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Abstract. Consider the product of m independent n × n random matrices from the

spherical ensemble for m ≥ 1. The empirical distribution based on the n eigenvalues of

the product is called the empirical spectral distribution. Two recent papers by Götze,

Kösters and Tikhomirov (2015) and Zeng (2016) obtain the limit of the empirical spectral

distribution for the product when m is a fixed integer. In this paper, we investigate the

limiting empirical distribution of scaled eigenvalues for the product of m independent

matrices from the spherical ensemble in the case when m changes with n, that is, m = mn

is an arbitrary sequence of positive integers.
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1 Introduction

The study of random matrices has attracted much attention from mathematics

and physics communities and has found applications in areas such as heavy-nuclei

(Wigner, 1955), number theory (Mezzadri and Snaith, 2005), condensed matter

physics (Beenakker, 1997), wireless communications (Couillet and Debbah, 2011),

and high dimensional statistics (Johnstone (2001, 2008) and Jiang (2009)), just to

mention a few. We refer the interested reader to the Oxford Handbook of Random

Matrix Theory edited by Akemann, Baik and Francesco (2011) for more references

and applications in mathematics and physics.

Some recent research focuses on product of random matrices which have applica-

tions in wireless telecommunication, disordered spin chain, the stability of large com-

plex system, quantum transport in disordered wires, symplectic maps and Hamil-

tonian mechanics, quantum chromo-dynamics at non-zero chemical potential. See,

e.g., Ipsen (2015) for details.

Assume that m ≥ 1 is an integer. Let X1, · · · ,Xm be m independent and

identically distributed n× n random matrices. The product of the m matrices

X(m) = X1X2 · · ·Xm (1.1)

is an n × n random matrix. The limits of the empirical spectral distributions for

the product X(m) have been studied in the literature. Several authors, e.g., Götze

and Tikhomirov (2010), Bordenave (2011), O’Rourke and Soshnikov (2011) and

O’Rourke et al. (2015) have investigated the limiting empirical spectral distribution

for the product from the complex Ginibre ensemble when m is fixed. Götze, Kösters

and Tikhomirov (2015) and Zeng (2016) have obtained the limiting empirical spec-

tral distribution for the product from the spherical ensemble when m is fixed. Jiang

and Qi (2015b) have investigated the limiting empirical distribution for eigenvalues

of X(m) by allowing that m changes with n. Jiang and Qi (2015b) also consider

the product of truncations of m independent Haar unitary matrices when m = mn

depends on n.

In this paper, we consider the product of m independent matrices from the
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spherical ensemble. Let A and B be two n × n matrices and all of the 2n2 entries

of the matrices are i.i.d. standard complex normal random variables. Then, X :=

A−1B is called a spherical ensemble (Hough et al., 2009). Let z1, · · · , zn be the

eigenvalues of X. Then, their joint probability density function is given by

C1 ·
∏
j<k

|zj − zk|2 ·
n∏
k=1

1

(1 + |zk|2)n+1
, (1.2)

where C1 is a normalizing constant; see, for example, Krishnapur (2009).

Let X1, · · · ,Xm be m independent and identically distributed n × n random

matrices from the spherical ensemble, that is, they have the same distribution as X

defined above. Define the product ensemble X(m) as in (1.1). Again, let z1, · · · , zn
be the eigenvalues of X(m). Then their joint probability density function is given by

Cm ·
∏
j<k

|zj − zk|2 ·
n∏
k=1

wm(zk), (1.3)

where Cm is a normalizing constant, wm(z) is given by

wn(z) =
πm−1

(n!)m
Gm,m
m,m

(
(−n,−n, · · · ,−n)m

(0, 0 · · · , 0)m

∣∣∣|z|2) ,
and Gm,m

m,m

(
(−n,−n,··· ,−n)m

(0,0··· ,0)m

∣∣∣|z|2) is a Meijer G-function. See Adhikari et al. (2016). A

recursive formula for wm is given by

wk+1(z) = 2π

∫ ∞
0

wk(
z

r
)

1

(1 + r2)n+1

d r

r

for k ≥ 1 with initial w1(z) =
1

(1 + |z|2)n+1
, which is obtained by Zeng (2016).

