
Spectral Radii of Products of Random Rectangular Matrices

Yongcheng Qi1 and Mengzi Xie2

University of Minnesota Duluth

Abstract

We consider m independent random rectangular matrices whose entries are independent and

identically distributed standard complex Gaussian random variables. Assume the product of the

m rectangular matrices is an n by n square matrix. The maximum absolute values of the n

eigenvalues of the product matrix is called spectral radius. In this paper, we study the limiting

spectral radii of the product when m changes with n and can even diverge. We give a complete

description for the limiting distribution of the spectral radius. Our results reduce to those in

Jiang and Qi [26] when the rectangular matrices are square ones.
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1 Introduction

Since Wishart’s [46] work on large covariance matrices in multivariate analysis, the study of ran-

dom matrices has drawn much attention from mathematics and physics communities and has found

applications in areas such as heavy-nuclei (Wigner [45]), condensed matter physics (Beenakker [7]),

number theory (Mezzadri and Snaith [33]), wireless communications (Couillet and Debbah [18]), and

high dimensional statistics (Johnstone [29, 30], and Jiang [25]). Bouchaud and Potters [11] provide

a survey on applications in finance. The interested reader can find more references in the Oxford

Handbook of Random Matrix Theory by Akemann, Baik and Francesco [3].

Random matrix theory studies the eigenvalues of random matrices, including the properties of the

spectral radii and the empirical spectral distributions of the eigenvalues. Tracy and Widom [40, 41]

show that the largest eigenvalues of the three Hermitian matrices (Gaussian orthogonal ensemble,

Gaussian unitary ensemble and Gaussian symplectic ensemble) converge in distribution to some

limits which are now known as Tracy-Widom laws. Subsequently, the Tracy-Widom laws have found

more applications, see, e.g., Baik et al. [6], Tracy and Widom [42], Johansson [28], Johnstone [29, 30]

and Jiang [25].

The study of non-Hermitian matrices has also attracted attention in the literature. Theoretical

results in this direction can be applied to quantum chromodynamics, choaotic quantum systems and

growth processes, dissipative quantum maps and fractional quantum Hall effect. More applications

can be found in Akemann et al. [3] and Haake [22]. In the stimulating work by Rider [37, 38] and

Rider and Sinclair [39], the spectral radii of the real, complex and symplectic Ginibre ensembles are

investigated. It is shown that the spectral radius of the complex Ginibre ensemble converges to the

Gumbel distribution. Jiang and Qi [26] study the largest radii of three rotation-invariant and non-

Hermitian random matrices: the spherical ensemble, the truncation of circular unitary ensemble and

the product ensemble, and Jiang and Qi [27] investigate the limiting empirical spectral distributions

for two types of product ensembles. More related work can be also found in Gui and Qi [21], Chang

and Qi [15], Chang, Li and Qi [14], and Zeng [47, 48]. The study of the lower and upper tail

probabilities of the largest radii is also of interest, see, e.g., Lacroix-A-Chez-Toine et al. [31] and

references therein.

Products of random matrices are particularly of interest in recent research. Ipsen [23] provides

several applications, include wireless telecommunication, disordered spin chain, the stability of large

complex system, quantum transport in disordered wires, symplectic maps and Hamiltonian mechan-

ics, quantum chromo-dynamics at non-zero chemical potential. Here we will do a very brief survey

for recent developments on the limiting spectral radii and empirical spectral distributions for product

ensembles. Two recent papers by Jiang and Qi [26, 27] consider the spectral radii and empirical spec-

tral distribution for the product of m independent n by n Ginibre ensembles, where m can change

with n and obtain the limiting distribution functions for the spectral radii and limiting empirical

spectral distributions. For earlier works on empirical spectral distribution for the product ensembles

2



for fixed m, see, e.g., Götze and Tikhomirov [20] , Bordenave [9], O’Rourke and Soshnikov [35],

O’Rourke et al. [36], Burda et al. [13], Burda [12], and Bai [5]. Jiang and Qi [27] also investigate

the limiting empirical spectral distribution for the product of m independent truncated Haar uni-

tary matrices when m changes with the dimension of the product matrices. For the products of m

independent spherical ensembles, Chang, Li and Qi [14] study the limiting spectral radius when m

can change with the dimension of the product matrices, Zeng [48] and Chang and Qi [15] investigate

the empirical spectral distribution for the products.

In this paper, we consider the product of m random rectangular matrices with independent and

identically distributed (i.i.d.) complex Gaussian entries and investigate the limiting distributions for

the spectral radii. When m is a fixed integer, Zeng [48] obtains the limiting empirical spectral distri-

bution. When these rectangular matrices are actually squared ones, the product matrix is reduced

to the product of Ginibre ensembles, which has been studied in Jiang and Qi [26]. The products of

rectangular matrices have found applications in wireless telecommunication and econophysics (Ake-

mann et al. [4], Muller [34], Tulino and Verd [43]), transport in disordered and chaotic dynamical

system(Crisanti et al. [19], Ipsen and Kieburg [24]). In particular, for m = 2, the product can be

regarded as the asymmetric correlation matrices (Vinayak [44], Vinayak and Benet [8]) and has been

widely used in finance (Bouchaud et al. [10], Bouchaud and Potters [11], Livan and Rebecchi [32]).

The rest of the paper is organized as follows. In Section 2, we introduce the main results of the

paper. In Section 3, we present some preliminary lemmas and give the proofs for the main results.

2 Main Results

For integer m ≥ 1, assume {nr, 1 ≤ r ≤ m + 1} are positive integers such that n1 = nm+1 =

min{n1, · · · , nm+1}. Write n = n1 = nm+1 for convenience. For each r ∈ {1, · · · ,m}, Ar is an

nr × nr+1 random rectangular matrix given by

Ar =

⎛⎜⎜⎜⎜⎝
g
(r)
11 g

(r)
12 · · · g

(r)
1nr+1

g
(r)
21 g

(r)
22 · · · g

(r)
2nr+1

...
...

. . .
...

g
(r)
nr1

g
(r)
nr2

· · · g
(r)
nrnr+1

⎞⎟⎟⎟⎟⎠,

where g
(r)
ij , 1 ≤ i ≤ nr, 1 ≤ j ≤ nr+1 are i.i.d. standard complex normal random variables with

Eg(r)ij = 0, E|g(r)ij |2 = 1 for 1 ≤ i ≤ nr, 1 ≤ j ≤ nr+1, r = 1, · · · ,m.

Define A
(m)
n as the product of the m rectangular matrices Ar’s, that is, A

(m)
n = A1 · · ·Am. Let

z1, · · · , zn be the eigenvalues of A
(m)
n . Set lr = nr − n, r = 1, · · · ,m. The joint density function for

z1, · · · , zn, given in Theorem 2 of Adhikari [2], is as follows

p(z1, · · · , zn) = C
∏︂

1≤j<k≤n

|zj − zk|2
n∏︂

j=1

w(l1,··· ,lm)
m (|zj |) (2.1)
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with respect to the Lebesgue measure on Cn, where C is a normalizing constant, and function

w
(l1,··· ,lm)
m (z) can be obtained recursively by

w
(l1,··· ,lk)
k (z) = 2π

∫︂ ∞

0
w

(l1,··· ,lk−1)
k−1 (

z

s
)w

(lk)
1 (s)

ds

s
, k ≥ 2

with initial w
(l)
1 (z) = exp(− |z|2) |z|2l for any z in the complex plane (see, Zeng [48]).

