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A CHARACTERIZATION OF A NEW TYPE OF STRONG LAW

OF LARGE NUMBERS

DELI LI, YONGCHENG QI, AND ANDREW ROSALSKY

Abstract. Let 0 < p < 2 and 1 ≤ q < ∞. Let {Xn; n ≥ 1} be a sequence

of independent copies of a real-valued random variable X and set Sn = X1 +
· · ·+Xn, n ≥ 1. We say X satisfies the (p, q)-type strong law of large numbers

(and write X ∈ SLLN(p, q)) if
∑∞

n=1
1
n

(
|Sn|
n1/p

)q
< ∞ almost surely. This

paper is devoted to a characterization of X ∈ SLLN(p, q). By applying results

obtained from the new versions of the classical Lévy, Ottaviani, and Hoffmann-
Jørgensen (1974) inequalities proved by Li and Rosalsky (2013) and by using

techniques developed by Hechner (2009) and Hechner and Heinkel (2010), we

obtain sets of necessary and sufficient conditions for X ∈ SLLN(p, q) for the
six cases: 1 ≤ q < p < 2, 1 < p = q < 2, 1 < p < 2 and q > p, q = p = 1,

p = 1 < q, and 0 < p < 1 ≤ q. The necessary and sufficient conditions

for X ∈ SLLN(p, 1) have been discovered by Li, Qi, and Rosalsky (2011).
Versions of above results in a Banach space setting are also given. Illustrative

examples are presented.

1. Introduction

Throughout, let (B, ‖ · ‖) be a real separable Banach space equipped with its
Borel σ-algebra B (= the σ-algebra generated by the class of open subsets of B
determined by ‖ · ‖) and let {Xn; n ≥ 1} be a sequence of independent copies of
a B-valued random variable X defined on a probability space (Ω,F ,P). As usual,
let Sn =

∑n
k=1Xk, n ≥ 1 denote their partial sums. If 0 < p < 2 and if X is a

real-valued random variable (that is, if B = R), then

lim
n→∞

Sn
n1/p

= 0 almost surely (a.s.)

if and only if E|X|p < ∞ where EX = 0 whenever p ≥ 1. This is the celebrated
Kolmogorov-Marcinkiewicz-Zygmund strong law of large numbers (SLLN); see Kol-
mogoroff [8] for p = 1 and Marcinkiewicz and Zygmund [13] for p 6= 1.

The classical Kolmogorov SLLN in real separable Banach spaces was established
by Mourier [16]. The extension of the Kolmogorov-Marcinkiewicz-Zygmund SLLN
to B-valued random variables is independently due to Azlarov and Volodin [1,
Theorem] and de Acosta [3, Theorem 3.1]. De Acosta [3, Theorem 4.1] also provided
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a remarkable characterization of Rademacher type p (1 ≤ p < 2) Banach spaces via
the SLLN. We refer to Ledoux and Talagrand [9] for the definitions of Rademacher
type p and stable type p Banach spaces.

At the origin of the current investigation is the following recent and striking result
by Hechner [4, Theorem 2.4.1] for p = 1 and Hechner and Heinkel [5, Theorem 5]
for 1 < p < 2 which are new even in the case where the Banach space B is the real
line.

Theorem 1.1. (Hechner [4, Theorem 2.4.1] for p = 1 and Hechner and Heinkel [5,
Theorem 5] for 1 < p < 2). Suppose that B is of stable type p for some p ∈ [1, 2)
and let {Xn; n ≥ 1} be a sequence of independent copies of a B-valued variable X
with EX = 0. Then

∞∑
n=1

1

n

(
E‖Sn‖
n1/p

)
<∞

if and only if 
E‖X‖ ln(1 + ‖X‖) <∞ if p = 1,∫ ∞

0

P1/p (‖X‖ > t) dt <∞ if 1 < p < 2.

Inspired by the above discovery by Hechner [4] and Hechner and Heinkel [5], Li,
Qi, and Rosalsky [10] obtained sets of necessary and sufficient conditions for

∞∑
n=1

1

n

(
‖Sn‖
n1/p

)
<∞ a.s.

for the three cases: 0 < p < 1, p = 1, 1 < p < 2 (see Theorem 2.4, Theorem 2.3,
and Corollary 2.1, respectively of Li, Qi, and Rosalsky [10]). Again, these results
are new when B = R; see Theorem 2.5 of Li, Qi, and Rosalsky [10]. Moreover for
1 ≤ p < 2, Li, Qi, and Rosalsky [10, Theorems 2.1 and 2.2] obtained necessary and
sufficient conditions for

∞∑
n=1

1

n

(
E‖Sn‖
n1/p

)
<∞

for general separable Banach spaces.
Motivated by the results obtained by Li, Qi, and Rosalsky [10], we introduce a

new type strong law of large numbers as follows.

Definition 1.1. Let 0 < p < 2 and 0 < q < ∞. Let {Xn; n ≥ 1} be a sequence
of independent copies of a B-valued random variable X. We say X satisfies the
(p, q)-type strong law of large numbers (and write X ∈ SLLN(p, q)) if

∞∑
n=1

1

n

(
‖Sn‖
n1/p

)q
<∞ a.s.

The following result was recently obtained by Li, Qi, and Rosalsky [11, Theorem
1.3] who proved it by employing new versions of the classical Lévy, Ottaviani, and
Hoffmann-Jørgensen [6] inequalities established by Li and Rosalsky [12] and by
using some of techniques developed by Hechner and Heinkel [5]. Note that no
conditions are imposed on the Banach space B. Theorem 1.2 will be used in the
proofs of the main results of the current work.
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Theorem 1.2. Let 0 < p < 2 and 0 < q < ∞. Let {Xn; n ≥ 1} be a sequence of
independent copies of a B-valued random variable X. Then

(1.1)

∞∑
n=1

1

n
E
(
‖Sn‖
n1/p

)q
<∞

if and only if

(1.2) X ∈ SLLN(p, q)

and

(1.3)



∫ ∞
0

Pq/p (‖X‖q > t) dt <∞ if 0 < q < p,

E‖X‖p ln(1 + ‖X‖) <∞ if q = p,

E‖X‖q <∞ if q > p.

Furthermore, each of (1.1) and (1.2) implies that

(1.4) lim
n→∞

Sn
n1/p

= 0 a.s.

For 0 < q < p, (1.1) and (1.2) are equivalent so that each of them implies that
(1.3) and (1.4) hold.

Remark 1.1. Let q = 1. Then one can easily see that Theorems 2.1 and 2.2 of Li,
Qi, and Rosalsky [10] follow from Theorem 1.2.

