
Limiting Empirical Spectral Distribution for Products

of Rectangular Matrices

Yongcheng Qi1, Hongru Zhao2

1Department of Mathematics and Statistics, University of Minnesota Duluth, 1117 University Drive, Duluth,

MN 55812, USA. Email: yqi@d.umn.edu (corresponding author)

2Department of Mathematics and Statistics, University of Minnesota Duluth, 1117 University Drive, MN

55812, USA. Email: zhao1118@d.umn.edu.

Abstract. In this paper, we considerm independent random rectangular matrices whose entries are

independent and identically distributed standard complex Gaussian random variables and assume

the product of the m rectangular matrices is an n by n square matrix. We study the limiting

empirical spectral distributions of the product where the dimension of the product matrix goes

to infinity, and m may change with the dimension of the product matrix and diverge. We give

a complete description for the limiting distribution of the empirical spectral distributions for the

product matrix and illustrate some examples.

Keywords: Empirical spectral distribution, Eigenvalues, Product of rectangular matrices, Non-

Hermitian random matrix

AMS 2010 Subject Classification: 15B52, 60F99, 60G57



1 Introduction

The study of Random Matrix Theory was initialized by Wishart [35] for statistical analysis

of large samples. Wigner [34] found applications for random Hermitian matrix in nuclear

physics. Subsequential applications include condensed matter physics (Beenakker [5]), num-

ber theory (Mezzadri and Snaith [22]), wireless communications (Couillet and Debbah [9],

and high dimensional statistics (Johnstone [19, 20], Jiang [16]), quantum chromodynamics,

chaotic quantum systems and growth processes (see, e.g., Akemann, Baik and Francesco [3]).

There are two major directions for the study for random matrices, including the empir-

ical spectral distributions and the spectral radii. The classical semi-circular law was first

introduced by Wigner, and then Ginibre [10] established the circle law for Ginibre ensem-

bles. Since then, the assumptions were relaxed subsequently in the papers by Girko [11],

Bai [4], Pan and Zhou [25], and Götze and Tikhomirov [14]. Tao and Vu [31] proved the

circular law under the second moment condition. For the spectral radii, Tracy and Widom

established the so-called Tracy-Widom laws for the limiting distributions for the three Her-

mitian matrices (Gaussian orthogonal ensemble, Gaussian unitary ensemble and Gaussian

symplectic ensemble); see Tracy and Widom [32, 33]. Other work in this direct includes

Rider [27, 28] and Rider and Sinclair [29].

Products of random matrices are particularly of interest in recent research. Ipsen [15]

provided several applications, including wireless telecommunication, disordered spin chain,

the stability of large complex system, quantum transport in disordered wires, symplec-

tic maps and Hamiltonian mechanics, quantum chromo-dynamics at non-zero chemical

potential. Götze and Tikhomirov [13], Bordenave [6], O’Rourke and Soshnikov [23] and

O’Rourke et al. [24] found the limiting empirical spectral distribution for the product from

the complex Ginibre ensemble when the number of multiplicands, say m, is fixed. Two

recent papers by Jiang and Qi [17, 18] considered the spectral radii and limiting empiri-

cal spectral distribution for the product of complex Ginibre ensembles and the product of

truncations of independent Haar unitary matrices by allowing m to change. Götze, Kösters

and Tikhomirov [12], Zeng [36], and Chang and Qi [8] studied the limiting empirical distri-

bution of product of the spherical ensemble. Chang, Li and Qi [7] investigated the limiting

distribution of the spectral radii for product of matrices from the spherical ensemble.
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In this paper, we consider the product of m random rectangular matrices with inde-

pendent and identically distributed (i.i.d.) complex Gaussian entries and investigate the

limiting empirical spectral distributions. Adhikari et al. [2] obtained the joint density func-

tion for the eigenvalues and found the limit of the expected empirical distributions when

m is a fixed integer, and Zeng [37] obtained the limiting empirical spectral distribution.

Lambert [21] established that the empirical distribution for square singular values converges

to certain generalizations of the Fuss-Catalan distribution and that the maximum of the

square singular values converges to the edge point of the Fuss-Catalan distribution. Very

recently, Qi and Xie [26] obtained the limiting distributions for spectral radii for products

of rectangular matrices when m changes with the dimension of the product matrices.

The rest of the paper is organized as follows. In Section 2, we introduce empirical

spectral distributions for scaled eigenvalues from the production of independent random

rectangular matrices and present a general result on the convergence of the empirical spec-

tral distributions. We further investigate the limiting distributions and obtain all types

of distributions and provide conditions when these distributions can be obtained. We also

give a few illustrative examples. Proofs for the main results are given in Section 3.

2 Main Results

In this paper, we consider m independent rectangular matrices, Xj , 1 ≤ j ≤ m, namely

Xj is an nj × nj+1 matrix for 1 ≤ j ≤ m, where n1, · · · , nm+1 are positive integers, and

all entries of the m matrices are independent and identically distributed standard complex

normal random variables. We assume n1 = nm+1 =: n so that the product

X(m) =

m∏︂
j=1

Xj

is an n × n square matrix. We also assume n = min1≤j≤m+1 nj . In this case, the product

matrix X(m) is of full rank.

Denote the n eigenvalues of X as z1, · · · , zn, and set lj = nj − n ≥ 0, j = 1, · · · ,m. It

follows from Theorem 2 of Adhikari et al. [2] that the joint density function for z1, · · · , zn
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is given by

p(z1, · · · , zn) = C
∏︂

1≤j<k≤n

|zj − zk|2
n∏︂

j=1

w(l1,··· ,lm)
m (|zj |) (2.1)

with respect to Lebesgue measure on Cn, where C is a normalizing constant such that

p(z1, · · · , zn) is a probability density function, and function w
(l1,··· ,lm)
m (z) can be obtained

recursively by

w
(l1,··· ,lk)
k (z) = 2π

∫︂ ∞

0
w

(l1,··· ,lk−1)
k−1

(︂z
s

)︂
w

(lk)
1 (s)

ds

s
, k ≥ 2

with initial w
(l)
1 (z) = exp

(︁
−|z|2

)︁
|z|2l for any z in the complex plane; see Zeng [36].