The spectral radius of A
(m)
n is defined as the maximal absolute value of the n eigenvalues

z1, · · · , zn, i.e. max
1≤j≤n

|zj |. In this paper we aim at the limiting distribution of max
1≤j≤n

|zj |. We al-

low that m changes with n. From now on we will write m as mn.

We need to define some notation before we introduce the main results.

Define Φ(x) = 1√
2π

∫︁ x
−∞ e−t2/2dt as the standard normal cumulative distribution function (cdf)

and Λ(x) = exp(−e−x) as the Gumbel distribution function. For α ∈ (0,∞), set

Φα(x) =
∞∏︂
j=0

Φ(x+ jα1/2),

Φ0(x) = Λ(x) = exp(−e−x), and Φ∞(x) = Φ(x). The digamma function ψ is defined by

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
, (2.2)

where Γ(z) is the Gamma function. For large y, define

a(y) = (ln y)1/2 − (ln y)−1/2 ln(
√
2π ln y) and b(y) = (ln y)−1/2. (2.3)

Now we define

∆n =

mn∑︂
r=1

1

nr
.

The limiting spectral radius depends on the limit of ∆n.

We first give a general result on the limiting distribution for the logarithmic spectral radii.

THEOREM 1 Assume that z1, · · · , zn are the eigenvalues of A
(mn)
n , and

lim
n→∞

∆n = α ∈ [0,∞]. (2.4)

Define an = a(∆−1
n ) and bn = b(∆−1

n ) if α = 0, and an = 0, bn = 1 if α ∈ (0,∞]. Then

lim
n→∞

P
(︂
2∆−1/2

n { max
1≤j≤n

ln |zj | −
1

2

mn∑︂
r=1

ψ(nr)} ≤ an + bny
)︂
= Φα(y) (2.5)

for y ∈ R.

Under condition (2.4) with α ∈ [0,∞), we have the limiting distribution for max
1≤j≤n

|zj |.
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THEOREM 2 Assume condition (2.4) hold with α ∈ [0,∞).

(a). If α = 0, then αn

(︁
(
mn∏︁
r=1

nr)
−1/2 max

1≤j≤n
|zj | − 1

)︁
− βn converges weakly to the Gumbel distribution

Λ(x) = exp(−e−x), where αn = 2∆
−1/2
n (− ln∆n)

1/2 and βn = − ln∆n − ln(− ln∆n)− ln
√
2π.

(b). If α ∈ (0,∞), then (
mn∏︁
r=1

nr)
−1/2 max

1≤j≤n
|zj | converges weakly to the cdf Φα(α

1/2/2 + 2α−1/2 lnx),

x > 0.

Remark 1. We can show under condition (2.4) with α = ∞ that
(︁
max1≤j≤n |zj |−An

)︁
/Bn does not

converge in distribution to any non-degenerate distribution for any normalization constants An ∈ R
and Bn > 0.

Remark 2. Under assumption n = n1 = · · · = nmn+1, the product ensemble A
(mn)
n is the product of

mn independent Ginibre ensembles. In this case, ∆n = mn/n, and thus condition (2.4) is equivalent

to limn→∞mn/n = α ∈ [0,∞]. Then our Theorems 1 and 2 reduce to, respectively, Proposition 2.1

and Theorem 3 in Jiang and Qi [26].

Since nr ≥ n for all 1 ≤ r ≤ mn, we have ∆n ≤
∑︁mn

r=1 1/n = mn/n. Hence limn→∞mn/n =

0 implies limn→∞∆n = 0. From Theorem 2, the limiting spectral radii is always Gumbel if

limn→∞mn/n = 0. We have the following corollary.

COROLLARY 2.1 Assume limn→∞mn/n = 0. Then αn

(︁
(
mn∏︁
r=1

nr)
−1/2 max

1≤j≤n
|zj | − 1

)︁
− βn converges

weakly to the Gumbel distribution Λ(x) = exp(−e−x), where αn = 2∆
−1/2
n (− ln∆n)

1/2 and βn =

− ln∆n − ln(− ln∆n)− ln
√
2π.

To conclude this section, we provide some comments on the strategy for the proofs which are

given in Section 3.

Strategy for the proofs. Much of our effort will be put in the proof of Theorem 1. We will first

use a distributional representation for the spectral radii (see Lemmas 3.1 below) and demonstrate

that the largest absolute eigenvalue has the same distribution as the maximum of n products of

independent Gamma random variables, which implies that the logarithmic spectral radius has the

same distribution as the maximum of sums of logarithmic Gamma random variables. Then we

decompose each sum of m logarithmic Gamma random variables as a weighted sum of independent

random variables plus a reminder term. Finally, we estimate the remainder (Lemmas 3.5 and 3.7)

and apply moderate deviation theorems to the weighted sums so as to estimate tail probabilities (see

Lemmas 3.9 and 3.10 below). Somewhat similar steps here can be found in the proof of Proposition

2.1 in Jiang and Qi [26], but our proofs are much more complicated as we have to handle more

parameters n1, · · · , nm other than only one parameter m in Jiang and Qi [26]. For this reason we

have to handle sum of weighted random variables in this paper (see, e.g. Lemma 3.10) and employ

new techniques to get finer estimates for remainders and tail probabilities (Lemmas 3.7 and 3.8).
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3 Proofs

In this section, we prove the main results given in Section 2. We first give some preliminary lemmas

in Section 3.1, and then provide the proofs for Theorems 1 and 2 in Section 3.2.

3.1 Some Preliminary Lemmas

Define for k > 0

∆j,k =

mn∑︂
r=1

1

(j + lr)k
, j = 1, 2, · · · , n (3.1)

Note that

∆n,k =

mn∑︂
r=1

1

nkr
and ∆n = ∆n,1.

LEMMA 3.1 Let {sj,r, 1 ≤ r ≤ mn, j ≥ 1} be independent random variables and sj,r have the Gamma

density yj+lr−1e−yI(y ≥ 0)/(j + lr − 1)! for each j and r. Then max
1≤j≤n

|zj |2 and max
1≤j≤n

mn∏︁
r=1

sj,r have

the same distribution.

Proof. The lemma follows from Lemma 2.2 in Zeng [48]. ■

LEMMA 3.2 (Lemma 3.1 in Gui and Qi [21]) Suppose {ln, n ≥ 1} is sequence of positive integers.

Let znj ∈ [0, 1) be real numbers for 1 ≤ j ≤ ln such that max1≤j≤ln znj → 0 as n → ∞. Then

lim
n→∞

ln∏︂
j=1

(1 − znj) ∈ (0, 1) exists if and only if the limit lim
n→∞

ln∑︂
j=1

znj =: z ∈ (0,∞) exists and the

relationship of the two limits is given by

lim
n→∞

ln∏︂
i=1

(1− zni) = e−z. (3.2)

LEMMA 3.3 (Lemma 2.1 in Jiang and Qi [26]) Let ani ∈ [0, 1) be constants for i ≥ 1, n ≥ 1 and

supn≥1,i≥1 ani < 1. For each i ≥ 1, ai = lim
n→∞

ani. Assume cn =
∞∑︁
i=1

ani < ∞ for each n ≥ 1 and

c =
∞∑︁
i=1

ai <∞, and lim
n→∞

cn = c. Then,

lim
n→∞

∞∏︂
i=1

(1− ani) =

∞∏︂
i=1

(1− ai).