Remark 1.2. It follows from the conclusion (1.4) of Theorem 1.2 that, if (1.2) holds
for some q = q1 > 0 then (1.2) holds for all q > q1.

The current work continues the investigations by Hechner [4], Hechner and
Heinkel [5], and Li, Qi, and Rosalsky [10] and [11]. More specifically:

(i) For 0 < p < 1 and p < q < ∞ and without any conditions being imposed
on the Banach space B we obtain in Theorem 2.1 necessary and sufficient
conditions for X ∈ SLLN(p, q).

(ii) For 1 ≤ q < ∞ we obtain assuming the Banach space B is of stable type
p where 1 < p < 2 (Theorem 2.2) or p = 1 (Theorem 2.3) necessary and
sufficient conditions for X ∈ SLLN(p, q).

Theorems 1.2, 2.1, 2.2, and 2.3 are new results when B = R (Theorem 2.4).
When B = R, necessary and sufficient conditions for X ∈ SLLN(p, q) for the

case where 0 < q < 1 ≤ p < 2 and for the case where 0 < q ≤ p < 1 remain open
problems.

The plan of the paper is as follows. The main results are stated in Section 2
and they are proved in Section 3. In Section 4, three examples will be provided for
illustrating the necessary and sufficient conditions obtained in this paper.

2. Statement of the main results

With the preliminaries accounted for, the main results may be stated.
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Theorem 2.1. Let 0 < p < 1 and p < q < ∞. Let {Xn; n ≥ 1} be a sequence of
independent copies of a B-valued random variable X. Then we have the following
two statements:

(a) X ∈ SLLN(p, q) if and only if E‖X‖p <∞,

(b)

∞∑
n=1

1

n
E
(
‖Sn‖
n1/p

)q
<∞ if and only if E‖X‖q <∞.

Let X be a B-valued random variable. For each n ≥ 1, we define the quantile
un of order 1− 1

n of ‖X‖ as follows:

un = inf

{
t : P(‖X‖ ≤ t) > 1− 1

n

}
= inf

{
t : P(‖X‖ > t) <

1

n

}
.

If E‖X‖ <∞, then it is easy to show that limn→∞
un

n = 0.

Theorem 2.2. Let 1 < p < 2 and 1 ≤ q < ∞. Let B be a Banach space of stable
type p. Let {Xn; n ≥ 1} be a sequence of independent copies of a B-valued random
variable X. Then

(2.1) X ∈ SLLN(p, q)

if and only if
(2.2)

EX = 0 and

∫ ∞
0

Pq/p (‖X‖q > t) dt <∞ if 1 ≤ q < p,

E‖X‖p <∞ and

∞∑
n=1

∫ n
min{up

n,n} P (‖X‖p > t) dt

n
<∞ if q = p,

E‖X‖p <∞ if q > p.

Remark 2.1. When q = 1 and B is of stable p where 1 < p < 2, Corollary 2.1 of
Li, Qi, and Rosalsky [10] follows immediately from Theorems 1.2 and 2.2; that is,
(1.1), (1.2), and (2.2) are equivalent.

Note by Lemma 5.6 of Li, Qi, and Rosalsky [10] that

∞∑
n=1

∫ n
min{up

n,n} P (‖X‖p > t) dt

n
<∞ whenever E‖X‖p lnδ(1+‖X‖) <∞ for some δ > 0.

Thus, for the interesting case q = p, Theorem 2.2 yields the following result.

Corollary 2.1. Let 1 < p < 2 and let {Xn; n ≥ 1} be a sequence of independent
copies of a B-valued random variable X. If B is of stable type p, then

X ∈ SLLN(p, p) whenever EX = 0 and E‖X‖p lnδ(1 + ‖X‖) <∞ for some δ > 0.

For the case where 1 < p < 2 and 1 ≤ q < ∞, combining Theorems 1.2 and
2.2, we immediately obtain necessary and sufficient conditions for (1.1) to hold
assuming that B is of stable type p.



A CHARACTERIZATION OF A NEW TYPE OF STRONG LAW OF LARGE NUMBERS 5

Corollary 2.2. Let 1 < p < 2 and 1 ≤ q < ∞. Let X be a B-valued random
variable. If B is of stable type p, then (1.1) holds if and only if

EX = 0 and

∫ ∞
0

Pq/p (‖X‖q > t) dt <∞ if 1 ≤ q < p,

E‖X‖p ln(1 + ‖X‖) <∞ if q = p,

E‖X‖q <∞ if q > p.

Remark 2.2. For the case where q = 1, Corollary 2.2 above is Theorem 1.1 (i.e.,
Theorem 5 of Hechner and Heinkel [5]). Actually Corollary 2.2 for the case where
q = 1 is somewhat stronger than Theorem 5 (necessity half) of Hechner and Heinkel
[5] because EX = 0 is an assumption in Theorem 5 of Hechner and Heinkel [5].

We now present necessary and sufficient conditions for (1.2) for the case where
p = 1 and 1 ≤ q <∞.

Theorem 2.3. Let 1 ≤ q < ∞ and let B be a Banach space of stable type 1. Let
{Xn; n ≥ 1} be a sequence of independent copies of a B-valued random variable
X. Then

(2.3) X ∈ SLLN(1, q)

if and only if
(2.4)

E‖X‖ <∞, EX = 0, and

∞∑
n=1

‖EXI{‖X‖ ≤ n}‖
n

<∞ and

∞∑
n=1

∫ n
min{un,n} P(‖X‖ > t)dt

n
<∞ if q = 1,

∞∑
n=1

‖EXI{‖X‖ ≤ n}‖q

n
<∞ if q > 1.

Remark 2.3. For the case where q = 1, Theorem 2.3 is Theorem 2.3 of Li, Qi, and
Rosalsky [10].

By Lemmas 5.5 and 5.6 of Li, Qi, and Rosalsky [10], (2.4) holds whenever EX = 0
and E‖X‖ ln(1 + ‖X‖) < ∞. Combining Theorems 1.2 and 2.3, we immediately
have the following result.

Corollary 2.3. Let 1 ≤ q <∞ and let B be a Banach space of stable type 1. Let
{Xn; n ≥ 1} be a sequence of independent copies of a B-valued random variable
X. Then (1.1) holds with p = 1 if and only if

EX = 0 and E‖X‖ ln(1 + ‖X‖) <∞ if q = 1,

E‖X‖q <∞ if q > 1.
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As a summary of our Theorems 1.2 and 2.1-2.3 and Corollaries 2.2 and 2.3, we
now present the following theorem for a real-valued random variable X. For q = 1,
the equivalence of (i) and (ii) has recently been obtained by Li, Qi, and Rosalsky
[10], and for 1 = q < p < 2, the equivalence of (iii) and (iv) is due to Hechner
and Heinkel [5] (see Theorem 1.1 above) assuming that EX = 0 for the implication
((iii) ⇒ (iv)).