Our objective in the paper is to investigate the limiting empirical spectral distribution

of the product ensemble X(m) when n tends to infinity. We allow m to change with n and

substitute mn for m from now on to show its dependence on n.

The empirical spectral distribution of X(m) is the empirical distribution based on the

eigenvalues, z1, · · · , zn, of X(m), i.e.,

µ∗n =
1

n

n∑︂
j=1

δzj/an , (2.2)

where an > 0 is a sequence of normalizing constants. When mn diverges with n, the

magnitude of zj ’s can go to infinity exponentially or vanish exponentially. In this case,

one may not be able to find a sequence an such that the empirical measure µ∗n converges.

Instead, we will define empirical distribution for scaled eigenvalues as in Jiang and Qi [18].

Note that {zj ; 1 ≤ j ≤ n} are complex random variables. Write

Θj = arg(zj) ∈ [0, 2π) such that zj = |zj | · eiΘj (2.3)

for 1 ≤ j ≤ n. Further, assume that Y1, · · · , Yn are independent random variables and

Yj has a density function proportional to yj−1w
(l1,··· ,lm)
m (y)I(y > 0). Given a sequence of

positive measurable functions hn(r), n ≥ 1, which are defined on (0,∞), we define the

empirical measures for scaled eigenvalues as follows

µn =
1

n

n∑︂
j=1

δ(Θj ,hn(|zj |)) and νn =
1

n

n∑︂
j=1

δhn(Yj). (2.4)

We note that the empirical spectral measure µ∗n defined in (2.2) is the joint distribution

for linearly scaled eigenvalues, which is the joint empirical distribution based on real parts
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and imaginary parts for linearly scaled eigenvalues. The empirical spectral measure µn

defined in (2.4) is the joint distribution for arguments and scaled moduli of eigenvalues. The

transformation hn which applies to the moduli of eigenvalues can be any positive function.

With notation in (2.3), we can use (Θj , hn(zj)) to form a new complex number hn(|zj |)eiΘj .

Therefore, we can define the empirical measure for scaled eigenvalues hn(|zj |)eiΘj as follows

µ̂n =
1

n

n∑︂
j=1

δ
hn(|zj |)eiΘj . (2.5)

We want to menton that two measures µ̂n and µ∗n are the same when hn(r) = r/an.

We will see later that the convergence of µn is equivalent to that of νn. In (2.4), if

hn is linear, that is, hn(r) = r/an, where {an, n ≥ 1} is a sequence of positive numbers,

we denote the empirical measure of zj ’s by µ
∗
n as in (2.2), and accordingly, we denote the

empirical distribution of Yj ’s by

ν∗n =
1

n

n∑︂
j=1

δYj/an . (2.6)

We need the following notations as in the paper by Jiang and Qi [18].

• Any function g(z) of complex variable z = x + iy, x, y ∈ R should be interpreted as a

bivariate function of (x, y): g(z) = g(x, y).

• We write
∫︁
A g(z) dz =

∫︁
A g(x, y) dxdy for any measurable set A ⊂ C.

• Unif(A) stands for the uniform distribution on a set A.

• For a sequence of random probability measures {τ, τn; n ≥ 1}, we write

τn ⇝ τ if P(τn converges weakly to τ as n→ ∞)=1. (2.7)

When τ is a non-random probability measure generated by random variable X, we simply

write τn ⇝ X. Review the notation “⇝” in (2.7). The symbol µ1 ⊗ µ2 represents the

product measure of two measures µ1 and µ2.

For determinantal point processes, Jiang and Qi [18] have established a general result

on convergence of the empirical spectral distributions; see Lemma 3.1 in Section 3.

It follows form Lemma 3.1 that a common feature for limiting empirical distributions

from determinant point processes is that the angle and radius of the random vector with

the liming distribution are independent and the convergence of empirical distributions for
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the eigenvalues is equivalent to the convergence of the empirical distribution based the radii

of the eigenvalues.

Inspired by Jiang and Qi [18] and Zeng [37], we define a sequence of distribution func-

tions Fn(x) as follows

Fn(x) =
(︂ mn∏︂

j=1

nx+ lj
n+ lj

)︂1/γn
=
(︂ mn∏︂

j=1

(1− n

nj
(1− x))

)︂1/γn
, x ∈ [0, 1], (2.8)

where {γn} is a sequence of positive numbers to be selected so that Fn has a limit. Note

that Fn(x) is continuous and strictly increasing on [0, 1] with Fn(0) = 0 and Fn(1) = 1. It

is easy to see that Fn is a distribution function on [0, 1]. We assume Fn(x) = 0 when x < 0

and Fn(x) = 1 when x > 1.

We will assume that Fn(x) converges weakly to a distribution function F (x). This limit

is closely related to the limiting empirical spectral distribution of µn and µ∗n defined in (2.4)

and (2.2).

A cumulative distribution F is a nondecreasing right-continuous function, and its gen-

eralized inverse defined as

F ∗(u) = inf{x : F (x) > u}, u ∈ [0, 1) (2.9)

Define F ∗(u) = 0 for u < 0 and F ∗(u) = 1 for u ≥ 1. One can show that F ∗(u) is also a

nondecreasing right-continuous function and therefore, F ∗ is also a cumulative distribution

function. When F is continuous and strictly increasing, F ∗ is the regular inverse of F .

Recall that Fn converges weakly to a distribution F if and only if limn→∞ Fn(x) = F (x)

for every continuity point x of F . A probability measure v is induced by F ∗ if ν((−∞, u]) =

F ∗(u) for all u.

The main results of the paper are the following Theorems 2.1 and 2.2.

Theorem 2.1 Let {mn, n ≥ 1} be a sequence of positive integers and γn > 0. Assume

that, for any positive integer k,

ck := lim
n→∞

1

γn

mn∑︂
r=1

(︃
n

nr

)︃k

exists (2.10)
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with c1 ∈ (0,∞), and ck ∈ [0, c1] is non-increasing in k ≥ 2. Define a distribution function

F as follows

F (x) = exp(−
∞∑︂
k=1

ck
k
(1− x)k), x ∈ (0, 1], (2.11)

and its generalized inverse, F ∗, is given in (2.9). Set hn(x) = 1
an
|x|2/γn with an =∏︁mn

r=1 n
1/γn
r . Then µ̂n ⇝ µ, where µ̂n is defined as in (2.5), and µ has a density func-

tion f∗(|z|)
2π|z| I(F (0) ≤ |z| ≤ 1), where f∗ is the density function of F ∗ and it can be also

determined by f∗(x) = 1/f(F ∗(x)) with f(x) = F ′(x), x ∈ (0, 1].

