≤r

Y 2
nj ≤ tn(x)

)
=

r∏
j=1

P (Y 2
nj ≤ tn(x)) =

r∏
j=1

(1− znj) (3.22)

for any 1 ≤ r ≤ pn.

Part 1. First we show (3.21) under condition (2.1). We will prove that

lim
n→∞

P
(

max
1≤j≤pn

Y 2
nj ≤ tn(x)

)
= exp(−e−x). (3.23)

11



Let jn = [p
5/8
n ], the integer part of p

5/8
n . For 1 ≤ j ≤ jn, define

unj =
(n− j)3/2

((pn − j)kn)1/2

(
tn(x)−

pn − j

n− j

)
.

Meanwhile, we rewrite

tn(x) =
pn − 1

n− 1
+

((pn − 1)kn)
1/2

(n− 1)3/2
(an + bnx).

Then we see that uniformly over 1 ≤ j ≤ jn,

unj =
(pn − 1

n− 1
− pn − j

n− j

)
· (n− j)3/2

((pn − j)kn)1/2

+
(n− j

n− 1

)3/2
·
(pn − 1

pn − j

)1/2
(an + bnx)

=
(pn − j

pn − 1

)−1/2
·
(n− j

n− 1

)1/2
·
(n− pn
pn − 1

)1/2
·
(n− 1

n

)−1/2
· j − 1

n1/2

+
(n− j

n− 1

)3/2
·
(pn − j

pn − 1

)−1/2
(an + bnx).

Now, n−pn
pn−1 = 1−c2n

c2n
∼ n

pn
. Also, given τ ∈ R, trivially

(
pn−j
pn−1

)τ
= 1+O( j−1

pn
) and

(
n−j
n−1

)τ
=

1 + O( j−1
n ) uniformly for all 1 ≤ j ≤ jn. Since an ∼ (log pn)

1/2 and bn ∼ (log pn)
−1/2, we

have

unj =
(1− c2n)

1/2

n1/2cn
(j − 1)(1 + o(1)) + an + bnx+O

((j − 1)(log pn)
1/2

pn

)
=

(1− c2n)
1/2

n1/2cn
(j − 1)(1 + o(1)) + an + bnx (3.24)

uniformly for all 1 ≤ j ≤ jn as n → ∞.

In Lemma 3.6, take r = n− j and k = n− pn to have

sup
B∈B

∣∣∣P (Vpn−j+1:n−j ∈ B)−
∫
B
(1 + l1(t) + l2(t))ϕ(t)dt

∣∣∣ = O(
1

p
3/2
n

)

uniformly over 1 ≤ j ≤ jn as n → ∞, where

Vpn−j+1:n−j =
(n− j)3/2

((pn − j)(n− pn))1/2

(
Upn−j+1:n−j −

pn − j

n− j

)
(3.25)

and where, for i = 1, 2, li(t) is a polynomial in t of degree ≤ 3i, depending on n, and all

of its coefficients are of order O((1/pn)
i/2) uniformly over 1 ≤ j ≤ jn as n → ∞. Now, by

taking B = (unj ,∞) we obtain

znj = P (Vpn−j+1:n−j > unj) =

∫ ∞

unj

(1 + l1(t) + l2(t))ϕ(t)dt+O(p−3/2
n ) (3.26)

12



uniformly for 1 ≤ j ≤ jn as n → ∞. From L’Hospital’s rule, we have that for any r ≥ 0∫ ∞

x
trϕ(t)dt ∼ xr−1ϕ(x) as x → ∞. (3.27)

Since min1≤j≤jn unj → ∞ as n → ∞ by (3.24), it follows from (3.27) that∫ ∞

unj

trϕ(t)dt ∼ (unj)
r−1ϕ(unj)

holds uniformly over 1 ≤ j ≤ jn. Furthermore, since the coefficients of li(t) are uniformly

bounded by O((1/pn)
i/2) for i = 1, 2, we have

jn∑
j=1

∫ ∞

unj

(1 + l1(t) + l2(t))ϕ(t)dt (3.28)

= (1 + o(1))

jn∑
j=1

ϕ(unj)

unj
+O(

1

p
1/2
n

)

jn∑
j=1

u3nj
ϕ(unj)

unj
+O(

1

pn
)

jn∑
j=1

u6nj
ϕ(unj)

unj
.