Theorem 2.4. Let 0 < p < 2 and 1 ≤ q <∞. Let {Xn; n ≥ 1} be a sequence of in-
dependent copies of a real-valued random variable X. The following two statements
are equivalent:

(i) X ∈ SLLN(p, q),

(ii)



EX = 0 and

∫ ∞
0

Pq/p (|X|q > t) dt <∞ if 1 ≤ q < p < 2,

EX = 0, E|X|p <∞, and

∞∑
n=1

∫ n
min{up

n,n} P (|X|p > t) dt

n
<∞ if 1 < q = p < 2,

EX = 0 and E|X|p <∞ if 1 < p < 2 and q > p,

EX = 0,

∞∑
n=1

|EXI {|X| ≤ n} |
n

<∞, and

∞∑
n=1

∫ n
min{un,n} P (|X| > t) dt

n
<∞ if q = p = 1,

EX = 0 and

∞∑
n=1

|EXI {|X| ≤ n}|q

n
<∞ if p = 1 < q,

E|X|p <∞ if 0 < p < 1 ≤ q.
The following two statements are equivalent:

(iii)

∞∑
n=1

1

n
E
(
|Sn|
n1/p

)q
<∞,

(iv)



EX = 0 and

∫ ∞
0

Pq/p (|X|q > t) dt <∞ if 1 ≤ q < p < 2,

EX = 0 and E|X|p ln(1 + |X|) <∞ if 1 ≤ q = p < 2,

EX = 0 and E|X|p <∞ if 1 ≤ p < 2 and q > p,

E|X|q <∞ if 0 < p < 1 ≤ q.

3. Proofs of Theorems 2.1 - 2.3

In this section we denote by Ck positive constants the precise values of which do
not matter.
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First we introduce some notation. Let (ak)1≤k≤n be a finite sequence of real num-
bers and (a∗k)1≤k≤n the nonincreasing rearrangement of the sequence (|ak|)1≤k≤n.
For a given r ≥ 1,

‖(ak)1≤k≤n‖r,∞ = sup
1≤k≤n

k1/ra∗k

is called the weak-`r norm of the sequence (ak)1≤k≤n. Let Vk, 1 ≤ k ≤ n be
independent real-valued random variables. Then the remarkable Marcus-Pisier [14]
inequality asserts that for all r ≥ 1,

(3.1) P
(
‖(Vk)1≤k≤n‖r,∞ > u

)
≤ 2e

ur
sup
t>0

(
tr

n∑
k=1

P (|Vk| > t)

)
∀ u > 0.

The original Marcus-Pisier [14] inequality involved the constant 262 instead of 2e.
The improved constant is due to J. Zinn (see Pisier [17, Lemma 4.11]).

Let X be a B-valued random variable. For each n ≥ 1, let the quantile un of
order 1− 1

n of ‖X‖ be defined as in Section 2. We then see that for every q > 0,

inf

{
t : P (‖X‖q ≤ t) > 1− 1

n

}
= inf

{
t : P (‖X‖q > t) <

1

n

}
= uqn;

i.e., uqn is the quantile of order 1 − 1
n of ‖X‖q. Let {Xn; n ≥ 1} be a sequence of

independent copies of B-valued variable X. Write, for n ≥ 1,

S(1)
n =

n∑
k=1

XkI{‖Xk‖p ≤ k}, S(2)
n = Sn − S(1)

n =

n∑
k=1

XkI{‖Xk‖p > k},

Un =

n∑
k=1

XkI{‖Xk‖p ≤ n}, U (1)
n =

n∑
k=1

XkI{‖Xk‖ ≤ un}, and U (2)
n = Un − U (1)

n .

Motivated by Lemma 1 of Hechner and Heinkel [5] and its proof, we establish the
following result.

Lemma 3.1. Let 1 < p < 2 and 1 ≤ q < p. Let B be a Banach space of sta-
ble type p. Then there exists a universal constant c(p, q) > 0 such that, for ev-
ery finite sequence Vk, 1 ≤ k ≤ n of independent B-valued random variables with
max1≤k≤n E‖Vk‖q <∞,

(3.2) E

∥∥∥∥∥
n∑
k=1

(Vk − EVk)

∥∥∥∥∥
q

≤ c(p, q)

(
sup
t>0

tp/q
n∑
k=1

P (‖Vk‖q > t)

)q/p
.

Remark 3.1. Clearly, if q = 1, then Lemma 3.1 is Lemma 1 of Hechner and Heinkel
[5].

Proof of Lemma 3.1 Let {V ′k; 1 ≤ k ≤ n} be an independent copy of {Vk; 1 ≤
k ≤ n} and let {Rk; 1 ≤ k ≤ n} be a Rademacher sequence independent of
{Vk, V ′k; 1 ≤ k ≤ n}. Since q ≥ 1, g(x) = xp, x ∈ [0,∞) is a convex nonnegative
function. Applying (2.5) of Ledoux and Talagrand [9, p. 46], we have that
(3.3)

E

∥∥∥∥∥
n∑
k=1

(Vk − EVk)

∥∥∥∥∥
q

≤ E

∥∥∥∥∥
n∑
k=1

(Vk − V ′k)

∥∥∥∥∥
q

= E

∥∥∥∥∥
n∑
k=1

Rk (Vk − V ′k)

∥∥∥∥∥
q

≤ 2q−1E

∥∥∥∥∥
n∑
k=1

RkVk

∥∥∥∥∥
q

.

Since B is of stable type p with 1 ≤ p < 2, the Maurey-Pisier [15] theorem asserts
that it is also of stable type r for some r > p. Let (A∗k)1≤k≤n be the nonincreasing
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rearrangement of (‖Vk‖)1≤k≤n. Note that r/q > 1, p/q > 1 (since 1 ≤ q < p < r),
and B is also of Rademacher type r. We thus have that

(3.4)

E

∥∥∥∥∥
n∑
k=1

RkVk

∥∥∥∥∥
q

≤ E

(
E

(∥∥∥∥∥
n∑
k=1

RkVk

∥∥∥∥∥
r∣∣∣∣∣V1, ..., Vn

))1/(r/q)

≤ C1E

(
n∑
k=1

‖Vk‖r
)q/r

= C1E

(
n∑
k=1

(
kr/p (A∗k)

r
)
k−r/p

)q/r

≤ C1E

( sup
1≤k≤n

kq/p(A∗k)q
)( n∑

k=1

k−r/p

)q/r
= C2E

∥∥∥(‖Vk‖q)1≤k≤n

∥∥∥
p/q,∞

.