Theorem 2.2 Let {mn, n ≥ 1} be a sequence of positive integers and γn > 0. Assume

lim
n→∞

1

γn

mn∑︂
r=1

n

nr
= 0. (2.12)

Define hn(x) = 1
an
|x|2/γn with an =

∏︁mn
r=1 n

1/γn
r . Then µ̂n ⇝ Unif(|z| = 1), where µ̂n is

defined as in (2.5).

Next, we present some general results on the convergence of the empirical distribution

Fn. We will investigate the necessary and sufficient conditions for the weak convergence of

Fn, characterize its limiting distribution F and reveal how the function F is related to the

limit of the empirical measures µn. Theorems 2.1 and 2.2 are the direct consequences of

the following two theorems.

Theorem 2.3 Let {mn} be an arbitrary sequence of positive integers and {γn} be a se-

quence of positive numbers such that Fn converges weakly to a probability distribution F .

Let F ∗ denote the generalized inverse of F and ν be a probability measure induced by F ∗.

Define an =
∏︁mn

r=1 n
1/γn
r and hn(x) =

1
an
|x|2/γn in (2.4). Then we have µn ⇝ Unif[0, 2π)⊗ν

as n→ ∞.

Theorem 2.4 Let {mn} be a sequence of positive integers, and γn be any sequence of

positive numbers. If Fn(x) converges weakly to a distribution function F (x), then F is of

one of the following three types

(Type I). F (x) is continuous on [0, 1], and analytic on (0, 1), with F (0+) ≥ 0, F (1) = 1,

and the first derivative f(x) = F ′(x) > 0 for x ∈ (0, 1);
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(Type II). F (0−) = 0, F (x) = 1 for all x ∈ [0, 1];

(Type III). F (1) = 1, F (x) = 0 for all x ∈ [0, 1).

Furthermore, we have

(a). Fn(x) converges weakly to a Type I distribution if and only if condition (2.10) holds;

Under condition (2.10), the limiting distribution F has a representation given in

(2.11).

(b). Fn(x) converges weakly to a Type II distribution if and only if (2.12) holds.

(c). Fn(x) converges weakly to a Type III distribution if and only if

lim
n→∞

1

γn

mn∑︂
r=1

n

nr
= ∞. (2.13)

Remark 1 From Theorem 2.4, we can draw the following conclusions.

a. If F is of type I, F is strictly increasing in [0, 1] and its generalized inverse F ∗ is given

by

F ∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x < F (0),

F−1(x), if x ∈ [F (0), 1),

1, if x ≥ 1,

(2.14)

where the regular inverse F−1 of F is well defined over [F (0), 1]. F ∗ is continuous on

(−∞,∞) and strictly increasing on [F (0), 1].

b. If the limit F is of Type II, then its generalized inverse F ∗, defined in (2.9), is given by

F ∗(x) =

⎧⎨⎩ 0, if x < 1

1, if x ≥ 1.
(2.15)

This is a degenerate distribution at x = 1, that is, it induces a probability measure ν = δ1,

a delta function at 1. In this case, we have from Theorem 2.3 that µn ⇝ Unif[0, 2π)⊗ δ1.

This is equivalent to that the empirical distribution µ̂n for scaled eigenvalues converges to

the uniform distribution over the unit circle |z| = 1 in the complex plane; see Theorem 2.2.
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c. When F is of Type III, we have

F ∗(x) =

⎧⎨⎩ 0, if x < 0

1, if x ≥ 0.
(2.16)

This defines a degenerate probability measure δ0. Then the limit of µ̂n is degenerate at

origin in the complex plane.

The most interesting case to us is the distribution of Type I; see Theorem 2.1. In this

case, the normalization constant γn should be of the same order as
∑︁mn

j=1
n
nj
, precisely,

condition (2.10) must be true. One can simply take γn =
∑︁mn

j=1
n
nj

and calculate the limits

when they exist

ck := lim
n→∞

∑︁mn
j=1

(︁
n
nj

)︁k∑︁mn
j=1

n
nj

, for k ≥ 2.

Then we obtain the limiting distribution F via formula (2.11) with c1 = 1. Type II and

Type III limiting distributions can be trivially obtained by changing order of γn.

From Theorem 2.1, the limiting empirical distribution of µ̂n has a support on F (0) ≤

|z| ≤ 1. When F (0) = 0, the support is the unit disk. When F (0) > 0, {z : F (0) ≤ |z| ≤ 1}

is a ring. Since F (x) is right continuous at x = 0, we have from (2.11) that F (0) > 0 if and

only if
∑︁∞

k=1
ck
k <∞. Some specific distributions on rings are given in Examples 2 and 3.

It is interesting to discuss when the empirical distribution µ∗n for linearly scaled eigen-

values converges. This is equivalent to the convergence of µn or µ̂n when γn is set to be

2.

When mn is actually a fixed integer, Zeng [37] obtained the liming distribution of µ∗n

by assuming that

lim
n→∞

n

nj
=: αj ∈ [0, 1], 2 ≤ j ≤ m; (2.17)

see Theorem 1.1 in Zeng [37]. By selecting γn = 2, we can verify (2.10) holds, and

F (x) = x1/2
m∏︂
j=2

(︁
1− αj(1− x)

)︁1/2
, x ∈ (0, 1]. (2.18)

Since F (0) = 0, the support of the liming distribution of µ∗n is always the unit disk {z :

|z| ≤ 1}. With additional constraint n = n1 ≤ n2 ≤ · · · ≤ nm, it is possible to show that

(2.17) is also necessary for the convergence of Fn.
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Consider the case limn→∞mn = ∞. By selecting γn = 2, (2.10) gives the necessary and

sufficient conditions for convergence of µ∗n. Again, in this case, F (0) = 0 for any limit F . If∑︁mn
r=1

n
nj

→ ∞, we can only consider the convergence of the empirical spectral distribution

µn for nonlinearly scaled eigenvalues.