In Lemma 3.5, by taking xn = nc2n/(1−c2n) and and define cn,j such that unj = (j−1)cn,j+

a(xn)+b(xn)x for 1 ≤ j ≤ jn with cn,1 = x
−1/2
n . It follows from (3.24) that cn,j = x

−1/2
n (1+

o(1)) uniformly over 1 ≤ j ≤ jn as n → ∞, which implies limn→∞max1≤j≤jn |cn,jx
1/2
n −1| =

0. Then we get

lim
n→∞

jn∑
j=1

ϕ(unj)

unj
= e−x. (3.29)

We will show that the second term and the third term on the line below (3.28) converge to

zero as n → ∞. By noting that (1−c2n)
1/2

n1/2cn
∼ p

−1/2
n we have

u3nj = O(
j3n

p
3/2
n

) = O(p3/8n ) (3.30)

uniformly over 1 ≤ j ≤ jn. Thus, it follows from (3.13) that

O(
1

p
1/2
n

)

jn∑
j=1

u3nj
ϕ(unj)

unj
= O(

1

p
1/8
n

)

jn∑
j=1

ϕ(unj)

unj
= O(

1

p
1/8
n

) → 0

as n → ∞. Similarly, we have

O(
1

pn
)

jn∑
j=1

u6nj
ϕ(unj)

unj
= O(

1

p
1/4
n

) → 0

as n → ∞. Therefore, by combining (3.28), (3.26) and (3.29) we get

jn∑
j=1

znj → e−x as n → ∞. (3.31)

13



It follows from (3.24) that

unjn ≥ (jn − 1)(1 + o(1))

p
1/2
n

≥ p
1/8
n

2

for all large n. Then we estimate znjn by using (3.26) with j = jn and (3.30)

znjn =
(1 + o(1)

unjn
+O(

u2njn

p
1/2
n

) +O(
u5njn
pn

)
)
ϕ(unjn) +O(

1

p
3/2
n

)

= O(exp(−1

2
u2njn)) +O(

1

p
3/2
n

)

= O(exp(−1

8
p1/4n )) +O(

1

p
3/2
n

)

= O(
1

p
3/2
n

)

as n → ∞. From (3.8) we have
∑pn

j=jn+1 znj ≤ pnznjn = O(p
−1/2
n ) → 0 as n → ∞, which

together with (3.31) yields
pn∑
j=1

znj → e−x as n → ∞.

We can also prove from (3.26) that zn1 → 0 as n → ∞. In view of (3.22) and Lemma 3.1

we conclude (3.23), ie.,
max1≤j≤pn Y

2
nj − βn

αn

d→ Λ,

where αn = cn(1− c2n)
1/2(n− 1)−1/2bn and βn = c2n + cn(1− c2n)

1/2(n− 1)−1/2an. Since

αn

βn
≤ cn(1− c2n)

1/2(n− 1)−1/2bn

cn(1− c2n)
1/2(n− 1)−1/2an

=
bn
an

→ 0

as n → ∞, we can apply Lemma 3.4 and get that

Λn :=
max1≤j≤pn Ynj − β

1/2
n

αn/(2β
1/2
n )

d→ Λ. (3.32)

Recall that An = cn +
1
2(1− c2n)

1/2(n− 1)−1/2an = cn(1 + o(1)) and Bn = 1
2(1− c2n)

1/2(n−
1)−1/2bn ∼ 1

2(n− 1)−1/2(log pn)
−1/2. Then

β1/2
n = cn(1 +

(1− c2n)
1/2an

(n− 1)1/2cn
)1/2

= cn(1 +
(1− c2n)

1/2an

2(n− 1)1/2cn
+O(

(1− c2n)a
2
n

(n− 1)c2n
))

= An +O(
log pn

(npn)1/2
)

= An + o(Bn)
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and

αn

2β
1/2
n

= Bn(1 + o(1)),

which, together with (3.32), yield

max1≤j≤pn Ynj −An

Bn
=

Λnαn/(2β
1/2
n ) + β

1/2
n −An

Bn

=
ΛnBn(1 + o(1)) + o(Bn)

Bn

= (1 + o(1))Λn + o(1)
d→ Λ

ie., (3.21) holds. The proof of Part 1 is completed.

Part 2. We will show (3.21) under condition (2.2). First, it follows from condition (2.2)

that
nc2n

1− c2n
=

n(pn − 1)

n− pn
∼ n2

kn
→ ∞

as n → ∞. Noting that n ≤ n2/kn ≤ n2, we get that

an = a(
nc2n

1− c2n
) ∼

(
log(

nc2n
1− c2n

)
)1/2

is of order (log n)1/2 as n → ∞.

Use the same notation as in Part 1. Recall that pn/n → 1, kn = n − pn = o(n)

and log n = o(k
1/3
n ) as n → ∞. In order to use both Lemmas 3.5 and 3.7, we take

xn = nc2n
1−c2n

. Define jn = [5(log n)1/2
√
xn] + 1. Then jn ∼ 5n(logn)1/2√

kn
= o(n), which implies

1 ≤ jn ≤ pn − kn for all large n. Define cn,j for 1 ≤ j ≤ jn in the same way as in Part 1.