LEMMA 3.4 (Lemma 2.2 in Jiang and Qi [26]) Let {jn, n ≥ 1} and {xn, n ≥ 1} be positive numbers

with lim
n→∞

xn = ∞ and lim
n→∞

jnx
−1/2
n (lnxn)

1/2 = ∞. For fixed y ∈ R, if {cn,j , 1 ≤ j ≤ jn, n ≥ 1} are

real numbers such that lim
n→∞

max1≤j≤jn |cn,jx
1/2
n − 1| = 0, then

lim
n→∞

jn∑︂
j=1

(1− Φ((j − 1)cn,j + a(xn) + b(xn)y)) = e−y, (3.3)

6



where a(·) and b(·) are defined in (2.3).

LEMMA 3.5 Set Gj =
mn∏︁
r=1

sj,r, 1 ≤ j ≤ n, define the function η(x) = x − 1 − lnx for x > 0, and

write

Mn(i) = max
n−i+1≤j≤n

⃓⃓⃓ mn∑︂
r=1

(︁
η(

sj,r
j + lr

)− E(η(
sj,r
j + lr

))
)︁⃓⃓⃓
. (3.4)

Recall ψ(x) = Γ′(x)
Γ(x) as in (2.2). Then for 1 ≤ i ≤ n

⃓⃓⃓
max

n−i+1≤j≤n
lnGj − max

n−i+1≤j≤n

(︂ mn∑︂
r=1

sj,r − (j + lr)

j + lr
+

mn∑︂
r=1

ψ(j + lr)
)︂⃓⃓⃓

≤Mn(i).

Proof. The moment-generating function of ln sj,r is

mj,r = E(et ln sj,r) =
Γ(j + lr + t)

Γ(j + lr)
(3.5)

for t > −j − lr. Then, we have

E(ln sj,r) =
d

dt
mj,r(t)|t=0 =

Γ′(j + lr)

Γ(j + lr)
= ψ(j + lr). (3.6)

Using the relationship lnx = x− 1− η(x), we can rewrite lnGj as

lnGj = ln

mn∏︂
r=1

sj,r

=

mn∑︂
r=1

ln
sj,r
j + lr

+

mn∑︂
r=1

ln(j + lr)

=

mn∑︂
r=1

sj,r − (j + lr)

j + lr
−

mn∑︂
r=1

η(
sj,r
j + lr

) +

mn∑︂
r=1

ln(j + lr)

=

mn∑︂
r=1

sj,r − (j + lr)

j + lr
+

mn∑︂
r=1

ψ(j + lr)−
mn∑︂
r=1

(︂
η(
sj+lr

j + lr
)− ln(j + lr) + ψ(j + lr)

)︂
.

Since E(ln sj,r) = ψ(j + lr) from (3.6), we obtain that

E(η(
sj,r
j + lr

)) = ln(j + lr)− ψ(j + lr), (3.7)

and thus we have,

lnGj =

mn∑︂
r=1

sj,r − (j + lr)

j + lr
+

mn∑︂
r=1

ψ(j + lr)−
mn∑︂
r=1

(︂
η(

sj,r
j + lr

)− E(η(
sj,r
j + lr

))
)︂
. (3.8)

Note that for any two sequences of real numbers {xn} and {yn},⃓⃓
max
1≤j≤n

xj − max
1≤j≤n

yj
⃓⃓
≤ max

1≤j≤n

⃓⃓
xj − yj

⃓⃓
.
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Then it follows from (3.8) that

⃓⃓
max

n−i+1≤j≤n
lnGj − max

n−i+1≤j≤n

(︁ mn∑︂
r=1

sj,r − (j + lr)

j + lr
+

mn∑︂
r=1

ψ(j + lr)
)︁⃓⃓

≤Mn(i).

This complete the proof of the lemma. ■

LEMMA 3.6 Recall ∆n,j is defined in (3.1). Assume {jn;n ≥ 1} is a sequence of numbers satisfying

1 ≤ jn ≤ n/2 for all n ≥ 2, then for n− jn + 1 ≤ j ≤ n, we have

(1) ∆n,k ≤ ∆j,k < 2k∆n,k for any k > 0;

(2) ∆j,2/∆
1+a
j,1 ≤ ja−1 for any a ≥ 0.

Proof. Assume n− jn + 1 ≤ j ≤ n. Since nr
2 < nr − jn + 1 ≤ j + lr ≤ nr, we have for k > 0,

1

nkr
≤ 1

(j + lr)k
<

2k

nkr
, 1 ≤ r ≤ mn.

By summing up over r ∈ {1, · · · ,mn}, we obtain that ∆n,k ≤ ∆j,k < 2k∆n,k, i.e. (1) holds.

Note that lr ≥ 0 and l1 = 0. We have that j/(j+ lr) ≤ 1 for any 1 ≤ j ≤ n and 1 ≤ r ≤ mn, and

∆n,j ≥ 1/j. Therefore, for any a ≥ 0,

∆j,2

∆1+a
j,1

=

mn∑︁
r=1

1
(j+lr)2

(
m∑︁
r=1

1
j+lr

)1+a

= ja−1 ·

mn∑︁
r=1

( j
j+lr

)2

(
mn∑︁
r=1

j
j+lr

)1+a

≤ ja−1 ·

mn∑︁
r=1

j
j+lr

(
mn∑︁
r=1

j
j+lr

)1+a

≤ ja−1

(
mn∑︁
r=1

j
j+lr

)a
≤ ja−1.

In the last estimation we have used the fact that
mn∑︁
r=1

j
j+lr

≥ j
j+l1

= 1. ■

LEMMA 3.7 Assume {jn, n ≥ 1} is a sequence of numbers satisfying 1 ≤ jn ≤ n/2 for all n ≥ 2.

Then, Mn(jn) = Op(jn(
∆n
n )1/2) and Mn(jn) = Op(∆n lnn) as n→ ∞.
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Proof. We have

E(Mn(jn)) ≤
n∑︂

j=n−jn+1

E
⃓⃓⃓ mn∑︂
r=1

(︁
η(

sj,r
j + lr

)− E(η(
sj,r
j + lr

))
)︁⃓⃓⃓

≤
n∑︂

j=n−jn+1

{︂
E
(︂ mn∑︂

r=1

(︁
η(

sj,r
j + lr

)− E(η(
sj,r
j + lr

))
)︁)︂2}︂1/2

=
n∑︂

j=n−jn+1

{︂ mn∑︂
r=1

E
(︁
η(

sj,r
j + lr

)− E(η(
sj,r
j + lr

))
)︁2}︂1/2

≤
n∑︂

j=n−jn+1

{︂ mn∑︂
r=1

E
(︁
η(

sj,r
j + lr

)
)︁2}︂1/2

≤
n∑︂

j=n−jn+1

{︂ mn∑︂
r=1

(︁ sj,r
j+lr

− 1
)︁4

(2min(
sj,r
j+lr

, 1))2

}︂1/2

=
1

2

n∑︂
j=n−jn+1

{︂ mn∑︂
r=1

E((
sj,r − (j + lr)

j + lr
)4)(min(

sj,r
j + lr

, 1))−2
}︂1/2

.