We offer one more comment as a remark before we give some illustrative examples.

Remark 2 In Theorem 2.3, we have taken hn(r) = r2/γn/an for r > 0 to re-scale the

eigenvalues, where an is defined as
∏︁mn

j=1 n
1/γn
j . As a matter of fact, if there exist some

sequences γn > 0 and an > 0 such that µn ⇝ Unif[0, 2π) ⊗ ν1 as n → ∞, with hn(r) =

r2/γn/an and ν1 being a non-degenerate probability measure, then we can show that

γn∑︁mn
j=1

n
nj

→ c and ln an −
∑︁mn

j=1 lnnj

γn
→ d (2.19)

by using the laws of types, where c ∈ (0,∞) and d ∈ (−∞,∞). This implies that there exist

some sequences γn > 0 and an > 0 such that µn ⇝ Unif[0, 2π)⊗ ν1 with hn(r) = r2/γn/an

and ν1 being a non-degenerate probability measure, if and only if µn ⇝ Unif[0, 2π)⊗ν, where

ν is a non-degenerate probability measure with hn(r) =
(︁
r2/
∏︁mn

j=1 nj
)︁1/∑︁mn

j=1 n/nj . Further,

the relationship between ν and ν1 under condition (2.19) is ν1(−∞, r] = ν(−∞, ecdrc] for

all r > 0.

Example 1 When these rectangular matrices are actually square matrices, that is, n1 =

· · · = nmn+1 = n, where mn is any sequence of positive integers. Set γn = mn. Then (2.10)

holds trivially with ck = 1 for all k ≥ 1. We have F (x) = x, x ∈ (0, 1]. Then G∗(x) = x for

x ∈ [0, 1] is the cumulative distribution function for uniform distribution over [0, 1]. This

leads to Theorem 2 in Jiang and Qi [18].

Example 2 Let {mn} be positive integers such that limn→∞mn = ∞. Define n1 =

nmn+1 = n and assume n2 = · · · = nmn ∼ nαn as n→ ∞, where αn ≥ 1. Then

λk(n) :=

mn∑︂
j=1

(︂ n
nj

)︂k
= 1 +

mn

αk
n

(1 + o(1)) as n→ ∞ (2.20)

for k ≥ 1.
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Assume limn→∞ αn =: α ∈ [1,∞). By taking γn = 2mn, we see that (2.10) holds with

c1 =
1
2 , and c1 =

1
2α

−k for k ≥ 1. We have

F (x) =
(︂
1− 1

α
(1− x)

)︂1/2
x ∈ (0, 1].

Then we obtain

F ∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x < β;

x2−β2

1−β2 , if x ∈ [β, 1);

1, if x ≥ 1

with β = (1 − 1
α)

1/2. The density function of F ∗ is given by f∗(x) = 2x
1−β2 I(β ≤ x ≤ 1).

According to Theorem 2.1, µ̂n ⇝ Unif(β ≤ |z| ≤ 1). The limit is a uniform distribution on

the ring β ≤ |z| ≤ 1 if β ∈ (0, 1), and a uniform distribution on the unit disk if β = 0.

Example 3 In Example 2, we assume limn→∞ αn = ∞.

(a). Consider the case limn→∞
mn
αn

= ∞. With selecting γn =
∑︁mn

r=1
n
nj
, we have c1 = 1

and ck = 0 for all k ≥ 2. Then we have F (x) = exp(x− 1) for x ∈ (0, 1], yielding

F ∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x < e−1;

1 + lnx, if x ∈ [e−1, 1);

1, if x ≥ 1.

It follows from Theorem 2.1 that µ̂n ⇝ µ, where µ has a density function 1
2π|z|2 I(e

−1 ≤

|z| ≤ 1).

(b). Consider the case limn→∞
mn
αn

= γ ∈ [0,∞). It follows from (2.20) that limn→∞ λ1(n) =

1 + γ, and limn→∞ λk(n) = 1 for k ≥ 2. This is the case we can establish the limiting law

for µ∗n, the empirical distribution for linearly scaled eigenvalues, as defined in (2.2). By

selecting γn = 2, we have

F (x) = x1/2 exp
(︁γ
2
(x− 1)

)︁
, x ∈ (0, 1].

Let f∗ denote the density of F ∗ = F−1 on (0, 1)). We have µ∗n ⇝ µ, where µ has a density

function f∗(|z|)
2π|z| .

To conclude this section, we carry out a simulation study by using the setup in Exam-

ple 2. We select αn = α = 2, n2 = · · · = nm = 2n,and γn = 2m. Theoretically, if m is large,
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the empirical spectral distribution for the nonlinearly scaled eigenvalues is approximately

uniformly distributed on the ring {
√
2
2 ≤ |z| ≤ 1}. For each of n = 100 and n = 400, we

select m = 3, m = 20 and m = 50 in order to see how well these scaled eigenvalues fit into

the ring with the change in the value of m. The scatter plots for the scaled eigenvalues

when n = 100 and n = 400 are given in Figures 1 and 2, respectively. From the two figures,

we see that most of the scaled eigenvalues are already falling within the ring {
√
2
2 ≤ |z| ≤ 1}

when m = 20.

Figure 1: Scatter plots for product matrices: n1 = nm+1 = n, n2 = · · · = nm = 2n,

γn = 2m
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3 Proofs

The lemmas 3.1 and 3.2 below play a very important role in the proofs of our main results.

Lemma 3.1 (Theorem 1 in Jiang and Qi [18]). Let φ(x) ≥ 0 be a measurable function de-

fined on [0,∞). Assume the density of (Z1, · · · , Zn) ∈ Cn is proportional to
∏︁

1≤j<k≤n |zj −

zk|2 ·
∏︁n

j=1 φ(|zj |). Let Y1, · · · , Yn be independent r.v.’s such that the density of Yj is propor-

tional to y2j−1φ(y)I(y ≥ 0) for every 1 ≤ j ≤ n. Let µn,νn and ν∗n be defined as in (2.4) and

(2.6), respectively. If {hn} are measurable functions such that νn ⇝ ν for some probability
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Figure 2: Scatter plots for product matrices: n1 = nm+1 = n, n2 = · · · = nm = 2n,

γn = 2m
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measure ν, then µn ⇝ µ with µ = Unif[0, 2π] ⊗ ν . Taking hn(r) = r/an, the conclusion

still holds if “(µn, νn, µ, ν)” is replaced by “(µ∗n, ν
∗
n, µ

∗, ν∗)” where µ∗ is the distribution of

ReiΘ with (Θ, R) having the law of Unif[0, 2π]⊗ ν∗.