Similar to the proof of (3.24) we can show that

unj =
(1− c2n)

1/2

n1/2cn
(j − 1)(1 + o(1)) + an + bnx (3.33)

uniformly for 1 ≤ j ≤ jn as n → ∞. Then unj = O((log n)1/2) = o(k
1/6
n ) uniformly for

1 ≤ j ≤ jn as n → ∞. We can also verify that all conditions in Lemma 3.5 are satisfied.

Thus, from (3.14) and (3.12) we have

jn∑
j=1

znj = (1 + o(1))

jn∑
j=1

(1− Φ(unj)) → e−x (3.34)

as n → ∞.

Next, we will show that

lim
n→∞

pn∑
j=jn+1

znj = 0. (3.35)
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Note that (3.14) holds uniformly over 1 ≤ j ≤ pn − kn and unjn ≥ 4(logn)1/2 for all large

n. By employing (3.14) with j = jn and x = 4(log n)1/2 and using equation (3.8) and

Lemma 3.7 we have

pn∑
j=jn+1

znj ≤ nznjn

≤ nP (Vpn−jn+1:n−jn > unjn)

≤ nP (Vpn−jn+1:n−jn ≥ 4(log n)1/2)

= (1 + o(1))n(1− Φ(4(log n)1/2))

= O(
1

n
)

→ 0.

Thus, we obtain that
∑pn

j=1 znj → e−x for any x. Then equation (3.23) follows from equa-

tion (3.22) and Lemma 3.1. The rest of the proof will follow from the same lines in the

proof of the first part. Again Lemma 3.4 will be used. The details are omitted. �

Proof of Theorem 3. Recall that an is given by

1

(kn − 1)!

∫ an

0
tkn−1e−tdt =

kn
n
. (3.36)

By using integration by parts, we have

ykne−y = kn

∫ y

0
tkn−1e−tdt−

∫ y

0
tkne−tdt ≥ kn

∫ y

0
tkn−1e−tdt− y

∫ y

0
tkn−1e−tdt,

which implies

1

kn
ykne−y ≤

∫ y

0
tkn−1e−tdt ≤ 1

kn − y
ykne−y, 0 ≤ y < kn. (3.37)

By using Stirling’s formula (3.17), we have under condition (2.3) that

yn := (
kn!kn

nkknn
)1/kn = exp(

3

2

log kn
kn

− 1 +
ε(kn) + log

√
2π

kn
) exp(− log n

kn
) → 0

Since te−t is strictly increasing in (0, 1), for all large n such that yn < 1 define εn as the

unique solution to te−t = yn in (0, 1), that is, εne
−εn = yn, which implies that εn → 0 and

εn ∼ yn as n → ∞ and
1

kn!
(knεn)

kne−knεn =
kn
n

for all large n. Then it follows from the the first inequality in (3.37) that

1

(kn − 1)!

∫ knεn

0
tkn−1e−tdt ≥ kn

n
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for all large n, which together with (3.36) implies that an ≤ knεn for all large n,and thus

an = o(kn) as n → ∞. By plugging y = an in (3.37) and using an ≤ knεn for large n we

conclude ∫ an

0
tkn−1e−tdt =

1

kn
aknn e−an(1 +O(εn))

which implies

kn
n

=
1

(kn − 1)!

∫ an

0
tkn−1e−tdt =

1

kn!
aknn e−an(1 +O(εn))

as n → ∞, and consequently

n

kn!kn
aknn e−an = 1 + o(1) as n → ∞. (3.38)

Define znj as in (3.7) with tn = tn(x) = 1− an
n (1− x

kn
) for any fixed x. Then 1− tn =

an
n (1− x

kn
) = o(knn ) = o( lognn ) as n → ∞, where we have used the fact that kn = n−pn → ∞

and kn = o(log n) from (2.3). This implies n(1− tn)
2 → 0 as n → ∞.

It is easy to verify the following expression

1− t = e−t−d(t), 0 ≤ t ≤ 1/2

where 0 ≤ d(t) ≤ t2 for 0 ≤ t ≤ 1/2. Then∫ 1

tn

tpn−j(1− t)kn−1dt =

∫ 1−tn

0
(1− t)pn−jtkn−1dt

= (1 + o(1))

∫ 1−tn

0
tkn−1e−(pn−j)tdt

= (1 + o(1))

∫ 1−tn

0
tkn−1e−(n−j)tekntdt

= (1 + o(1))

∫ 1−tn

0
tkn−1e−(n−j)tdt

=
1 + o(1)

(n− j)kn

∫ (1−tn)(n−j)

0
tkn−1e−tdt.