In the last inequality we have used estimation that

0 ≤ η(x) = x− 1− lnx =

∫︂ x

1

t− 1

t
dt ≤ (x− 1)2

2min(x, 1)
, x > 0.

Since sj,r has density yj+lr−1e−yI(y > 0)/(j + lr − 1)!, we have E(s−4
j,r ) = Γ(j+lr−4)

Γ(j+lr)
. By the

Marcinkiewicz-Zygmund inequality(see, for example, Corollary 2 in Section 10.3 from Chow and

Teicher [17]), we obtain E(sj,r − (j + lr))
8 ≤ C(j + lr)

4, where C is a constant not depending on j.

From now on we will use C to denote a generic constant which may be different at different places.

Then we have

E((
sj,r − (j + lr)

j + lr
)4(min(

sj,r
j + lr

, 1))−2)

≤ (E(
sj,r − (j + lr)

j + lr
)8 · E(min(

sj,r
j + lr

, 1))−4)1/2

≤ (E(
sj,r − (j + lr)

j + lr
)8 · E

(︁
1 + (

j + lr
sj,r

)4)
)︁1/2

≤
(︂
1 +

(j + lr)
3

(j + lr − 1)(j + lr − 2)(j + lr − 3)

)︂1/2(︂
E
(︁sj,r − (j + lr)

j + lr

)︁8)︂1/2

≤ C(j + lr)
−2,
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and thus from Lemma 3.6 we obtain

E(Mn(jn)) ≤
√
C

2

n∑︂
j=n−jn+1

(︁ mn∑︂
r=1

(j + lr)
−2

)︁1/2
=

√
C

2

n∑︂
j=n−jn+1

∆
1/2
j,2

≤
√
C

n∑︂
j=n−jn+1

∆
1/2
n,2

=
√
Cjn∆

1/2
n,2

≤ O(
jn

n1/2
∆

1/2
n,1 ).

Therefore Mn(jn) = Op

(︁ jn
n1/2∆

1/2
n

)︁
.

Recall ψ(x) = Γ′(x)
Γ(x) for x > 0. By Formulas 6.3.18 and 6.4.12 in Abramowitz and Stegun [1] we

have

ψ(x) = lnx− 1

2x
+O(

1

x2
) and ψ′(x) =

1

x
+

1

2x2
+O(

1

x3
) (3.9)

as x→ +∞. From (3.7), Eη(
sj,r
j+lr

) = ln(j + lr)− ψ(j + lr) = O( 1
j+lr

) as j → ∞, we have

Mn(jn) ≤ max
n−jn+1≤j≤n

mn∑︂
r=1

η(
sj,r
j + lr

) +O(

mn∑︂
r=1

1

nr
). (3.10)

For n− jn + 1 ≤ j ≤ n, we consider the moment generating function of η(
sj,r
j+lr

). Since sj,r has a

Gamma(j + lr) distribution, we have

Ee
tη(

sj,r
j+lr

)
= E

(︂
exp

(︁
t(

sj,r
j + lr

− 1− ln
sj,r
j + lr

)
)︁)︂

= e−tE
(︁
(
sj,r
j + lr

)−t exp(t · sj,r
j + lr

)
)︁

=
e−t(j + lr)

t

Γ(j + lr)

∫︂ ∞

0
xj+lr−t−1e

−x(1− t
j+lr

)
dx

=
e−t(j + lr)

t

Γ(j + lr)

∫︂ ∞

0
(
j + lr

j + lr − t
)j+lr−tyj+lr−t−1e−ydy

= e−t(j + lr)
tΓ(j + lr − t)

Γ(j + lr)
(
j + lr

j + lr − t
)j+lr−t.

10



Uniformly over 0 < t < n/4, we have from (3.9)

ln
Γ(j + lr − t)

Γ(j + lr)
=

∫︂ j+lr−t

j+lr

ψ(x)dx =

∫︂ j+lr−t

j+lr

(lnx− 1

2x
+O(

1

x2
))dx

= (x lnx− x)|j+lr−t
j+lr

− 1

2
ln
j + lr − t

j + lr
+O(

t

(j + lr − t)2
)

= (j + lr − t) ln(j + lr − t)− (j + lr) ln(j + lr) + t

− 1

2
ln
j + lr − t

j + lr
+O(

t

(j + lr)2
).

Therefore, we obtain

Γ(j + lr − t)

Γ(j + lr)
= et

(j + lr − t)j+lr−t

(j + lr)j+lr
(1− t

j + lr
)−1/2 exp

(︁
O(

t

(j + lr)2
)
)︁

(3.11)

and

E exp
(︁
tη(

sj,r
j + lr

)
)︁
= (1− t

j + lr
)−1/2 exp

(︂
O(

t

(j + lr)2
)
)︂

= exp
(︂1
2
· t

j + lr
+

1

4
· t2

(j + lr)2
+O(

t

(j + lr)2
)
)︂
.

Then we have

E exp
(︁
t

mn∑︂
r=1

η(
sj,r
j + lr

)
)︁
= exp

(︁ t
2
∆j,1 +O(∆j,2t+∆j,2t

2)
)︁

≤ exp
(︁
t∆n +O(∆n,2t

2 +∆n,2t)
)︁

uniformly over 0 < t < n/4 and n − jn + 1 ≤ j ≤ n as n → ∞. Now plug in t = 1/(4∆n). Since

∆n ≥ 1
n , we have 0 < t ≤ n

4 , and thus we get

P (

mn∑︂
r=1

η(
sj,r
j + lr

) > 8∆n lnn)

≤
E
(︁
exp(t

mn∑︁
r=1

η(
sj,r
j+lr

))
)︁

exp(8t∆n lnn)

≤
exp

(︁
4 +O(∆n,2/∆

2
n,1 +∆n,2/∆n,1)

)︁
exp(2 lnn)

= O(n−2)

from Lemma 3.6. Therefore,

P
(︂

max
n−jn+1≤j≤n

mn∑︂
r=1

η(
sj,r
j + lr

) > 8∆n lnn
)︂
≤ O(n−1) → 0,

11



which means

Mn(jn) ≤ max
n−jn+1≤j≤n

mn∑︂
r=1

η(
sj,r
j + lr

) +O(∆n) = Op(∆n lnn).

This completes the proof. ■

LEMMA 3.8 Let {jn, n ≥ 1} be positive integers satisfying

lim
n→∞

jn
n

= 0, lim
n→∞

jn(
∆n

lnn
)1/2 = ∞. (3.12)

Then, for any x ∈ R

lim
n→∞

n−jn∑︂
j=1

P (lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x) = 0. (3.13)

Proof. Fix x ∈ R. For each 1 ≤ j ≤ n− jn and any t > 0, we have from (3.5) that

P (lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x)

≤ E(et lnGj )

exp(t(
mn∑︁
r=1

ψ(n+ lr) + ∆
1/2
n x))

= exp
(︂ mn∑︂

r=1

(ln Γ(j + lr + t)− ln Γ(j + lr))− t(

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x)

)︂
= exp

(︂ mn∑︂
r=1

∫︂ t

0
(ψ(j + lr + s)− ψ(j + lr))ds− t(

mn∑︂
r=1

(ψ(n+ lr)− ψ(j + lr)) + ∆1/2
n x)

)︂
.