Let Y1, · · · , Yn be the independent random variables determined in Lemma 3.1 under

model (2.1). Let {sj,r, 1 ≤ j ≤ n, 1 ≤ r ≤ mn} be independent random variables and sj,r

follow a Gamma(lr + j) with density function ylr+j−1e−yIy>0/Γ (lr + j). Set

Tj =

mn∏︂
r=1

sj,r, 1 ≤ j ≤ n. (3.1)

Lemma 3.2 (Lemma 4 in Jiang and Qi [18]) Suppose {hn(x); n ≥ 1} are measurable func-

tions defined on [0,∞) and νn’s are defined as in (2.4). Let Y1, · · · , Yn be as in Lemma 3.1

and ν be a probability measure on R. Then νn ⇝ ν if and only if

lim
n→∞

1

n

n∑︂
j=1

P(hn(Yj) ≤ r) = H(r)

for every continuity point r of H(r), where H(r) := ν((−∞, r]), r ∈ R.

The results in the following lemma are summarized from Lemmas 2.2 and 2.3 from

Zeng [37].
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Lemma 3.3 (Zeng [37]) We have

P(T1 ≤ x) ≥ P(T2 ≤ x) ≥ · · · ≥ P(Tn ≤ x) (3.2)

for any x ∈ [0,∞), (Y 2
1 , · · · , Y 2

n )
d
= (T1, · · · , Tn), and

g(T1, · · · , Tn)
d
= g(|z1|2, · · · , |zn|2) (3.3)

for any symmetric function g(t1, · · · , tn), where
d
= denotes equality in distribution.

Before we prove Theorem 2.4, we need to introduce more notation and preliminary

results.

Define

λk(n) =

mn∑︂
j=1

(
n

nj
)k, k ≥ 1 (3.4)

and

θk(n) =
λk(n)

λ1(n)
, k ≥ 1. (3.5)

Note that λk(n) ≥ 1 since n1 = n. Since n ≤ nj for all 1 ≤ j ≤ mn we have λk(n) is non-

increasing in k ≥ 1 for each n. Thus, we have θk(n) is non-increasing in k ≥ 1, implying

that 0 < θk(n) ≤ θ1(n) = 1 for k ≥ 1 and n.

We define a sequence of new distribution functions as follows

Gn(x) =
(︂ mn∏︂

j=1

(1− n

nj
(1− x))

)︂1/λ1(n)
, x ∈ [0, 1] (3.6)

These distributions are obtained by letting γn = λ1(n) in equation (2.8). We have

Fn(x) = Gλ1(n)/γn
n (x), x ∈ [0, 1]. (3.7)

Set gn(x) = ln(Gn(x)), x ∈ (0, 1]. Then gn(x) ≤ 0 for x ∈ (0, 1]. Using Taylor’s

expansion ln(1− t) = −
∑︁∞

k=1
tk

k , |t| < 1, we have for x ∈ (0, 1]

gn(x) = −
∞∑︂
k=1

θk(n)

k
(1− x)k. (3.8)

Note that θ1(n) = 1 and 0 < θk(n) ≤ 1. We have the following inequalities

1− x ≤ −gn(x) ≤
∞∑︂
k=1

1

k
(1− x)k = − ln(x), x ∈ (0, 1]. (3.9)

14



The probability distribution Gn over [0, 1] is defined via (3.6), and the same expression

can not be extended beyond the interval [0, 1]. The function gn(x), as the logarithm of

Gn, has expansion (3.8) over (0, 1] only. However, gn can be extended to a region in the

complex plane via the expression on the right-hand side of (3.8). Now we fix 0 < δ < 1.

For any complex number z such that |z − 1| ≤ δ, we have from (3.9) that

∞∑︂
k=1

⃓⃓⃓⃓
−θk(n)

k
(1− z)k

⃓⃓⃓⃓
≤

∞∑︂
k=1

θk(n)

k
δk = |gn(1− δ)| ≤ ln(

1

1− δ
). (3.10)

Therefore, we can extent gn(x) to be a complex analytic function on disk D = {z ∈ C :

|z − 1| < 1}, namely

gn(z) = −
∞∑︂
k=1

θk(n)

k
(1− z)k. (3.11)

Lemma 3.4 (Theorem 10.28 in Rudin [30]) Suppose fj is analytic on open set Ω ⊂ C for

j = 1, 2, · · · , and fj → f uniformly on each compact subset of Ω. Then f is analytic on Ω,

and f ′j → f ′ uniformly on any compact subset on Ω.

Lemma 3.5 Assume {ns} is a subsequence of {n} such that lims→∞ θk(ns) = ak ∈ [0, 1]

for all k ≥ 2. Set a1 = 1. Then

lim
s→∞

Gns(x) = G(x), x ∈ (0, 1], (3.12)

where G is a distribution function given by

G(x) = exp(−
∞∑︂
k=1

ak
k
(1− x)k), x ∈ (0, 1]. (3.13)

0 < G(x) < 1 is analytic and strictly increasing over (0, 1).

Proof. In the proof we will use index n instead of ns for the sake of brevity.

For each δ ∈ (0, 1), set Kδ := {z ∈ C : |z − 1| ≤ δ}. It follows form (3.10) that gn(z) is

uniformly bounded on Kδ.

Set g(z) = −
∑︁∞

k=1
ak
k (1− z)k. The radius of convergence of g(z) satisfies

R =
1

lim supk→∞
(︁
ak
k

)︁1/k ≥ 1

lim supk→∞
(︁
1
k

)︁1/k = 1,

15



i.e. g(z) is well defined on disk D = {z ∈ C : |z − 1| < 1}. For each δ ∈ (0, 1), we have

sup
z∈Kδ

|gn(z)− g(z)| ≤
N∑︂
k=1

|ak(n)− ak|
k

δk +

∞∑︂
k=N+1

δk

k
≤

N∑︂
k=1

|ak(n)− ak|+
δN+1

1− δ
,

which implies

lim sup
n→∞

sup
z∈Kδ

|gn(z)− g(z)| ≤ lim sup
N→∞

lim sup
n→∞

(︂ N∑︂
k=1

|ak(n)− ak|+
δN+1

1− δ

)︂
≤ lim sup

N→∞

δN+1

1− δ

= 0,

that is, gn(z) converges to g(z) uniformly on Kδ.