Write ∆ = supt>0 t
p/q
∑n
k=1 P (‖Vk‖q > t). Using the Marcus-Pisier [14] inequality

(3.1), we have that
(3.5)

E
∥∥∥(‖Vk‖q)1≤k≤n

∥∥∥
p/q,∞

=

(∫ ∆q/p

0

+

∫ ∞
∆q/p

)
P
(∥∥∥(‖Vk‖q)1≤k≤n

∥∥∥
p/q,∞

> t

)
dt

≤ ∆q/p +

∫ ∞
∆q/p

2e∆

tp/q
dt

=

(
1 +

2qe

p− q

)
∆q/p.

Now (3.2) follows from (3.3), (3.4), and (3.5). �

The following nice result is Proposition 3 of Hechner and Heinkel [5].

Lemma 3.2. (Hechner and Heinkel [5]). Let p > 1 and let {Xn; n ≥ 1} be
a sequence of independent copies of a B-valued random variable X. Then the
following three statements are equivalent:

(i)

∫ ∞
0

P1/p(‖X‖ > t)dt <∞;

(ii)

∞∑
n=1

un
n1+1/p

<∞;

(iii)

∞∑
n=1

1

n1+1/p
E
(

max
1≤k≤n

‖Xk‖
)
<∞.

The next lemma and its proof are similar to Lemma 3 of Hechner and Heinkel
[5] and its proof, respectively.
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Lemma 3.3. Let 1 ≤ q < p < 2. Let X be a B-valued random variable with

(3.6)

∫ ∞
0

Pq/p (‖X‖q > t) dt <∞.

If B is a Banach space of Rademacher type q, then

(3.7)

∞∑
n=1

E
∥∥∥(Sn − U (1)

n

)
− E

(
Sn − U (1)

n

)∥∥∥q
n1+q/p

<∞.

Proof. Let fq(t) = P (‖X‖q > t) , t ≥ 0. Since B is a Banach space of Rademacher
type q and(
Sn − U (1)

n

)
−E

(
Sn − U (1)

n

)
=

n∑
k=1

(XkI{‖Xk‖ > un} − EXI{‖X‖ > un}) , n ≥ 1,

by Theorem 2.1 of Hoffmann-Jørgensen and Pisier [7], we have that

(3.8)

E
∥∥∥(Sn − U (1)

n

)
− E

(
Sn − U (1)

n

)∥∥∥q
≤ C3nE ‖XI{‖X‖ > un} − EXI{‖X‖ > un}‖q

≤ C4nE (‖X‖qI {‖X‖q > uqn})

≤ C4

(
uqn + n

∫ ∞
uq
n

fq(t)dt

)
.

Set p1 = p/q, Y = ‖X‖q, and un,q = uqn, n ≥ 1. Noting that p1 > 1 (since
1 ≤ q < p < 2), by Lemma 3.2 (i.e., Proposition 3 of Hechner and Heinkel [5]), it
follows from (3.6) that

(3.9)

∞∑
n=1

uqn
n1+q/p

=

∞∑
n=1

un,q
n1+1/p1

<∞.

Also (3.6) implies that

(3.10)

∞∑
n=1

1

nq/p

∫ ∞
uq
n

fq(t)dt =

∞∑
n=1

n−1/p1

∞∑
j=n

∫ uj+1,q

uj,q

fq(t)dt

=

∞∑
j=1

(∫ uj+1,q

uj,q

fq(t)dt

)
j∑

n=1

n−1/p1

≤ C5

∞∑
j=1

(∫ uj+1,q

uj,q

f1/p1
q (t)dt

)
j1−1/p1

j1−1/p1

≤ C5

∫ ∞
0

f1/p1
q (t)dt

= C5

∫ ∞
0

Pq/p (‖X‖q > t) dt

< ∞.
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The conclusion (3.7) follows from (3.8), (3.9), and (3.10). �

The proof of the next lemma is similar to that of Lemma 4 of Hechner and
Heinkel [5] and Lemma 5.3 of Li, Qi, and Rosalsky [10] and it contains a nice
application of Lemma 3.1 above.

Lemma 3.4. Let 1 ≤ q ≤ p < 2. Let X be a B-valued random variable with (3.6).
If B is a Banach space of stable type p, then

(3.11)

∞∑
n=1

E
∥∥∥U (1)

n − EU (1)
n

∥∥∥q
n1+q/p

<∞.

Remark 3.2. Note that E‖X‖q =
∫∞

0
P (‖X‖q > t) dt. Thus for q = p, (3.6) holds

if and only if E‖X‖p < ∞. By Lemma 3.4, if B is a Banach space of stable type
p ∈ [1, 2), then

(3.12)

∞∑
n=1

E
∥∥∥U (1)

n − EU (1)
n

∥∥∥p
n2

<∞ whenever E‖X‖p <∞.

Proof of Lemma 3.4 Since B is of stable type p, the Maurey-Pisier [15] theorem
asserts that it is also of stable type r for some r > p. Applying Lemma 3.1, there
exists a universal constant 0 < c(r, q) <∞ such that

E
∥∥∥U (1)

n − EU (1)
n

∥∥∥q ≤ c(r, q)

(
sup
t>0

tr/q
n∑
k=1

P (‖Xk‖qI{‖Xk‖ ≤ un} > t)

)q/r

≤ c(r, q)

(
n sup

0≤t≤uq
n

tr/qP (‖X‖q > t)

)q/r
, n ≥ 1.

It is easy to see that for all x > 0,

(∫ x

0

Pq/r (‖X‖q > t) dt

)r/q
≥
(∫ x

0

Pq/r (‖X‖q > x) dt

)r/q
= xr/qP (‖X‖q > x) .

We thus have that

E
∥∥∥U (1)

n − EU (1)
n

∥∥∥q ≤ c(r, q)

(
n sup

0≤t≤uq
n

tr/qP (‖X‖q > t)

)q/r

≤ c(r, q)nq/r
∫ uq

n

0

Pq/r (‖X‖q > t) dt, n ≥ 1.