Since there exists an integer j0 such that for all j0 ≤ j ≤ n− jn and for all 1 ≤ r ≤ mn,

ln
j + lr + s

j + lr
≤ ψ(j + lr + s)− ψ(j + lr) =

∫︂ s

0
ψ′(j + lr + v)dv ≤ 1.1s

j + lr
.

By the first inequality above, for all j0 ≤ j ≤ n− jn, 1 ≤ r ≤ mn and all large n,

ψ(n+ lr)− ψ(j + lr) ≥ ln
n+ lr
j + lr

≥ ln
nr

nr − jn
= − ln(1− jn

nr
) ≥ 0.999jn

nr
,

which implies
mn∑︂
r=1

(ψ(n+ lr)− ψ(j + lr)) ≥
mn∑︂
r=1

ln
nr

j + lr

and
mn∑︂
r=1

(ψ(n+ lr)− ψ(j + lr)) ≥ 0.999jn∆n

uniformly for j0 ≤ j ≤ n− jn for all large n. By assumption (3.12), we have ∆
1/2
n = o(jn∆n), and

mn∑︂
r=1

(ψ(n+ lr)− ψ(j + lr)) + ∆1/2
n x ≥ 0.99

mn∑︂
r=1

ln
nr

j + lr

12



uniformly over j0 ≤ j ≤ n− jn for all large n. Therefore, for all j0 ≤ j ≤ n− jn,

P (lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x)

≤ exp
{︂
1.1

mn∑︂
r=1

∫︂ t

0

s

j + lr
ds− 0.99t

mn∑︂
r=1

ln
nr

j + lr

}︂
= exp

{︂ mn∑︂
r=1

0.55t2

j + lr
− 0.99t

mn∑︂
r=1

ln
nr

j + lr

}︂
= exp

{︂
0.55t2∆j,1 − 0.99t

mn∑︂
r=1

ln
nr

j + lr

}︂

for all t > 0 and large n. By selecting t = 0.9
mn∑︁
r=1

ln nr
j+lr

/∆j,1, we have

P (lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x) ≤ exp

{︂
− 0.4455

∆j,1

(︂ mn∑︂
r=1

ln
nr

j + lr

)︂2}︂
(3.14)

uniformly over j0 ≤ j ≤ n− jn for all large n.

Now we turn to estimate the probability on the right-hand side of (3.14). For each r ∈ {1, · · · ,mn},
define the function fr(x) = x(lnnr− lnx), 0 < x ≤ nr. Note that f

′
r(x) = lnnr− lnx−1 is decreasing

and f ′′r (x) = −1/x < 0 for x ∈ (0, nr]. This implies that fr(x) is concave in x ∈ (0, nr], and for any

constants 0 < a < b < nr, the minimum value of fr(x) over [a, b] is achieved at the two endpoints of

interval [a, b], i.e.,

min
a≤x≤b

fr(x) = min
(︁
fr(a), fr(b)

)︁
. (3.15)

For any 1 ≤ j ≤ n − jn and 1 ≤ r ≤ mn, set anj = min(j, n/8) and bnj = nr − jn. Then

1 ≤ anj ≤ j + lr ≤ bnj < nr holds uniformly over 1 ≤ j ≤ n− jn and 1 ≤ r ≤ mn for for all large n.

Note that

fr(anj) = anj ln
nr
anj

≥ anj ln
n

anj

and

fr(bnj) ≥ (n− jn) ln
nr

nr − jn
= −(n− jn) ln(1−

jn
nr

) ≥ −(n− jn) ln(1−
jn
n
) ≥ 1

2
jn

for all large n. By applying (3.15) we obtain from (3.15) that

(j + lr) ln
nr

j + lr
≥ min(anj ln

n

anj
,
jn
2
) =: δnj ,

or equivalently

ln
nr

j + lr
≥ δnj
j + lr

13



over 1 ≤ j ≤ n− jn and 1 ≤ r ≤ r ≤ mn for all large n. Therefore, we conclude that

mn∑︂
r=1

ln
nr

j + lr
≥ δnj

mn∑︂
r=1

1

j + lr
= δnj∆j,1 (3.16)

uniformly over 1 ≤ j ≤ n− jn for all large n. Thus, for all large n,

min
1≤j≤n−jn

∆−1
j,1

(︂ mn∑︂
r=1

ln
nr

j + lr

)︂2
≥ min

1≤j≤n−jn
δ2nj∆j,1

= min
1≤j≤n−jn

min
(︁
a2nj(ln

n

anj
)2∆j,1,

1

4
j2n∆j,1

)︁
≥ min

1≤j≤n−jn
min

(︁1
8
anj(ln

n

anj
)2,

1

4
j2n∆n

)︁
= min

(︁
min

1≤j≤n−jn

1

8
anj(ln

n

anj
)2,

1

4
j2n∆n

)︁
. (3.17)

To obtain the second inequality above we have used the facts that ∆j,1 ≥ 1/j, anj/j = min(j, n/8)/j ≥
1/8 and ∆j,1 ≥ ∆n,1 = ∆n.

Our aim is to show that

1

lnn
min

1≤j≤n−jn
∆−1

j,1

(︂ mn∑︂
r=1

ln
nr

j + lr

)︂2
→ ∞ as n→ ∞. (3.18)

In fact, condition (3.12) implies j2n∆n/ lnn→ ∞ as n→ ∞. By (3.17) it remains to show that

1

lnn
min

1≤j≤n−jn
anj(ln

n

anj
)2 → ∞ as n→ ∞. (3.19)

To show this, we consider the function f(x) = x(lnn− lnx)2, 1 ≤ x ≤ n/8. f(x) is increasing since

f ′(x) = (lnn − lnx))(lnn − lnx − 2) > 0 for x ∈ [0, n/8]. Therefore, we have min1≤x≤n/8 f(x) ≥
f(1) = (lnn)2, which implies that anj(ln

n
anj

)2 ≥ (lnn)2, and the left-hand side of (3.19) is larger

than lnn. This proves (3.19).

Now it follows from (3.18) that

min
j0≤j≤n−jn

∆−1
j,1

(︂ mn∑︂
r=1

ln
nr

j + lr

)︂2
≥ 10 lnn

for all large n, which coupled with (3.14) implies

max
j0≤j≤n−jn

P
(︁
lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x

)︁
≤ exp(−4.4 lnn) = n−4.4,

and hence,
n−jn∑︂
j=j0

P
(︁
lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x

)︁
= O(n−3.4) → 0 as n→ ∞.

14



Finally, we will consider the tail probability of lnGj when 1 ≤ j < j0. From (3.5) we have

E(Gj) =

mn∏︂
r=1

Γ(j + lr + 1)

Γ(j + lr)
=

mn∏︂
r=1

(j + lr).

Using (3.9) we get for all large n

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x =

mn∑︂
r=1

ln(n+ lr) +O(∆n +∆1/2
n )

≥
mn∑︂
r=1

ln(n+ lr) +O(∆n + 1).