Since Gn(x) = exp(gn(x)) for x ∈ (0, 1], we have (3.12) with G(x) = exp(g(x)) for

x ∈ (0, 1]. Note that g(x) is analytic, g(x) < 0 and is strictly increasing for x ∈ (0, 1), we

have 0 < G(x) < 1 is analytic and strictly increasing over (0, 1). ■

Lemma 3.6 Assume {ns} is a subsequence of {n} such that Gns converges weakly to a

distribution G, then lims→∞ θk(ns) =: ak ∈ [0, 1] for all k ≥ 2, and G has a representation

(3.13).

Proof. Note that 0 ≤ θk(n) ≤ θ1(n) = 1 for all n ≥ 1 and k ≥ 2. By the diagonal argument,

for every subsequence of {n}, we can find its further subsequence along which θk(n) has a

subsequential limit in [0, 1] for all k ≥ 2.

We aim to show that lims→∞ θk(ns) exists for all k ≥ 2. If the conclusion is not true,

then for some k ≥ 2, say k0, such that the limit of θk0(ns) doesn’t exist. Then there exist

two subsequences of {ns}, say {ns′} and {ns′′}, such that

lim
s′→∞

θk0(ns′) = a ̸= b = lim
s′′→∞

θk0(ns′′). (3.14)

By the diagonal argument, we can find a further subsequence of {ns′}, along which θk(ns′)

has a subsequential limit ak ∈ [0, 1] for each k ≥ 2 with ak0 = a. By Lemma 3.5 we have

G(x) = exp(−
∞∑︂
k=1

ak
k
(1− x)k), x ∈ (0, 1]. (3.15)
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since any subsequential limit of Gns(x) is equal to G(x) in x ∈ (0, 1]. Similarly, we can find

a further subsequence of {ns′′}, along which θk(ns′′) has a subsequential limit bk ∈ [0, 1] for

each ≥ k with bk0 = b. Again, using Lemma 3.5 we have

G(x) = exp(−
∞∑︂
k=1

bk
k
(1− x)k), x ∈ (0, 1]. (3.16)

By combining (3.15) and (3.16), we have

∞∑︂
k=1

ak
k
(1− x)k =

∞∑︂
k=1

bk
k
(1− x)k, x ∈ (0, 1].

Therefore, we ak = bk for all k ≥ 2, which contradicts ak0 = a ̸= b = bk0 from (3.14). This

proves the lemma. ■

Proof of Theorem 2.4. First, we assume Fn converges weakly to a distribution function F .

We will show F must be of one of the three types given in Theorem 2.4.

Review the definitions of λk(n) and θk(n) in (3.4) and (3.5), respectively.

We consider the sequence λ1(n)/γn. At this moment, we don’t know yet whether rn :=

λ1(n)/γn has a limit. We assume that {ns} is any subsequence of {n} such that

lim
s→∞

rns = lim
s→∞

λ1(ns)

γns

= c1 ∈ [0,∞]. (3.17)

We consider the following three cases individually: c1 ∈ (0, 1), c1 = ∞, and c1 = 0. From

(3.7) we have that

Gn(x) = F 1/rn
n (x) x ∈ (0, 1]. (3.18)

Case 1. c1 ∈ (0,∞) in (3.17).

In this case, we see that Gns converges weakly to G(x) = F 1/c1(x). By applying

Lemma 3.6, we have lims→∞ θk(ns) =: ak ∈ [0, 1] for all k ≥ 2, and G has a representation

(3.13), which implies F has a representation (2.11) with ck = c1ak for k ≥ 2. This shows

that F is of type I.

Case 2. c1 = 0 in (3.17).

In view of (3.7), (3.8) and (3.9), we have for any x ∈ (0, 1)

1 ≥ Fns(x) = Grns
ns

(x) = exp(rnsgns(x)) ≥ exp(rns ln(x)) → 1

17



as s→ ∞, which implies F (x) = 1 for x ∈ (0, 1) and thus F is of type II.

Case 3. c1 = ∞ in (3.17).

Using the same equations as in the proof for Case 2, we have for any x ∈ (0, 1)

0 ≤ Fns(x) = Grns
ns

(x) = exp(rnsgns(x)) ≤ exp(rns(1− x)) → 0

as s→ ∞, which implies F (x) = 0 for x ∈ (0, 1) and thus F is of type III.

We have proved that there are only three types of limiting distributions for Fn. Next,

we will show the necessary and sufficient conditions in parts (a), (b), and (c).

Sufficiency for parts (b) and (c) has been proved. In fact, for part (b), condition (2.12)

must be true when F is of Type II, otherwise, there exists a subsequential limit c1 of rn

with c1 ∈ (0,∞) or c1 = ∞, such that F is of Type I or Type III, respectively, yielding a

contradiction. A similar argument can be used to show (2.13) in part (c).

Finally, we need to prove part (a). The sufficiency has been proved in Case 1 above.

Assume Fn converges weakly to F , which is of Type I. We show (2.10), or equivalently, we

show the following statements

Statement 1: rn = λ1(n)/γn has a limit c1 ∈ (0,∞);

Statement 2: For any k ≥ 2, θk(n) has a finite limit.

If Statement 1 is not true, then there are subsequences of {n}, say, {ns} and {ns′} such

that

lim
s→∞

rs = a ̸= b = lim
s′→∞

rs′ ,

and a, b ∈ (0,∞). Any subsequential limit of rn must be a finite positive number since F

is of Type I.

From (3.18), we have Gns converges weakly to F 1/a and Gns′ converges weakly to F 1/b.