Obviously, (1.3) reduces to (1.2) when m = 1.

Define the empirical spectral distribution (or measure)

µ∗n =
1

n

n∑
j=1

δzj . (1.4)

If m ≥ 1 is a fixed integer, Zeng (2016) has proved that

µ∗n converges weakly to a distribution µ∗ with a density function pm(z) (1.5)
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with probability one, where pm(z) is given by

pm(z) =
1

mπ

|z|2/m−2

(1 + |z|2/m)2
, z ∈ C, (1.6)

and C denotes the complex plane. The universality of convergence in (1.5) is proved

by Götze, Kösters and Tikhomirov (2015). More precisely, without assuming the

normality, Götze, Kösters and Tikhomirov (2015) show that (1.5) holds in proba-

bility for a large class of random matrices satisfying the Lindeberg condition.

For the spherical ensemble i.e. m = 1, (1.5) has been proved in Bordenave

(2011). In fact, Bordenave (2011) has obtained a universal result for the spherical

ensemble without assuming the normality of entries in random matrices A and B.

The maximum absolute value of the eigenvalues, max1≤j≤n |zj|, is called the spectral

radius. For the spherical ensemble, the limiting distribution for the spectral radius

has been obtained in Jiang and Qi (2015a).

In this paper, we will assume that {mn, n ≥ 1} is an arbitrary sequence of

positive integers and consider the product of mn independent matrices from the

spherical ensemble. We are interested in the limiting empirical spectral distribution

of the product ensemble X(mn). By defining a new empirical measure based on

properly scaled eigenvalues of the product ensemble, we show that the limiting

empirical distribution exists and is free of the sequence {mn}. In particular, our

result can reduce to (1.5) when mn = m, where m ≥ 1 is any fixed integer.

2 Main Result

As we assume that mn can change with n, our goal is to define the empirical spectral

distribution in a different way than (1.4) so that the limiting distribution is free of

the sequence {mn}. Note that the eigenvalues z1, · · · , zn for the product X(mn)

defined in (1.1) are complex random variables. Write

θj = arg(zj) ∈ [0, 2π) such that zj = |zj| · eiθj
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for 1 ≤ j ≤ n. To achieve our goal, we define the empirical distribution based on

scaled eigenvalues as

µn =
1

n

n∑
j=1

δ(θj ,|zj |1/mn ). (2.1)

We have the following result on the convergence of µn.

Theorem 2.1. With probability one, µn converges weakly to a probability measure

µ with density

f(θ, r) =
1

π

r

(1 + r2)2
, θ ∈ [0, 2π), r ∈ (0,∞). (2.2)

Remark 1. A complex number z = reiθ should be interpreted as a 2-dimensional

vector (r cos(θ), r sin(θ)) in the definition of the empirical spectral distribution given

in (1.4). Now consider transformation z = ξ(θ, r) = reiθ, θ ∈ [0, 2π), r ∈ (0,∞).

The Jacobian for this transformation is equal to r = |z|. Therefore, if we assume

that (r,θ) is a random vector with probability density f(θ, r) given in (2.2), then

the density function for z = reiθ is

f(z) =
1

π

|z|
(1 + |z|2)2

1

|z|
=

1

π

1

(1 + |z|2)2
, z ∈ C. (2.3)

Now we can apply the continuous mapping theorem and restate Theorem 2.1 as

follows: with probability one, the empirical distribution

1

n

n∑
j=1

δ|zj |1/mneiθj =
1

n

n∑
j=1

δξ(θj ,|zj |1/mn ) = µn ◦ ξ−1

converges weakly to a probability distribution µ ◦ ξ−1 which has density function

f(z) defined in (2.3).

Remark 2. When mn = m for all n, where m ≥ 1 is a fixed integer, we can

show that Theorem 2.1 implies (1.5). In fact, this can be seen from a simple

transformation: z = ξ(θ, r) = rmeiθ. The Jacobian for this transformation is

mr2m−1 = m|z|2−1/m. Again, as in Remark 1, if we assume that (r,θ) is a ran-

dom vector with the probability density given in (2.2), then the density function for
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z = rmeiθ is

1

π

|z|1/m

(1 + |z|2/m)2
1

m|z|2−1/m
=

1

mπ

|z|2/m−2

(1 + |z|2/m)2
, z ∈ C,

which is the same as pm(z) defined in (1.6). Now we can apply the continuous

mapping theorem and obtain that with probability one, the empirical distribution

µ∗n =
1

n

n∑
j=1

δzj =
1

n

n∑
j=1

δξ(θj ,|zj |1/m) = µn ◦ ξ−1

converges weakly to a probability distribution µ ◦ ξ−1 which has density function

pm(z).