For each fixed j, 1 ≤ j < j0, since Gj > 0, we have from Chebyshev’s inequality and equation (3.16)

that

P
(︁
lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x

)︁
= P

(︁
Gj > exp{

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n x}

)︁
≤ E(Gj)

exp{
mn∑︁
r=1

ψ(n+ lr) + ∆
1/2
n x}

≤ exp{−
mn∑︂
r=1

ln
n+ lr
j + lr

+O(∆n + 1)}

≤ exp{−(1 + o(1))

mn∑︂
r=1

ln
n+ lr
j + lr

+O(1)}

≤ exp{−(1 + o(1)) ln
n+ l1
j + l1

+O(1)}

≤ exp{−(1 + o(1)) ln
n

j
+O(1)}

→ 0

as n→ ∞. This proves (3.13) and completes the proof of the lemma. ■

LEMMA 3.9 (Proposition 4.5 in Chen, Fang and Shao [16]) Let ξi, 1 ≤ i ≤ n be independent

random variables with Eξi = 0 and Eetn|ξi| < ∞, 1 ≤ i ≤ n for some tn. Assume that
n∑︁

i=1
Eξ2i = 1.

Then
P (W ≥ x)

1− Φ(x)
= 1 +O(1)(1 + x3)γe4x

3γ (3.20)

for 0 ≤ x ≤ tn, where W =
n∑︁

i=1
ξi and γ =

n∑︁
i=1

E
(︁
|ξi|3ex|ξi|

)︁
.
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LEMMA 3.10 Let {jn, n ≥ 1} be positive integers satisfying 1 ≤ jn ≤ n/2 and lim
n→∞

jn
n = 0. Let

Wj = ∆
−1/2
j,1

mn∑︁
r=1

(︁
sj,r− (j+ lr)

)︁
/(j+ lr) and tn = O(n1/7) be any sequence of positive numbers. Then

P (Wj ≥ x) =
(︁
1− Φ(x)

)︁
(1 + o(1)) uniformly over 0 ≤ x ≤ tn and n− jn + 1 ≤ j ≤ n as n→ ∞.

Proof. Let {Xi,r, i ≥ 1, r ≥ 1} be an array of i.i.d. random variables with the standard exponential

distribution. Then for each j, {sj,r, 1 ≤ r ≤ mn} have the same joint distribution as {
∑︁j

i=1Xi,r, 1 ≤
r ≤ mn}. Without loss of generality we assume sj,r =

∑︁j
i=1Xi,r for 1 ≤ r ≤ mn, n− jn ≤ j ≤ n.

Set dj,r = (j + lr)
−1 and Dj,r = dj,r/∆

1/2
j,1 for 1 ≤ r ≤ mn. Then

Wj = ∆
−1/2
j,1

mn∑︂
r=1

j+lr∑︂
i=1

1

(j + lr)
(Xi,r − 1)

= ∆
−1/2
j,1

mn∑︂
r=1

j+lr∑︂
i=1

dj,r(Xi,r − 1)

=

mn∑︂
r=1

j+lr∑︂
i=1

ξi,r,

where ξi,r = Dj,r(Xi,r − 1). Since E(Xi,r) = V ar(Xi,r) = 1, we obtain

Eξi,r = 0 and

mn∑︂
r=1

j+lr∑︂
i=1

Eξ2i,r = 1.

Furthermore, we have

mn∑︂
r=1

j+lr∑︂
i=1

E
(︁
|ξ1,r|3 et|ξi,r|

)︁
=

mn∑︂
r=1

E(|Dj,r(X1,r − 1)|3 et|Dj,r(X1,r−1)|) · 1

dj,r

= ∆
−3/2
j,1

mn∑︂
r=1

E(d3j,r |X1,r − 1|3 etDj,r|X1,r−1|) · 1

dj,r

≤ ∆
−3/2
j,1

mn∑︂
r=1

d2j,rE
(︁
(X3

1,r + 1)(etDj,r(X1,r−1) + e−tDj,r(X1,r−1))
)︁
.

Using the moment-generating function E(etDj,r·Xi,r) = (1−Dj,rt)
−1, we have

E(X3
1,re

tDj,r·X1,r) =
6

(1−Dj,rt)4
,

thus

mn∑︂
r=1

j+lr∑︂
i=1

E(|ξi,r|3 et|ξi,r|)

≤ ∆
−3/2
j,1

mn∑︂
r=1

d2j,r

(︂ 6e−tDj,r

(1−Dj,rt)4
+

e−tDj,r

1−Dj,rt
+

6etDj,r

(1 +Dj,rt)4
+

etDj,r

1 +Dj,rt

)︂
. (3.21)
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The above estimate is valid if tDj,r < 1 for all n− jn + 1 ≤ j ≤ n and 1 ≤ r ≤ mn.

When n − jn + 1 ≤ j ≤ n and 1 ≤ r ≤ mn, we have j + lr > n − jn ≥ n/2, ∆j,1 ≥ 1/(j + l1) =

1/j ≥ 1/n, and dj,r =
1

j+lr
≤ 2/n. Therefore,

Dj,r =
dj,r

∆
1/2
j,1

≤ 2

n1/2
,

which implies

tDj,r ≤ 2tnn
−1/2 = O(n−5/14) → 0

uniformly over 0 ≤ t ≤ tn = O(n1/7), n − jn + 1 ≤ j ≤ n and 1 ≤ r ≤ mn as n → ∞. Hence, it

follows from (3.21) and Lemma 3.6 that for some constant C > 0

γ :=

mn∑︂
r=1

j+lr∑︂
i=1

E(|ξi,r|3 et|ξi,r|) ≤
C

mn∑︁
r=1

d2j,r

∆
3/2
j,1

=
C∆j,2

∆
3
2
j,1

≤ C

j1/2
≤ 2C

n1/2
(3.22)

uniformly over n− jn + 1 ≤ j ≤ n as n→ ∞.

By Lemma 3.9,
P (Wj≥t)
1−Φ(t) = 1+O(1)(1 + t3)γe4t

3γ = 1+O(n−1/14) uniformly over 0 ≤ t ≤ tn and

n− jn + 1 ≤ j ≤ n as n→ ∞. ■

3.2 Proofs of Theorems 1 and 2

Proof of Theorem 1. Define

jn = the integer part of ∆−1/2
n · n1/7 + 1. (3.23)

The proof of the theorem will be divided into three steps.

Step 1. We will prove that

lim
n→∞

n−jn∑︂
j=1

P (lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n (an + bny)) = 0, y ∈ R. (3.24)

Since ∆n ≥ 1/n, we have from (3.23) that

jn
n

≤ n1/7

n∆
1/2
n

+
1

n
≤ 2

n5/14
→ 0

and

jn
(︁∆n

lnn

)︁1/2 ≥ n1/7

∆
1/2
n

∆
1/2
n

(lnn)1/2
=

n1/7

(lnn)1/2
→ ∞,
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as n → ∞, that is, the conditions in Lemma 3.8 are satisfied. Therefore, (3.24) holds in case

α ∈ (0,∞]. In case α = 0, an + bny > 0 for all large n, by Lemma 3.8, we have

lim
n→∞

n−jn∑︂
j=1

P
(︁
lnGj >

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n (an + bny)

)︁
≤ lim

n→∞

n−jn∑︂
j=1

P
(︁
lnGj >

mn∑︂
r=1

ψ(n+ lr)
)︁

= 0.