Then it follows from Lemma 3.6 that

F 1/a(x) = exp(−
∞∑︂
k=1

ak
k
(1− x)k), x ∈ (0, 1]

and

F 1/b(x) = exp(−
∞∑︂
k=1

bk
k
(1− x)k), x ∈ (0, 1]

where a1 = b1 = 1 and ak, bk ∈ [0, 1] for all k ≥ 2. We conclude that

a

∞∑︂
k=1

ak
k
(1− x)k = b

∞∑︂
k=1

bk
k
(1− x)k, x ∈ (0, 1].
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Since the functions on both sides of the above equation are analytic, their first derivatives

at x = 1 must be the same, which leads to a = b, contradictory to the assumption a ̸= b.

Therefore, Statement 1 is true, that is, rn has a limit in (0,∞).

Given limn→∞ rn = c1, from (3.18) we have Gn converges weakly to F 1/c1 . Again, by

using Lemma 3.6, we have ak := limn→∞ θk(n) exists for all k ≥ 2 and ak ∈ [0, 1]. This

proves Statement 2. The proof of the theorem is completed. ■

The following result is an extension of Lemma 2.3 in Zeng [37]. We allow mn to change

with n.

Lemma 3.7 Assume {mn} is a sequence of positive integers. Then

1

λ1(n)
ln

T[nx]∏︁mn
r=1(lr + n)

− lnGn(x)
p→ 0, x ∈ (0, 1], (3.19)

where [nx] denotes the integer part of nx, Tj is defined in (3.1), λ1(n) is defined in (3.4),

and Gn is defined in (3.6).

Proof. We have lnTj =
∑︁m

r=1 ln sj,r for j ≥ 1. Since sj,r has a Gamma(lr + j) distribution,

we have

µj,r = E (sj,r) = lr + j, Var (sj,r) = lr + j

and the moment generating function of ln sj,r is

mj(t) = E
(︁
et ln sj,r

)︁
=

Γ (lr + j + t)

Γ
(︁
lr + j

)︁ , t > −(lr + j).

It follows that

E
(︁
ln sj,r

)︁
=

d

dt
mj(t)

⃓⃓⃓
t=0

=
Γ′ (lr + j)

Γ (lr + j)
= ψ (lr + j) ,

where ψ(x) = Γ′(x)/Γ(x) is a digamma function. Thus, we have

E
(︁
lnTj

)︁
=

mn∑︂
r=1

E (ln sj,r) =

mn∑︂
r=1

ψ (lr + j) . (3.20)

Set η(t) = t− 1− ln t for t > 0. Then η(t) ≥ 0 for t > 0.

Trivially, we have for any 1 ≤ j ≤ n

ln
Tj∏︁mn

r=1 µj,r
−

mn∑︂
r=1

ln(
lr + j

lr + n
) =

mn∑︂
r=1

(
sj,r
µj,r

− 1)−
mn∑︂
r=1

η(
sj,r
µj,r

). (3.21)

19



It can be seen that for 1 ≤ j ≤ n

Var

(︄
mn∑︂
r=1

(︂ sj,r
µj,r

− 1
)︂)︄

=

mn∑︂
r=1

Var (sj,r)

µ2j,r
=

mn∑︂
r=1

1

lr + j
≤

mn∑︂
r=1

n

j(lr + n)
=
λ1(n)

j
.

Fix x ∈ (0, 1]. Set j = jn = [nx]. Then

Var
(︂ 1

λ1(n)

mn∑︂
r=1

(
sjn,r
µjn,r

− 1)
)︂
≤ 1

λ1(n)jn
≤ 1

jn
→ 0

as n→ ∞. By Chebyshev inequality, we obtain

1

λ1(n)

mn∑︂
r=1

(
sjn,r
µjn,r

− 1)
p→ 0. (3.22)

From (3.21) and (3.20) we have

E
(︂ mn∑︂

r=1

η
(︁ sj,r
µj,r

)︁)︂
=

mn∑︂
r=1

lnµj,r − E
mn∑︂
r=1

ln sj,r = −
mn∑︂
r=1

(︁
ψ(lr + j)− ln(lr + j)

)︁
.

We need the following approximation for ψ

ψ(t)− ln t = − 1

2t
+O

(︂ 1

t2

)︂
as t→ ∞;

See, e.g., Formula 6.3.18 in Abramowitz and Stegun [1]. With jn = [nx], we have

1

λ1(n)
E
(︂ mn∑︂

r=1

η
(︁ sj,r
µj,r

)︁)︂
=

O(1)

λ1(n)

mn∑︂
r=1

1

lr + jn
≤ O(1)

λ1(n)

λ1(n)

jn
= O(

1

jn
) → 0

as n→ ∞, which implies
1

λ1(n)

mn∑︂
r=1

η

(︃
sj,r
µj,r

)︃
p→ 0 (3.23)

by Chebyshev inequality since
∑︁m

r=1 η
(︂

sj,r
µj,r

)︂
≥ 0. Therefore, combining (3.21), (3.22) and

(3.23), we obtain

1

λ1(n)
ln

T[nx]∏︁mn
r=1(lr + [nx])

− lnGn(
[nx]

n
)

p→ 0, x ∈ (0, 1]. (3.24)

From (3.8), we have 0 < g′n(t) =
∑︁∞

r=1 θk(n)(1− t)k−1 ≤ 1
t for 0 < t ≤ 1, and hence,

| lnGn(
[nx]

n
)− lnGn(x)| = |gn(

[nx]

n
)− gn(x)| ≤ sup

[nx]
n

≤t≤x

g′n(t)|
[nx]

n
− x| ≤ 1

[nx]
→ 0

as n→ ∞. This, coupled with (3.24), yields (3.19). ■
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Proof of Theorem 2.3. Assume Fn converges weakly to a distribution F . The conclusion in

the theorem follows from Lemma 3.1 and Lemma 3.2 if we can prove

lim
n→∞

1

n

n∑︂
j=1

P(hn(Yj) ≤ y) = F ∗(y)

for every continuity point y of F ∗. According to (3.3), it is equivalent to show

lim
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
= F ∗(y) (3.25)

for every continuity point y of F ∗. Since an =
∏︁mn

r=1 n
1/γn
r =

∏︁mn
r=1(lr + n)1/γn , we have

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
= P

(︂ 1

γn
ln

Tj∏︁mn
r=1 (lr + j)

≤ ln y
)︂
, y > 0. (3.26)

We also have the following two inequalities

j

n
P
(︂ 1

an
T
1/γn
j ≤ y

)︂
≤ 1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
≤ j

n
+ P

(︂ 1

an
T
1/γn
j ≤ y

)︂
, (3.27)

which follow from the monotonicity in (3.2) directly.