Remark 3. Eigenvalues with a joint density with a similar structure to (1.3) form

a determinantal point process. See, e.g., Hough et al. (2009) for properties of

determinantal point processes. Eigenvalues from the product of Ginibre ensembles

and the product of truncations of independent Haar unitary matrices can be also

modeled by determinantal point processes. By developing a special technique for

determinantal point processes, Jiang and Qi (2015b) have obtained the limits for

the empirical spectral distributions for the two aforementioned product ensembles.

3 Proof

The proof of the theorem relies on applications of Theorem 1 and Lemma 2.1 in

Jiang and Qi (2015b).

Let Y1, · · · , Yn be n independent positive random variables such that the density

function of Yj is proportional to y2j−1wmn(y)I(y > 0) for 1 ≤ j ≤ n, where I(A)

denotes the indictor function of a measurable set A. Define the empirical distribution

of Y1, · · · , Yn as

νn =
1

n

n∑
j=1

δ
Y

1/mn
j

.

Assume that {sj,`, 1 ≤ ` ≤ mn, 1 ≤ j ≤ n} are independent random variables,

and the density of sj,` is proportional to yj−1

(1+y)n+1 I(y > 0) for any 1 ≤ ` ≤ mn, 1 ≤
j ≤ n.
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Let Unif[0, 2π] denote the uniform distribution over [0, 2π] and ν denote the

probability measure defined on (0,∞) with density function 2r
(1+r2)2

, r > 0. Then we

see that the probability measure µ with density f(θ, r) given in (2.2) is the product

measure of two probability measures Unif[0, 2π] and ν, that is, µ = Unif[0, 2π]⊗ ν.

We have the following conclusions in our special situation in the present paper.

Result 1. If νn converges weakly to ν with probability one, then µn converges

weakly to µ with probability one. See Theorem 1 in Jiang and Qi (2015b).

Result 2. If for every r > 0

Gn(r) :=
1

n

n∑
j=1

P (Y
1/mn

j ≤ r)→ r2

1 + r2
as n→∞, (3.1)

then νn converges weakly to ν with probability one. Note that the limit r2

1+r2
in

(3.1) is equal to ν((0; r]). See Lemma 2.1 in Jiang and Qi (2015b).

Therefore, to complete the proof of the theorem, it suffices to show (3.1). To

this end, we list some important results we will use in the proof.

Result 3. For each 1 ≤ j ≤ n,

Y 2
j and

mn∏
`=1

sj,` are identically distributed. (3.2)

See Lemma 2.1 in Zeng (2016).

Result 4. For 1 ≤ ` ≤ mn, 1 ≤ j ≤ n− 2,

µj,` := E(sj,`) =
j

n− j
, Var(sj,`) =

nj

(n− j)2(n− j − 1)
, (3.3)

and

E
(
η(
s[nx],`
µ[nx],`

)

)
→ 0 as n→∞ (3.4)

for any x ∈ (0, 1), where η(y) := y − 1− log(y) ≥ 0 for y > 0, and [nx] denotes the

integer part of nx. See the proof of Lemma 2.3 in Zeng (2016).

Result 5. Y 2
1 , · · · , Y 2

n are stochastically increasing, that is,

P (Y 2
1 ≤ x) ≥ P (Y 2

2 ≤ x) ≥ · · · ≥ P (Y 2
n ≤ x) x ≥ 0. (3.5)

See Lemma 2.3 in Zeng (2016).
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Lemma 3.1. We have

log(Y
2/mn

[nx] )→ log
x

1− x
in probability (3.6)

for each x ∈ (0, 1).