A CHARACTERIZATION OF A NEW TYPE OF STRONG LAW OF LARGE NUMBERS 11

Let u0 = 0 and note that P (‖X‖q > t) ≥ 1/k for t ∈ [uqk−1, u
q
k), k ≥ 1. It follows

that

∞∑
n=1

E
∥∥∥U (1)

n − EU (1)
n

∥∥∥q
n1+q/p

≤ c(r, q)

∞∑
n=1

1

n1+q/p−q/r

∫ uq
n

0

Pq/r (‖X‖q > t) dt

= c(r, q)

∞∑
k=1

( ∞∑
n=k

1

n1+q/p−q/r

)∫ uq
k

uq
k−1

Pq/r (‖X‖q > t) dt

≤ C6

∞∑
k=1

1

kq/p−q/r

∫ uq
k

uq
k−1

Pq/r (‖X‖q > t) dt

≤ C6

∞∑
k=1

∫ uq
k

uq
k−1

Pq/p (‖X‖q > t) dt

= C6

∫ ∞
0

Pq/p (‖X‖q > t) dt <∞

proving (3.11) and completing the proof of Lemma 3.4. �

Lemma 3.5. Let 1 ≤ p < 2 and let X be a B-valued random variable with E‖X‖p <
∞. Then

(3.13)

∞∑
n=1

1

n2

(
n∑
k=1

E‖X‖I {k < ‖X‖p ≤ n}

)p
<∞,

(3.14)

∞∑
n=1

upn
n2

<∞,

and for every δ > 0,

(3.15)

∞∑
n=1

E‖X‖p+δI {‖X‖p ≤ n}
n1+δ/p

<∞.

Furthermore, if p > 1 then

(3.16)

∞∑
n=1

(E‖X‖I {‖X‖p > n})p

n2−p <∞.

Remark 3.3. For p = 1, (3.13) and (3.14) together are Lemma 5.1 of Li, Qi, and
Rosalsky [10].

Proof of Lemma 3.5 Since upn is the quantile of order 1 − 1
n of ‖X‖p, (3.14)

immediately follows from the second half of Lemma 5.1 of Li, Qi, and Rosalsky
[10].

The proof of (3.15) is easy and we leave it to the reader.
We now show that E‖X‖p <∞ implies (3.13). For n ≥ 2, let

Λn =

n∑
k=2

kP (k − 1 < ‖X‖p ≤ k) , λn,j =
jP (j − 1 < ‖X‖p ≤ j)

Λn
, 2 ≤ j ≤ n.
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Clearly

λn,j ≥ 0, 2 ≤ j ≤ n,
n∑
j=2

λn,j = 1, and Λn ≤ E‖X‖p + 1 <∞, n ≥ 2.

Note that the function φ(t) = tp is convex on [0,∞) and

‖X‖
n∑
k=1

I {k < ‖X‖p ≤ n} =

n∑
k=1

n∑
j=k+1

‖X‖I {j − 1 < ‖X‖p ≤ j}

≤
n∑
j=2

j1+1/pI {j − 1 < ‖X‖p ≤ j} , n ≥ 2.

We thus have that(
n∑
k=1

E‖X‖I {k < ‖X‖p ≤ n}

)p
=

(
E

(
‖X‖

n∑
k=1

I {k < ‖X‖p ≤ n}

))p

≤

E

 n∑
j=2

j1+1/pI {j − 1 < ‖X‖p ≤ j}

p

= Λpn

 n∑
j=2

j1/pλn,j

p

≤ Λpn

n∑
j=2

λn,j

(
j1/p

)p

= Λp−1
n

n∑
j=2

j2P (j − 1 < ‖X‖p ≤ j)

≤ C7

n∑
j=2

j2P (j − 1 < ‖X‖p ≤ j), n ≥ 2.

It now is easy to see that

∞∑
n=1

1

n2

n∑
j=2

j2P (j − 1 < ‖X‖p ≤ j) =

∞∑
j=2

 ∞∑
n=j

1

n2

 j2P (j − 1 < ‖X‖p ≤ j)

≤ C8

∞∑
j=2

jP (j − 1 < ‖X‖p ≤ j)

≤ C8 (E‖X‖p + 1) <∞

thereby proving (3.13).
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We now prove (3.16). Note that for n ≥ 1,

E‖X‖I {‖X‖p > n} ≤
∞∑

j=n+1

j1/pP (j − 1 < ‖X‖p ≤ j)

=

∞∑
j=n+1

j1/p−1 (jP (j − 1 < ‖X‖p ≤ j))

and
∞∑
j=n

jP (j − 1 < ‖X‖p ≤ j) ≤ E‖X‖p + 1.

Thus, by the same arguments used in proving (3.13), we have that

(E‖X‖I {‖X‖p > n})p ≤ C9

∞∑
j=n

j1−p (jP (j − 1 < ‖X‖p ≤ j)) , n ≥ 1.

Since p > 1, we get that
∞∑
n=1

(E‖X‖I {‖X‖p > n})p

n2−p ≤ C9

∞∑
n=1

1

n2−p

∞∑
j=n

j1−p (jP (j − 1 < ‖X‖p ≤ j))

≤ C10

∞∑
j=1

jP (j − 1 < ‖X‖p ≤ j)

≤ C10 (E‖X‖p + 1) <∞
proving (3.16). �

Lemma 3.6. Let 1 ≤ p < 2 and let {Xn; n ≥ 1} be a sequence of independent
copies of a B-valued random variable X with EX = 0 and E‖X‖p < ∞. If B is a
Banach space of Rademacher type p, then
(3.17)

∞∑
n=1

1

n
E


∥∥∥S(1)

n − ES(1)
n

∥∥∥p
n

 <∞ if and only if

∞∑
n=1

1

n
E
(
‖Un − EUn‖p

n

)
<∞.

Proof Note that, for n ≥ 1,(
S(1)
n − ES(1)

n

)
−(Un − EUn) =

n∑
k=1

(XkI{k < ‖Xk‖p ≤ n} − EXI{k < ‖X‖p ≤ n}) .

Then since B is a Banach space of Rademacher type p, by Theorem 2.1 of Hoffmann-
Jørgensen and Pisier [7], we have that

E
∥∥∥(S(1)

n − ES(1)
n

)
− (Un − EUn)

∥∥∥p
≤ C11

n∑
k=1

E ‖XI{k < ‖X‖p ≤ n} − EXI{k < ‖X‖p ≤ n}|p

≤ C12

n∑
k=1

E‖X‖pI{k < ‖X‖p ≤ n}, n ≥ 1.
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Let Y = ‖X‖p. Then it follows from EY < ∞ (since E‖X‖p < ∞) and the first
conclusion of Lemma 3.5 (i.e., (3.13)) that

∞∑
n=1

1

n
E


∥∥∥(S(1)

n − ES(1)
n

)
− (Un − EUn)

∥∥∥p
n

 ≤ ∞∑
n=1

C12

n2

n∑
k=1

EY I{k < Y ≤ n} <∞,

which yields (3.17). �

Proof of Theorem 2.1 To prove Theorem 2.1, we make the following simple ob-
servation. Let 0 < p < q ≤ 1. Let {Xn; n ≥ 1} be a sequence of indepen-
dent copies of a B-valued random variable X with E‖X‖p < ∞. Set p1 = p/q,
Y = ‖X‖q, Yn = ‖Xn‖q, n ≥ 1. Then 0 < p1 < 1 and EY p1 <∞, and

∞∑
n=1

1

n

(
‖Sn‖
n1/p

)q
≤
∞∑
n=1

∑n
k=1 ‖Xk‖q

n1+q/p
=

∞∑
k=1

∞∑
n=k

‖Xk‖q

n1+q/p
≤ C13

∞∑
k=1

k−1/p1Yk <∞ a.s.