Furthermore, by using Stirling’s formula (3.17), we get

(n− j)!

(pn − j)!
=

(n− j)n−j+1/2e−(n−j)+ε(n−j)

(pn − j)pn−j+1/2e−(pn−j)+ε(pn−j)

= (1 +
kn

pn − j
)pn−j+1/2(n− j)kne−kneε(pn−j)−ε(n−j)

= (1 + o(1))(n− j)kn

uniformly over 1 ≤ j ≤ jn, where jn := pn − k3n. Then from (3.9) we obtain that

znj =
1 + o(1)

(kn − 1)!

∫ (1−tn)(n−j)

0
tkn−1e−tdt (3.39)
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uniformly over 1 ≤ j ≤ jn.

Note that n(1− tn) = o(kn). Then it follows from (3.39) and (3.37) that

znj =
1 + o(1)

kn!
(n− j)kn(1− tn)

kne−(n−j)(1−tn)

=
1 + o(1)

1− tn

∫ (n−j+1)(1−tn)

(n−j)(1−tn)
tkne−tdt

uniformly over 1 ≤ j ≤ jn, and thus

jn∑
j=1

znj =
1 + o(1)

kn!

jn∑
j=1

(n− j)kn(1− tn)
kne−(n−j)(1−tn)

=
1 + o(1)

kn!

jn∑
j=1

1

1− tn

∫ (n−j+1)(1−tn)

(n−j)(1−tn)
tkne−tdt

=
1 + o(1)

kn!

1

1− tn

∫ n(1−tn)

(n−jn)(1−tn)
tkne−tdt

=
1 + o(1)

kn!

1

1− tn

( ∫ n(1−tn)

0
tkne−tdt−

∫ k3n(1−tn)

0
tkne−tdt

)
.

The second integral above is dominated by the first one since tkne−t is increasing over (0, kn)

and k3n(1− tn)/(n(1− tn)) = k3n/n → 0 as n → ∞. Therefore, in view of (3.37) and (3.38)

we have

jn∑
j=1

znj =
1 + o(1)

kn!

1

1− tn

∫ n(1−tn)

0
tkne−tdt

=
1 + o(1)

(kn + 1)!

1

1− tn
(n(1− tn))

kn+1e−n(1−tn)

=
(1 + o(1))n

(kn + 1)!
(n(1− tn))

kne−n(1−tn)

=
(1 + o(1))n

kn!kn
(n(1− tn))

kne−n(1−tn)

=
(1 + o(1))n

kn!kn
aknn (1− x

kn
)kne−an+O(an

kn
)

=
(1 + o(1))n

kn!kn
aknn e−ane−x

→ e−x

as n → ∞. Therefore, it follows from Lemma 3.2 that
∑pn

j=1 znj → e−x as n → ∞. It

is easy to conclude that zn1 → 0 as n → ∞ from (3.39), (3.37) and the above estimates.

Accordingly, by taking βn = 1 − an
n and αn = an

nkn
with G(x) = Λ(x) in Lemmas 3.3 and
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3.4 we conclude that

max1≤j≤pn |zj | − (1− an)
1/2

an/(2nkn)
=

1

(1− an)1/2
max1≤j≤pn |zj | − (1− an)

1/2

an/(nkn2(1− an)1/2)

= (1 + o(1))
max1≤j≤pn |zj | − (1− an)

1/2

an/(nkn2(1− an)1/2)
d→ Λ

as n → ∞. This completes the proof of the theorem. �
Proof of Theorem 4. We first show that

n1+1/k

((k + 1)!)1/k
( max
1≤j≤pn

|zj |2 − 1)
d→ Wk (3.40)

Fix x < 0. Let tn = tn(x) = 1 + ((k+1)!)1/k

n1+1/k x. Then tn ∈ (0, 1) for all large n. Since

n(1− tn) → 0 as n → ∞, we have

(1− t)pn−j = 1 + o(1) uniformly over 0 ≤ t ≤ 1− tn, 1 ≤ j ≤ pn.

Therefore, we have from (3.7) and (3.9) that

znj = 1− Fpn−j+1:n−j(tn) =
(n− j)!

(pn − j)!(k − 1)!

∫ 1−tn

0
(1− t)pn−jtk−1dt

=
(n− j)!

(pn − j)!(k − 1)!
(1 + o(1))

∫ 1−tn

0
tk−1dt

=
(n− j)!