Note that (3.24) implies

lim
n→∞

P
(︂ max
1≤j≤n−jn

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

> y
)︂
= 0, y ∈ R

or equivalently

lim
n→∞

P
(︂ max
1≤j≤n−jn

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

≤ y
)︂
= 1, y ∈ R. (3.25)

Step 2. We claim that

Mn(jn)

∆
1/2
n bn

converges in probability to zero. (3.26)

To prove this, it suffices to show that Mn(jn) = Op(∆
1/2
n (lnn)−1) since bn ≥ (lnn)−1/2 for large n.

When α ∈ (0,∞], ∆
−1/2
n is bounded, and jn = O(n1/7). By Lemma 3.7, we have

Mn(jn) = Op(jn(
∆n

n
)1/2) = Op(∆

1/2
n n−5/15) = Op(∆

1/2
n (lnn)−1).

When α = 0, by Lemma 3.7, we can obtain that

Mn(jn) = Op(min

{︃
jn(

∆n

n
)1/2,∆n lnn

}︃
)

= ∆1/2
n Op(min

{︂
∆−1/2

n n−5/14,∆1/2
n lnn

}︂
)

= ∆1/2
n ·Op(n

−1/8)

= Op(∆
1/2
n (lnn)−1/2)

since ∆
−1/2
n n−5/14 ≤ n−1/8 if ∆

−1/2
n ≤ n1/7 and ∆

1/2
n lnn ≤ n−1/8 if ∆

−1/2
n > n1/7. This proves

(3.26).
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Step 3. Set

Tn(jn) = max
n−jn+1≤j≤n

{︂ mn∑︂
r=1

sj,r − (j + lr)

j + lr
+

mn∑︂
r=1

ψ(j + lr)
}︂
.

We will show that for every y ∈ R

P
(︁
Tn(jn) ≤

mn∑︂
r=1

ψ(nr) + ∆1/2
n (an + bny)

)︁
→ Φα(y). (3.27)

In fact,

P
(︁
Tn(jn) ≤

mn∑︂
r=1

ψ(n+ lr) + ∆1/2
n (an + bny)

)︁
=

n∏︂
j=n−jn+1

P
(︁
Wj ≤

1

∆
1/2
j,1

(

mn∑︂
r=1

(ψ(n+ lr)− ψ(j + lr)) + ∆1/2
n (an + bny))

)︁

=

jn∏︂
i=1

P
(︂
Wn−i+1 ≤

mn∑︁
r=1

(ψ(nr)− ψ(nr − i+ 1)) + ∆
1/2
n (an + bny)(︁ mn∑︁

r=1

1
nr−i+1

)︁1/2 )︂

=

jn∏︂
i=1

(1− ani), (3.28)

where ani = P (Wn−i+1 ≥ tn,i) and

tn,i =
(︁ mn∑︂
r=1

1

nr − i+ 1

)︁−1/2(︁ mn∑︂
r=1

(ψ(nr)− ψ(nr − i+ 1)) + ∆1/2
n (an + bny)

)︁
.

It follows from (3.9) and Taylor’s expansion that

(︁ mn∑︂
r=1

1

nr − i+ 1

)︁−1/2
mn∑︂
r=1

(︁
ψ(nr)− ψ(nr − i+ 1)

)︁
=

(︁ mn∑︂
r=1

1

nr
· 1

1− i−1
nr

)︁−1/2
mn∑︂
r=1

i− 1

nr
(1 +O(

i

nr
))

= (i− 1)
(︁ mn∑︂
r=1

1

nr
(1 +O(

i− 1

nr
))
)︁−1/2

mn∑︂
r=1

1

nr
(1 +O(

i

nr
))

= (i− 1)
(︁
1 +O(

jn
n
)
)︁
(

mn∑︂
r=1

1

nr
)1/2

= (i− 1)
(︁
1 +O(n−5/14)

)︁
∆1/2

n
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and (︂(︁ mn∑︂
r=1

1

nr − i+ 1

)︁−1/2
∆1/2

n − 1
)︂
(an + bny)

=
(︂(︁ mn∑︂

r=1

1

nr
(1 +O(

i− 1

nr
))
)︁−1/2 ·∆1/2

n − 1
)︂
(an + bny)

=
(︂(︁ mn∑︂

r=1

1

nr
+O(

mn∑︂
r=1

i− 1

n2r
)
)︁−1/2 ·∆1/2

n − 1
)︂
(an + bny)

=
(︂(︁

∆n +O(∆n,2)(i− 1)
)︁−1/2

∆1/2
n − 1

)︂
(an + bny)

=
(︂(︁

1 +O(
∆n,2

∆n
)(i− 1)

)︁−1/2 − 1
)︂
(an + bny)

= O
(︂(i− 1)∆n,2

∆n
(lnn)1/2

)︂
= ∆1/2

n (i− 1) ·O(
∆n,2

∆1.5
n

(lnn)1/2)

= ∆1/2
n (i− 1) ·O(

(lnn)1/2

n1/2
).

In the above estimation we have used the facts (a): max1≤i≤jn(i − 1)∆n,2/∆n ≤ jn/n → 0 from

Lemma 3.6; (b): an + bny = O((lnn)1/2); and (c): ∆n,2/∆
1.5
n ≤ n−1/2 from Lemma 3.6. Therefore,

we conclude that

tn,i = (i− 1)
(︁
1 +O(n−5/14)

)︁
∆1/2

n + an + bny (3.29)

holds uniformly over 1 ≤ i ≤ jn as n→ ∞.

Case 1. If α = 0, then ∆n → 0 and

an = a(∆−1
n ) ∼ (ln(∆−1

n ))1/2 and bn = b(∆−1
n ) ∼ (ln(∆−1

n ))−1/2,

we have

min
1≤i≤jn

tn,i → ∞ and max
1≤i≤jn

tn,i = O(∆1/2
n jn + (lnn)1/2) = O(n

1
7 ).

It follows from Lemma 3.10 that

ani = (1 + o(1))(1− Φ(tn,i)) (3.30)

uniformly over 1 ≤ i ≤ jn.

Now define cn,i such that tn,i = (i − 1)cn,i + an + bny with cn,1 = 0 and apply Lemma 3.4 with

xn = ∆−1
n by noting that cn,i =

(︁
1 +O(n−5/14)

)︁
·∆1/2

n from (3.29). Then we get

jn∑︂
i=1

ani = (1 + o(1))

jn∑︂
i=1

(1− Φ(tn,i)) → e−y.
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It is obvious from (3.30) that max
1≤i≤jn

ani → 0. So we have from Lemma 3.2 that
∏︁jn

i=(1 − ani) →

exp(−e−y) = Φ0(y) as n→ ∞, which together with (3.28) yields (3.27) with α = 0,

Case 2. If α ∈ (0,∞), then jn ∼ α−1/2n1/7. By definition, an = 0 and bn = 1, and (3.29) means

tn,i = (1 + o(1))α1/2(i− 1) + y

holds uniformly over 1 ≤ j ≤ jn as n→ ∞.

Let j0 > 1 be an integer such that min
j0≤i≤jn

tn,i > 0. Since max
1≤i≤jn

|tn,i| = O(n1/7), we have from

Lemma 3.10

ani = (1 + o(1))(1− Φ(tn,i)) (3.31)

uniformly over j0 ≤ i ≤ jn. By using the standard central limit theorem, we know this also holds for

each i = 1, 2, · · · , j0 − 1. Therefore, for each i ≥ 1,

lim
n→∞

ani = 1− Φ(α1/2(i− 1) + y) (3.32)

and ∑︂
i≥1

(1− Φ(α1/2(i− 1) + y)) <∞ (3.33)

by the fact 1− Φ(x) ∼ 1√
2πx

e−x2/2 as x→ +∞.