(see Theorem 5.1.3 in Chow and Teicher [2, p. 118]). Theorem 2.1 follows immedi-
ately from this observation together with Theorem 1.2 and Remark 1.2. �

Proof of Theorem 2.2 (Sufficiency) Firstly we consider the case where 1 ≤ q <
p < 2. Since EX = 0, we see that

Sn =
(
U (1)
n − EU (1)

n

)
+
(

(Sn − U (1)
n )− E(Sn − U (1)

n )
)
, n ≥ 1

so that, by Lemmas 3.3 and 3.4, (2.2) ensures (1.1) which implies (2.1).
Secondly we consider the case where 1 < p < q. Since B is of stable type p,

the Maurey-Pisier [15] theorem asserts that it is also of stable type p+ δ for some
0 < δ < q − p. By Remark 1.2, (2.1) holds if we can show that

(3.18) X ∈ SLLN(p, p+ δ); i.e.,

∞∑
n=1

1

n

(
‖Sn‖
n1/p

)p+δ
<∞ a.s.

Since EX = 0, we have that, for n ≥ 1,

(3.19)

Sn =

n∑
k=1

XkI{‖Xk‖p ≤ n}+

n∑
k=1

XkI{‖Xk‖p > n}

= (Un − EUn)− nEXI{‖X‖p > n}+

n∑
k=1

XkI{‖Xk‖p > n}.

It is easy to see that{
max

1≤k≤n
‖Xk‖p > n i.o.(n)

}
= {‖Xn‖p > n i.o.(n)} .

Since {Xn; n ≥ 1} is a sequence of independent copies of B-valued random variable
X with E‖X‖p <∞, it follows from the Borel-Cantelli lemma that

P (‖Xn‖p > n i.o.(n)) = 0

and hence

(3.20) P
(

max
1≤k≤n

‖Xk‖p > n i.o.(n)

)
= 0,
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which ensures that

(3.21)

∞∑
n=1

1

n

(
‖
∑n
k=1XkI{‖Xk‖p > n}‖

n1/p

)p+δ
<∞ a.s.

Note that 1 < p < 2 and E‖X‖p <∞ imply that

nE‖X‖I{‖X‖p > n}
n1/p

≤ n1/pE‖X‖p

n1/p
= E‖X‖p, n ≥ 1.

Thus, by (3.16) of Lemma 3.5, we have that

(3.22)

∞∑
n=1

1

n

(
‖nEXI{‖X‖p > n}‖

n1/p

)p+δ

=

∞∑
n=1

1

n

(
‖nEXI{‖X‖p > n}‖

n1/p

)p(‖nEXI{‖X‖p > n}‖
n1/p

)δ

≤ (E‖X‖p)δ
∞∑
n=1

(E‖X‖I{‖X‖p > n})p

n2−p

<∞.
Since B is also of Rademacher type p+ δ, by Theorem 2.1 of Hoffmann-Jørgensen
and Pisier [7], we get that

E ‖Un − EUn‖p+δ ≤ C14nE ‖XI{‖X‖p > n} − EXI{‖X‖p > n}‖p+δ

≤ C15E‖X‖p+δI{‖X‖p > n}, n ≥ 1.

Thus, by (3.15) of Lemma 3.5, we have that

∞∑
n=1

1

n
E
(
‖Un − EUn‖

n1/p

)p+δ
≤ C15

∞∑
n=1

E‖X‖p+δI{‖X‖p > n}
n1+δ/p

<∞

and hence
∞∑
n=1

1

n

(
‖Un − EUn‖

n1/p

)p+δ
<∞ a.s.,

which, together with (3.19), (3.21), and (3.22), ensures (3.18).
Lastly we consider the case where 1 < q = p < 2. Since E‖X‖p < ∞, we have

that

lim
n→∞

upn
n

= 0; i.e., lim
n→∞

un
n1/p

= 0.

Hence we can assume, without loss of generality, that un < n1/p for all n ≥ 1. Since
EX = 0, we have that, for n ≥ 1,
(3.23)

Sn =

n∑
k=1

XkI{‖Xk‖ ≤ un}+

n∑
k=1

XkI{un < ‖Xk‖ ≤ n1/p}+

n∑
k=1

XkI{‖Xk‖ > n1/p}

=
(
U (1)
n − EU (1)

n

)
+
(
U (2)
n − EU (2)

n

)
− nEXI {‖X‖p > n}+

n∑
k=1

XkI {‖Xk‖p > n} .
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Since (3.20) follows from E‖X‖p <∞, we see that

(3.24)

∞∑
n=1

1

n

(
‖
∑n
k=1XkI{‖Xk‖p > n}‖

n1/p

)p
<∞ a.s.

Since p > 1 and E‖X‖p <∞, it follows from (3.16) of Lemma 3.5 that

(3.25)

∞∑
n=1

1

n

(
‖nEXI {‖X‖p > n}‖

n1/p

)p
≤
∞∑
n=1

(E‖X‖I {‖X‖p > n})p

n2−p <∞.

Since E‖X‖p < ∞ and B is a Banach space of stable type p ∈ (1, 2), by Remark
3.2, (3.12) holds, which ensures that

(3.26)

∞∑
n=1

1

n


∥∥∥U (1)

n − EU (1)
n

∥∥∥
n1/p

p

<∞ a.s.

Since B is also a Banach space of Rademacher type p, by Theorem 2.1 of Hoffmann-
Jørgensen and Pisier [7], we have that, for all n ≥ 1,

E‖U (2)
n − EU (2)

n ‖p

≤ C16

n∑
k=1

E
∥∥∥XkI

{
un < ‖Xk‖ ≤ n1/p

}
− E

(
XI

{
un < ‖X‖ ≤ n1/p

})∥∥∥p
≤ 2C16nE (‖X‖pI {upn < ‖X‖p ≤ n})

≤ 2C16nu
p
nP (‖X‖p > upn) + 2C16n

∫ n

up
n

P (‖X‖p > t) dt

≤ 2C16u
p
n + 2C16n

∫ n

up
n

P (‖X‖p > t) dt.