Proof. Define Y 2
nj =

∏mn

`=1 sj,`. We will first show that

log(Y
2/mn

n,[nx] ) =
1

mn

mn∑
`=1

log(s[nx],`)→ log
x

1− x
in probability (3.7)

for any x ∈ (0, 1), which is equivalent to

1

mn

mn∑
`=1

log

(
s[nx],`
µ[nx],1

)
→ 0 in probability (3.8)

since µ[nx],1 = [nx]
n−[nx] →

x
1−x from (3.3).

From the definition of η given in Result 4 we have

1

mn

mn∑
`=1

log

(
s[nx],`
µ[nx],1

)
=

1

mn

mn∑
`=1

(
s[nx],`
µ[nx],1

− 1

)
− 1

mn

mn∑
`=1

η

(
s[nx],`
µ[nx],1

)
. (3.9)

Since sj,1, · · · , sj,mn are i.i.d. random variables for each 1 ≤ j ≤ n, we have from

(3.3) that

E

(
1

mn

mn∑
`=1

(
s[nx],`
µ[nx],1

− 1

))2

=
1

mn

Var(s[nx],1)

µ2
[nx],1

=
1

mn

n

[nx](n− [nx]− 1)
→ 0

and

E

(
1

mn

mn∑
`=1

η

(
s[nx],`
µ[nx],1

))
= E

(
η

(
s[nx],1
µ[nx],1

))
→ 0

as n → ∞. From Chebyshev’s inequality, 1
mn

∑mn

`=1(
s[nx],`

µ[nx],1
− 1) converges to zero in

probability as n → ∞, and so does 1
mn

∑mn

`=1 η(
s[nx],`

µ[nx],1
) since 1

mn

∑mn

`=1 η(
s[nx],`

µ[nx],1
) ≥ 0.

In view of (3.9), (3.8) is proved and so is (3.7). Consequently, (3.6) follows from

(3.7) and (3.2). This completes the proof of Lemma 3.1. �

Now we turn to prove (3.1).
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Fix a r ∈ (0,∞). By setting x = r2

1+r2
, we have x ∈ (0, 1) and r2 = x

1−x . Now we

choose a small δ ∈ (0, 1) such that x+ δ ∈ (0, 1) and x− δ ∈ (0, 1). Then it follows

from (3.6) that

log(Y
2/mn

[n(x+δ)])→ log
x+ δ

1− (x+ δ)
in probability

and

log(Y
2/mn

[n(x−δ)])→ log
x− δ

1− (x− δ)
in probability.

Since δ1 := log x+δ
1−(x+δ) − log(r2) > 0 and δ2 := log(r2) − log x−δ

1−(x−δ) > 0, we obtain

from the above two equations that

P (Y
2/mn

[n(x+δ)] ≤ r2) = P

(
log(Y

2/mn

[n(x+δ)])− log
x+ δ

1− (x+ δ)
≤ −δ1

)
→ 0 (3.10)

and

P (Y
2/mn

[n(x−δ)] > r2) = P

(
log(Y

2/mn

[n(x−δ)])− log
x− δ

1− (x− δ)
> δ2

)
→ 0. (3.11)

Therefore, by using (3.5) and (3.10) we have

Gn(r) =
1

n

[n(x+δ)]−1∑
j=1

P (Y
2/mn

j ≤ r2) +
1

n

n∑
j=[n(x+δ)]

P (Y
2/mn

j ≤ r2)

≤ [n(x+ δ)]− 1

n
+
n− [n(x+ δ)] + 1

n
P (Y

2/mn

[n(x+δ)] ≤ r2)

→ x+ δ.

Similarly, in view of (3.5) and (3.11) we obtain

Gn(r) =
1

n

[n(x−δ)]∑
j=1

P (Y
2/mn

j ≤ r2) +
1

n

n∑
j=[n(x−δ)]+1

P (Y
2/mn

j ≤ r2)

≥ [n(x− δ)]− 1

n
P (Y

2/mn

[n(x−δ)] ≤ r2)

→ x− δ.

Consequently, we prove that

x− δ ≤ lim inf
n→∞

Gn(r) ≤ lim sup
n→∞

Gn(r) ≤ x+ δ.
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By letting δ → 0 on both sides above we get limn→∞Gn(r) = x = r2

1+r2
, that is,

(3.1) holds.

This completes the proof of Theorem 2.1.
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