Define an,i = 0 for i > jn. By the fact that tn,i ≥ 1
2α

1/2(i− 1) + y ≥ y for 1 ≤ i ≤ jn for all large

n, we have supn≥n0,1≤i≤jn ani < 1 for some integer n0. And since ani ≤ 2(1 − Φ(12α
1/2(i − 1) + y))

for all 1 ≤ i ≤ jn as n is sufficiently large and
∑︁
i≥1

2(1 − Φ(α1/2(i − 1) + y)) < ∞, we obtain that

lim
n→∞

jn∑︁
i=1

ani =
∞∑︁
i=1

(1− Φ(α1/2(i− 1) + y)). So it follows from Lemma 3.3 that

lim
n→∞

jn∏︂
i=1

(1− ani) =

∞∏︂
i=1

Φ(y + α1/2(i− 1)) = Φα(y),

which together with (3.28) yields (3.27) with α ∈ (0,∞).

Case 3. If α = ∞, then by the fact 0 ≤ ∆
1/2
n (jn−1) ≤ n1/7, we have tn,i = O(n1/7). In particular,

we have tn,1 = y and for all large n, tn,i > 0 if 2 ≤ i ≤ jn and jn ≥ 2. So we obtain from Lemma 3.10

that

ani = (1 + o(1))(1− Φ(tn,i))

uniformly over 1 ≤ i ≤ jn. Note that tn,i ≥ i
3∆

1/2
n if 2 ≤ i ≤ jn and jn ≥ 2. For large n we have

I(jn ≥ 2)

jn∑︂
i=2

tn,i ≤ 2
∞∑︂
i=2

(1− Φ(
i

3
∆1/2

n )) ≤
∞∑︂
i=2

exp(− i2

18
∆n) ≤ 3

√
2π∆−1/2

n → 0
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since exp(− i2

18

mn∑︁
r=1

1
nr
) ≤

∫︁ i
i−1 exp(−

x2

18

mn∑︁
r=1

1
nr
)dx for i ≥ 2. It is also obvious that I(jn ≥ 2) max

2≤i≤jn
ani →

0, so I(jn ≥ 2)(1−
jn∏︁
i=2

(1− ani)) → 0 as n→ ∞, which coupled with (3.28) implies

P (Tn(jn) ≤
mn∑︂
r=1

ψ(nr) + ∆1/2
n (an + bny))

=

jn∏︂
i=1

(1− ani)

= (1− an1)
(︂
1− I(jn ≥ 2)

(︁
1−

jn∏︂
i=2

(1− ani)
)︁)︂

→ Φ(y) = Φ∞(y),

i.e. (3.27) holds with α = ∞.

Now we are ready to conclude the proof. We first have from (3.27) that

Tn(jn)−
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

d−→ Φα.

By Lemma 3.5 and (3.26), we get

max
n−jn+1≤j≤n

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

d−→ Φα,

or equivalently

lim
n→∞

P
(︂ max
n−jn+1≤j≤n

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

≤ y
)︂
= Φα(y), y ∈ R,

which together with (3.25) and the independence of max
1≤j≤n−jn

lnGj and max
n−jn+1≤j≤n

lnGj yields that

P
(︂ max
1≤j≤n

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

≤ y
)︂

= P
(︂ max
1≤j≤n−jn

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

≤ y
)︂

× P
(︂ max
n−jn+1≤j≤n

lnGj −
mn∑︁
r=1

ψ(nr)

∆
1/2
n bn

− an
bn

≤ y
)︂

→ Φα(y)
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for every y ∈ R. Since Gj =
∏︁mn

r=1 sj,r, max
1≤j≤n

ln |zj | and 1
2 max
1≤j≤n

lnGj have the same distribution

from Lemma 3.1. Hence we conclude that

lim
n→∞

P
(︂ max
1≤j≤n

ln |zj | −
mn∑︁
r=1

ψ(nr)/2

∆
1/2
n /2

≤ an + bny
)︂
= Φα(y),

proving (2.5). This completes the proof of Theorem 1. ■

Proof of Theorem 2. Define for α ∈ [0,∞),

Vn =

max
1≤j≤n

ln |zj | −
mn∑︁
r=1

ψ(nr)/2

∆
1/2
n bn/2

− an
bn
.

Then Vn converges in distribution to Θα, where Θα is a random variable with the cdf Φα(y). And it

can be easily verified that

max
1≤j≤n

|zj | = exp

{︄
1

2

mn∑︂
r=1

ψ(nr) +
1

2
∆1/2

n (an + bnVn)

}︄

= exp

{︄
1

2

mn∑︂
r=1

ψ(nr) +
1

2
∆1/2

n an

}︄
· exp

{︃
1

2
∆1/2

n bnVn

}︃
.

(3.34)

(a). If α = 0, then we have ∆n → 0, an = a(xn) ∼ (ln∆−1
n )1/2 → ∞, bn = b(∆−1

n ) ∼
(ln∆−1

n )−1/2 → 0, and ∆
1/2
n an ∼ ∆

1/2
n b−1

n as n→ ∞. Thus, we get from (3.9) and Taylor’s expansion

that

max
1≤j≤n

|zj | = exp
{︂1

2

mn∑︂
r=1

lnnr +O(∆n) +
1

2
∆1/2

n an

}︂
· (1 + 1

2
∆1/2

n bnVn +Op(b
2
n∆n))

=
(︁ mn∏︂
r=1

nr
)︁1/2

(1 +
1

2
∆1/2

n an +O(∆n))(1 +
1

2
∆1/2

n bnVn +Op(∆n))

=
(︁ mn∏︂
r=1

nr
)︁1/2

(1 +
1

2
∆1/2

n an +
1

2
∆1/2

n bnVn +Op(∆na
2
n)),

which implies that

1

∆
1/2
n bn/2

(︂ max
1≤j≤n

|zj |

(
mn∏︁
r=1

nr)1/2
− 1

)︂
− an
bn

= Vn +Op(∆
1/2
n (ln∆−1

n )3/2)

converges in distribution to Λ.
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(b). If α ∈ (0,∞), then an = 0 and bn = 1 in this case. Therefore, we have

max
1≤j≤n

|zj | = exp
{︂1

2

mn∑︂
r=1

ψ(nr) +
1

2
∆1/2

n Vn

}︂
= exp

{︂1

2

mn∑︂
r=1

ψ(nr)
}︂
· exp

{︂1

2
∆1/2

n Vn

}︂
.

Using (3.9), we have
mn∑︁
r=1

ψ(nr) =
∑︁mn

r=1 lnnr −
1
2∆n + o(∆n), and then we obtain

max
1≤j≤n

|zj |(︁ mn∏︁
r=1

nr
)︁1/2 = exp

(︁
− 1

4
α+ o(1)

)︁
· exp

(︁
(
1

2
α1/2 + o(1))Vn

)︁
,

which converges in distribution to Φα(
1
2α

1/2 + 2α−1/2 ln y), y > 0, the cumulative distribution of

e−α/4 exp
(︁
1
2α

1/2Θα

)︁
. This completes the proof. ■
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