Now (3.14) holds by Lemma 3.5. Thus it follows from (3.14) and (2.2) that

∞∑
n=1

E‖U (2)
n − EU (2)

n ‖p

n2
<∞,

which ensures that

(3.27)

∞∑
n=1

‖U (2)
n − EU (2)

n ‖p

n2
<∞ a.s.

Combining (3.23)-(3.27), we conclude that (2.1) holds for q = p. The proof of the
sufficiency half of Theorem 2.2 is complete. �

Proof of Theorem 2.2 (Necessity) For the case where q 6= p, by Theorem 1.2,
we see that (2.2) follows immediately from (2.1).

We now consider the case where q = p. By Theorem 1.2, (2.1) implies that
EX = 0 and E‖X‖p < ∞. Hence we can assume, without loss of generality, that
upn < n for all n ≥ 1. We thus only need to show that (2.1) (with q = p) implies
that

(3.28)

∞∑
n=1

∫ n
up
n
P (‖X‖p > t) dt

n
<∞.
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To see this, let {X ′, X ′n; n ≥ 1} be an independent copy of {X, Xn; n ≥ 1}. Let

Vn = (XnI {‖Xn‖p ≤ n} −X ′nI {‖X ′n‖p ≤ n}) and Ŝ(1)
n =

n∑
k=1

Vk, n ≥ 1.

Then {Vn; n ≥ 1} is a sequence of independent symmetric B-valued random vari-
ables. By the Borel-Cantelli lemma, it follows from E‖X‖p <∞ that

P (‖Xn‖p > n i.o.(n)) = 0,

which ensures that

S(2)
n =

n∑
k=1

XkI {‖Xk‖p > k} = O(1) a.s. as n→∞

and hence
∞∑
n=1

1

n

(
‖S(2)

n ‖
n1/p

)p
=

∞∑
n=1

‖S(2)
n ‖p

n2
<∞ a.s.

Note that ‖S(1)
n ‖ ≤ ‖Sn‖ + ‖S(2)

n ‖, n ≥ 1. It thus follows from (2.1) (with q = p)
that

(3.29)

∞∑
n=1

‖S(1)
n ‖p

n2
<∞ a.s.

and hence

(3.30)

∞∑
n=1

‖Ŝ(1)
n ‖p

n2
<∞ a.s.

Let an = 1/n2, n ≥ 1. Then

bn =

∞∑
k=n

ak =

∞∑
k=n

1

n2
≤ 2

n
, n ≥ 1

and hence

sup
n≥1

bn‖Vn‖p ≤ sup
n≥1

2

n

(
2n1/p

)p
= 2p+1 a.s.

We thus have that

(3.31) E
(

sup
n≥1

bn‖Vn‖p
)
<∞.

By Theorem 2.4 of Li, Qi, and Rosalsky [11], we conclude from (3.30) and (3.31)
that

∞∑
n=1

E‖Ŝ(1)
n ‖p

n2
<∞;

that is,

(3.32) E

( ∞∑
n=1

‖Ŝ(1)
n ‖p

n2

)
<∞.

By Lemma 3.4 of Li, Qi, and Rosalsky [11], it follows from (3.29) and (3.32) that

E

( ∞∑
n=1

‖S(1)
n ‖p

n2

)
<∞;
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that is,

(3.33)

∞∑
n=1

E‖S(1)
n ‖p

n2
<∞.

Since 1 < p < 2, applying (2.5) of Ledoux and Talagrand [9, p. 46], (3.33) ensures
that

∞∑
n=1

‖ES(1)
n ‖p

n2
<∞

which, together with (3.33), gives

∞∑
n=1

E‖S(1)
n − ES(1)

n ‖p

n2
<∞.

By Lemma 3.6, this is equivalent to

(3.34)

∞∑
n=1

E‖Un − EUn‖p

n2
<∞.

Since ‖U (2)
n − EU (2)

n ‖ ≤ ‖Un − EUn‖ + ‖U (1)
n − EU (1)

n ‖, n ≥ 1 and B is of stable
type p where 1 < p < 2, it follows from Remark 3.2 and (3.34) that

(3.35)

∞∑
n=1

E‖U (2)
n − EU (2)

n ‖p

n2
<∞.

By Lemma 3.1 (ii) of Li, Qi, and Rosalsky [10],

E max
1≤k≤n

‖XkI{upn < ‖Xk‖p ≤ n} − EXI{upn < ‖X‖p ≤ n}‖
p

= E
(

max
1≤k≤n

‖XkI{upn < ‖Xk‖p ≤ n} − EXI{upn < ‖X‖p ≤ n}‖
)p

≤ 2p+1E‖U (2)
n − EU (2)

n ‖p, n ≥ 1.

It thus follows from (3.35) and E‖X‖p <∞ that
∞∑
n=1

Emax1≤k≤n ‖XkI{upn < ‖Xk‖p ≤ n}‖p

n2

≤ 22p
∞∑
n=1

E‖U (2)
n − EU (2)

n ‖p

n2
+ 2p−1

∞∑
n=1

E‖X‖p

n2

<∞,
and hence, by Lemma 5.4 of Li, Qi, and Rosalsky [10], noting that P (‖X‖p > upn) ≤
n−1, n ≥ 1, we get that

(3.36)

∞∑
n=1

E‖X‖pI {upn < ‖X‖p ≤ n}
n

<∞.

Using partial integration, one can easily see that, for n ≥ 1,

(3.37)

∣∣∣∣E‖X‖pI {upn < ‖X‖p ≤ n} − ∫ n

up
n

P (‖X‖p > t) dt

∣∣∣∣ ≤ upn
n

+nP (‖X‖p > n) .
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Since E‖X‖p <∞, we have

(3.38)

∞∑
n=1

nP (‖X‖p > n)

n
=

n∑
n=1

P (‖X‖p > n) <∞,

and, by Lemma 3.5, (3.14) holds. We thus see that (3.28) follows from (3.36), (3.37),
(3.38), and (3.14) thereby completing the proof of the necessity half of Theorem
2.2. �

Proof of Theorem 2.3 We only need to consider the case where q > 1 since for
the case where q = 1, Theorem 2.3 is Theorem 2.3 of Li, Qi, and Rosalsky [10].
Note that {

max
1≤k≤n

‖Xk‖ > n i.o.(n)

}
= {‖Xn‖ > n i.o.(n)}

and for p = 1,

Un =

n∑
k=1

XkI {‖Xk‖ ≤ n} , n ≥ 1.