(pn − j)!k!
(1 + o(1))(1− tn)

k

=
(n− j)!

(pn − j)!
(1 + o(1))

(k + 1)(−x)k

nk+1

uniformly over 1 ≤ j ≤ pn = n− k. Since

(n− j)!

(pn − j)!
≤ nk

we have max1≤j≤pn znj = O(1/n) → 0 as n → ∞. To complete the proof of (3.40), by using

(3.5) we need to show that

lim
n→∞

pn∑
j=1

(n− j)!

(pn − j)!

k + 1

nk+1
= 1. (3.41)

Let {jn} be a sequence of integers such that jn → ∞ and jn/n → 0 as n → ∞. Then

pn∑
j=n−jn+1

(n− j)!

(pn − j)!

k + 1

nk+1
≤ (k + 1)jn

n
→ 0
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as n → ∞, and

(n− j)!

(pn − j)!
= (pn − j + 1)k

k∏
ℓ=1

(1 +
ℓ− 1

pn − j + 1
) = (pn − j + 1)k(1 + o(1))

uniformly over 1 ≤ j ≤ n− jn, which implies that

pn−jn∑
j=1

(n− j)!

(pn − j)!

k + 1

nk+1
=

(1 + o(1))(k + 1)

n

pn−jn∑
j=1

(
pn − j + 1

n
)k

=
(1 + o(1))(k + 1)

n

pn∑
j=jn+1

(
j

n
)k

→ (k + 1)

∫ 1

0
tkdt = 1

as n → ∞. This proves (3.41) and thus we obtain (3.40).

Finally, the theorem follows from Lemma 3.4 with αn = ((k+1)!)1/k

n1+1/k and βn = 1. This

completes the proof. �
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graphs II: eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phy. 314(3),
587-640.

[7] Forrester, P.J. (2010). Log-gases and random matrices. Number 34. Princeton Univ
Press.

20



[8] Hiai, F. and Petz, D. (2000). The Semicircle Law, Free Random Variables and En-
tropy, Mathematical Surveys and Monographs, Vol. 77, American Mathematical So-
ciety.

[9] Jiang, T. (2009). Approximation of Haar distributed matrices and limiting distribu-
tions of eigenvalues of Jacobi ensembles. Probability Theory and Related Fields 144(1),
221-246.

[10] Jiang, T. (2010). The entries of Haar-invariant matrices from the classical compact
groups. Journal of Theoretical Probability 23(4), 1227-1243.

[11] Jiang, T. and Qi, Y. (2017). Spectral radii of large non-Hermitian random matrices.
J. Theor. Probab. 30, 326-364.

[12] Johansson, K. (2007). From Gumbel to Tracy-Widom. Probab. Theory Relat. Fields
138, 75-112.

[13] Johnstone, I. (2001). On the distribution of the largest eigenvalue in principal compo-
nents analysis. Ann. Stat. 29, 295-327.

[14] Johnstone, I. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue,
TracyWidom limits and rates of convergence. Ann. Stat., 36(6), 2638-2716.

[15] Mehta, M. L. (2004). Random matrices. Volume 142. Academic Press.

[16] Mezzadri, F. and Snaith, N. C. (2005). Recent perspectives in random matrix theory
and number theory. Cambridge Univ Press.

[17] Reiss, R. D. (1981). Uniform approximation to distributions of extreme order statis-
tics. Advances in Applied Probability 13, 533-547.

[18] Rider, B. C. (2003). A limit theorem at the edge of a non-Hermitian random matrix
ensemble. J. Phys. A 36(12), 3401-3409.

[19] Rider, B. C. (2004). Order statistics and Ginibres ensembles. Journal of Statistical
Physics 114, 1139-1148.

[20] Rider, B. C. and Sinclair, C. D. (2014). Extremal laws for the real Ginibre ensemble.
Ann. Appl. Probab. 24(4), 1621-1651.

[21] Tao, T. and Vu, V. (2011). Random matrices: Universality of local eigenvalue statis-
tics. Acta Mathematica 206(1), 127-204.

[22] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and Airy kernal.
Comm. Math. Physics 159, 151-174.

[23] Tracy, C. A. and Widom, H. (1996). On the orthogonal and symplectic matrix en-
sembles. Comm. Math. Physics 177, 727-754.

[24] Tracy, C. A. and Widom, H. (2002). Distribution functions for largest eigenvalues
and their applications. Proceedings of the ICM, Beijing 1, 587-596.

[25] Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimen-
sions. Ann. Math. 62, 548-564.

21



[26] Wishart, J. (1928). The generalized product moment distribution in samples from a
normal multivariate population. Biometrika 20, 35-52.
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