Case 1. Assume F is of Type I.

In this case, F is strictly increasing in [0, 1] with F (x) > 0 for any x ∈ (0, 1] and

limn→∞ Fn(x) = F (x), and F ∗ is given by (2.14). We note that λ1(n)/γn converges to a

non-zero constant from Theorem 2.4. From (3.19), we have for any x ∈ (0, 1]

1

γn
ln

T[nx]∏︁mn
r=1(lr + n)

− lnFn(x) =
λ1(n)

γn

(︂ 1

λ1(n)
ln

T[nx]∏︁mn
r=1(lr + n)

− lnGn(x))
)︂

p→ 0,

yielding
1

γn
ln

T[nx]∏︁mn
r=1(lr + n)

− lnF (x)
p→ 0. (3.28)

From (3.26) we get

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
= P

(︂ 1

γn
ln

Tj∏︁mn
r=1 (lr + j)

− lnF (x) ≤ ln
y

F (x)

)︂
(3.29)

for y > 0 and any x with F (x) > 0.

Now we are ready to show (3.25) when F (0) < y < 1, y ≤ F (0), and y ≥ 1.

We first assume F (0) < y < 1. Let δ ∈ (0, 1) be any given number such that

F (0) < y − δ < y < y + δ < 1.
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Then 0 < F ∗(y − δ) < F ∗(y) < F ∗(y + δ) < 1.

By setting x = F ∗(y + δ), j = [nx] in (3.27) and (3.29) and using (3.28), we have

lim sup
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
≤ lim sup

n→∞

[nx]

n
+ lim sup

n→∞
P
(︂ 1

γn
ln

T[nx]∏︁mn
r=1

(︂
lr + [nx]

)︂ − lnF (x) ≤ ln
y

y + δ
< 0
)︂

= x = F ∗(y + δ).

By setting x = F ∗(y− δ) and j = [nx] in (3.27) and (3.29), and using (3.28) again, we have

lim inf
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︁
≥ lim inf

n→∞

[nx]

n
P
(︂ 1

γn
ln

T[nx]∏︁mn
r=1 (lr + [nx])

− lnF (x) ≤ ln
y

y − δ

)︂
= x = F ∗(y − δ).

Since F ∗(y) is continuous, we obtain (3.25) by letting δ tend to 0.

Assume y ≤ F (0). For any y1 ∈ (F (0), 1), we have

lim sup
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y

)︂
≤ lim

n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y1

)︂
= F ∗(y1),

which tends to F ∗(F (0)) = 0 by letting y1 ↓ F (0) since F ∗(y) is continuous. Similarly,

when y ≥ 1 we have for any y2 ∈ (F (0), 1)

lim inf
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y

)︂
≥ lim

n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y2

)︂
= F ∗(y2),

which tends to F ∗(F (1)) = 1 by letting y2 ↑ 1. In both cases, (3.25) still holds.

Case 2. Assume F is of Type II.

From Theorem 2.4, we have limn→∞ λ1(n)/γn = 0. Since lnGn(x) = gn(x) is bounded

for any fixed x ∈ (0, 1), we have from (3.19) that

1

γn
ln

T[nx]∏︁mn
r=1(lr + n)

p→ 0 (3.30)

for any x ∈ (0, 1].

Review F ∗ in (2.15).

When y ≤ 0, (3.25) is trivially true.
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When y ∈ (0, 1), we have ln y < 0. For any x ∈ (0, 1), set j = [nx]. Then from (3.27),

(3.26) and (3.30) we have

lim sup
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
≤ lim sup

n→∞

[nx]

n
+lim sup

n→∞
P
(︂ 1

γn
ln

T[nx]∏︁mn
r=1

(︂
lr + [nx]

)︂ ≤ ln y
)︂
= x.

Since x can be arbitrarily small, we have

lim
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ≤ y

)︂
= 0 = F ∗(y).

That is, (3.25) is true.

When y > 1, ln y > 0. Again, for any x ∈ (0, 1), setting j = [nx] and using (3.27),

(3.26) and (3.30), we have

lim inf
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y

)︂
≥ x.

By letting x ↑ 1 we have

lim
n→∞

1

n

n∑︂
j=1

P
(︂ 1

an
T
1/γn
j ⩽ y

)︂
= 1 = F ∗(y).

This completes the proof of (3.25).

Case 3 . Assume F is of Type III.

This time, we have limn→∞ λ1(n)/γn = ∞.

1

γn
ln

T[nx]∏︁mn
r=1(lr + n)

p→ −∞

for any x ∈ (0, 1). We can prove (3.25) by using similar lines to Case 2. We omit the

details.

The proof of Theorem 2.3 is completed. ■

Proof of Theorem 2.1. From Theorems 2.3 and 2.4, we have µn ⇝ Unif[0, 2π) ⊗ ν as

n → ∞, where ν has a a density function f∗(r) = d
drF

∗(r) = 1
f(F ∗(r)) , r ∈ [F (0), 1]. Let

Θ R are two independent random variables, Θ is uniformly distributed over [0, 2π) and

R has density function f∗. Consider the transformation Z = R exp(iΘ) = R cos(Θ) +

iR sin(Θ) = (R cos(Θ), R sin(Θ)) =: (X,Y ). Note that the Jacobian for transformation

(x, y) = (r cos(θ), r sin(θ)) is r =
√︁
x2 + y2 = |z|, where z = reiθ = x + iy. The joint
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density function of Z = (X,Y ) is given by 1
2π

f∗(|z|)
|z| = 1

2πf(F ∗|z|)|z|I(F (0) ≤ |z| ≤ 1). Since

µ̂n is obtained under transformation (x, y) = (r cos(θ), r sin(θ)), by the continuous mapping

theorem, we µ̂n converges with probability one to Z = (X,Y ) which has a joint density

1
2πf(F ∗|z|)|z|I(F (0) ≤ |z| ≤ 1). ■

Proof of Theorem 2.2. Using the same notations as in the proof for Theorem 2.1, we have

P (R = 1) = 1. Therefore, we can easily conclude that Z has a uniform distribution on the

unit circle. ■
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