By the Borel-Cantelli lemma, it thus follows from E‖X‖ <∞ that

P
(

max
1≤k≤n

‖Xk‖ > n i.o.(n)

)
= 0

and hence

P (Sn − Un 6= 0 i.o.(n)) = 0,

which ensures that

(3.39)

∞∑
n=1

1

n

(
‖Sn − Un‖

n

)q
<∞ a.s.

and by the Mourier [16] SLLN, it follows from (2.4) that

(3.40)

lim
n→∞

Un − nE(XI{‖X‖ ≤ n})
n

= lim
n→∞

(
Sn
n
− E(XI{‖X‖ ≤ n})

)
− lim
n→∞

Sn − Un
n

= 0 a.s.

We now show that

(3.41)

∞∑
n=1

1

n

(
‖Un − nE(XI{‖X‖ ≤ n})‖

n

)q
<∞ a.s.

Since B is of stable type 1, the Maurey-Pisier [15] theorem asserts that it is also of
stable type 1 + δ for some 0 < δ < q − 1 and hence

E ‖Un − nE(XI{‖X‖ ≤ n})‖1+δ ≤ C17E
(
‖X‖1+δI{‖X‖ ≤ n}

)
, n ≥ 1.

Thus, by (3.15) (with p = 1) of Lemma 3.5, we conclude that

∞∑
n=1

1

n
E
(
‖Un − nE(XI{‖X‖ ≤ n})‖

n

)1+δ

<∞
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and hence
∞∑
n=1

1

n

(
‖Un − nE(XI{‖X‖ ≤ n})‖

n

)1+δ

<∞ a.s.,

which, together with (3.40), ensures that (3.41) holds since q > 1 + δ. Note that

Sn = (Sn − Un) + (Un − nE(XI{‖X‖ ≤ n})) + nE(XI{‖X‖ ≤ n}), n ≥ 1.

We thus see that (2.3) (with q > 1) follows from (3.39), (3.41), and the second half
of (2.4) (with q > 1).

Conversely, by Theorem 1.2 and the Mourier [16] SLLN, it follows from (2.3)
that EX = 0 and E‖X‖ <∞ and hence (3.39) and (3.41) (since B is of stable type
1) hold. Note that

nE(XI{‖X‖ ≤ n}) = Sn − (Sn − Un)− (Un − nE(XI{‖X‖ ≤ n})) , n ≥ 1.

It thus follows from (2.3), (3.39), and (3.41) that
∞∑
n=1

‖E(XI{‖X‖ ≤ n})‖q

n
=

∞∑
n=1

1

n

(
‖nE(XI{‖X‖ ≤ n})‖

n

)q
<∞

and hence (2.4) holds (with q > 1). The proof of Theorem 2.3 is complete. �

4. Three Examples

Li, Qi, and Rosalsky [10] provided three examples (see, Examples 5.1, 5.2, and 5.3
of Li, Qi, and Rosalsky [10]) for illustrating the necessary and sufficient conditions
that they obtained for (2.3) for the case where q = 1. In this section we provide
three examples to illustrate our Theorems 1.2, 2.2, and 2.3.

Example 4.1. Let 1 < r < p < 2 and let X be a real-valued symmetric random
variable such that

P(X = 0) = b and P(|X| > t) =

∫ ∞
t

1

xp+1 lnr t
dt, t ≥ e,

where b = 1−
∫∞
e

1
xp+1 lnr xdx. Then P(|X| > t) ∼ 1

ptp lnr t as t→∞ and hence, for
1 ≤ q < p,

Pq/p (|X|q > t) = Pq/p
(
|X| > t1/q

)
∼ (qr/p)q/pt−1(ln t)−rq/p as t→∞.

We then see that∫ ∞
0

Pq/p (|X|q > t) dt

 <∞ if p/r < q < p,

=∞ if 1 ≤ q ≤ p/r.
It is also easy to check that E|X|p ln(1 + |X|) = ∞ and E|X|q = ∞ for all q > p.
By Theorem 2.2 and Remark 1.2, for this example, X ∈ SLLN(p, q) if and only if
p/r < q < ∞. However, by Corollary 2.2, (1.1) holds if and only if p/r < q < p.
This means that, if (1.1) holds for some q = q1 > 0, one cannot conclude that (1.1)
holds for either 0 < q < q1 or q > q1.

Example 4.2. Let 1 < p < 2 and let X be a real-valued symmetric random
variable with density function

f(x) =
b

|x|p+1(ln |x|)(ln ln |x|)2
I{|x| > 3},
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where 0 < b <∞ is such that
∫∞
−∞ f(x)dx = 1. Clearly, we have that EX = 0 and

E|X|p <∞. Since

P(|X| > x) ∼ 2b/p

xp(lnx)(ln lnx)2
as x→∞,

we see that

un ∼
(2bn)1/p

(lnn)1/p(ln lnn)2/p
as n→∞

and hence, for all sufficiently large n,∫ n

up
n

P (|X|p > t) dt =

∫ n

up
n

P
(
|X| > t1/p

)
dt

≥
∫ n

3bn
(lnn)(ln lnn)2

b

t(ln t)(ln ln t)2
dt

≥ b

(lnn)(ln lnn)2

∫ n

3bn
(lnn)(ln lnn)2

1

t
dt

∼ b

(lnn)(ln lnn)
as n→∞.

Note that
∞∑
n=3

b

n(lnn)(ln lnn)
=∞

and so
∞∑
n=1

∫ n
min{up

n,n} P (|X|p > t) dt

n
=∞.

By Theorem 2.2 and Remark 1.2, we thus conclude that X /∈ SLLN(p, q) for this
example for all 0 < q ≤ p.

Let 1 < p < 2 and let {Xn; n ≥ 1} be a sequence of independent copies of a
symmetric real-valued random variableX. Then, by either Theorem 2.2 or Theorem
2.4, the following three statements are equivalent:

(i) EX = 0 and E|X|p <∞;
(ii) X ∈ SLLN(p, q) for some q > p;
(iii) X ∈ SLLN(p, q) for all q > p.

However, the following example shows that this is not true when p = 1.

Example 4.3. Let X be a real-valued random variable such that

P
(
X = − 1

1− a

)
= 1− a and P(X > x) =

∫ ∞
x

1

t2(ln t)(ln ln t)2
dt, x ≥ ee

where a =
∫∞
e

1
t2(ln t)(ln ln t)2 dt. Then EX = 0, E|X| < ∞, and, for all sufficiently

large n,

EXI{|X| ≤ n} = −EXI{|X| > n} = −
∫ ∞
n

1

t(ln t)(ln ln t)2
dt = − 1

ln lnn
.
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Note that
∞∑
n=2

1

n(ln lnn)q
=∞ for all q > 1.

Thus for this example, by either Theorem 2.3 or Theorem 2.4, X /∈ SLLN(1, q) for
all q > 1.
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