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Abstract

Consider a Galton–Watson process with immigration. The limiting distributions of the non-
sequential estimators of the o6spring mean have been proved to be drastically di6erent for the
critical case and subcritical and supercritical cases. A sequential estimator, proposed by Sriram
et al. (Ann. Statist. 19 (1991) 2232), was shown to be asymptotically normal for both the sub-
critical and critical cases. Based on a certain stopping rule, we construct a class of two-stage
estimators for the o6spring mean. These estimators are shown to be asymptotically normal for
all the three cases. This gives, without assuming any prior knowledge, a uni:ed estimation and
inference procedure for the o6spring mean. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the pioneering work by Heyde and Seneta (1972, 1974), the study of the
estimation problem for Galton–Watson processes with immigration has drawn much
attention. Early work on the estimates of means of o6spring and immigration dates
back to Smoluchowski (1916). Later work considered under some parametric models
are given in Bhat and Adke (1981), Venkataraman (1982) and Venkataraman and
Nanthi (1982).
Let m denote the mean of the o6spring population. The three cases (subcritical,

critical or supercritical) are distinguished according as m¡ 1, m= 1 or m¿ 1.
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Various estimates of the parameter m can be found in Heyde and Seneta (1971),
Heyde (1970), Quine (1976), Klimko and Nelson (1978) and Wei and Winnicki (1987)
under di6erent cases.
Wei and Winnicki (1990) proposed a uni:ed estimator by using a conditional

weighted least-squares method.
However, the limit distributions for all these estimators of m in the critical case,

drastically di6erent from that of the other two cases, are nonnormal. This raises the
question of how to make inference on m if we have no prior knowledge on m.
Based on full information on both generation sizes and the immigration process,

Sriram et al. (1991) proposed a sequential estimator for m∈ (0; 1]. It is shown that this
sequential estimator is consistent and asymptotically normal. Later, Shete and Sriram
(1998) modi:ed the sequential estimator and constructed a so-called :xed-precision
estimator. The modi:ed estimator is proved to be unbiased for all m∈ (0;∞), as well
as asymptotically eKcient (the same as the sequential estimator) in case m∈ (0; 1]. The
asymptotic properties for both the sequential estimator and the modi:ed estimator are
still unknown for the supercritical case.
The motivation for the sequential estimator, however, comes from the work by Lai

and Siegmund (1983) for autoregressive (AR) processes of order 1. Lai and Siegmund
(1983) proposed a stopping time for AR(1) processes in the context of estimating the
autoregressive parameter � and established the uniform asymptotic normality of the
stopping least-squares estimator in case |�|6 1. Shiryaev and Spokoiny (1997) proved
the asymptotic normality of the sequential least-squares estimator in the case |�|¿ 1
by assuming the normal error with known variance.
This suggests that there may be a uni:ed approach available for :nding the limit dis-

tribution of the sequential estimator for the o6spring mean. Simulation studies in Shete
and Sriram (1998) also give a hint that the sequential estimator might be asymptotically
normal in the supercritical case, while the modi:ed estimator might be asymptotically
a scale mixture of normals. See also Shete (1998).
This paper focuses on the study of sequential estimation for the mean of the o6-

spring. Based on the stopping rule of Sriram et al. (1991), we construct two-stage
estimators which are strongly consistent and asymptotically normal for all m¿ 0. Sec-
tion 2 introduces our two-stage sequential estimators and states the main results of the
paper; Section 3 provides the proofs. Finally, Section 4 demonstrates some simulation
results.

2. Sequential estimation

The branching process with immigration is de:ned by

Zn =
Zn−1∑
k=1

	n−1; k + Yn; n¿ 1; (2.1)

where Zn is the size of the nth generation of a population, 	n−1; k is the number of
o6spring of the kth individual belonging to the (n − 1)th generation and Yn denotes
the number of immigrants in the nth generation.
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Suppose that {	n−1; k ; n¿ 1; k¿ 1} and {Yn; n¿ 1} are independent array and
sequence of independent and identically distributed (i.i.d.) integer-valued random vari-
ables. The initial size Z0 is a random variable independent of {	n;j} and {Yn}. The
o6spring and the immigration are assumed to have unknown means m and �, and
variances 2 ∈ (0;∞) and 2Y ∈ (0;∞), respectively.
Throughout we assume that both {Zn} and {Yn} are observable. A natural estimator

for the o6spring mean is given by

m̂n =
n∑
i=1

(Zi − Yi)

/
n∑
i=1

Zi−1: (2.2)

The estimator can be shown to be an MLE of m if one assumes the power-series o6-
spring and immigration distribution (a power-series distribution F has the form F(u)=
a(u)� u=A(u), for u¿ 0, where a(u)¿ 0 and A(�) =

∑∞
u=0 a(u)�

u for 0¡�¡� ∗).
Instead of using a :xed number of observations, Sriram et al. (1991) de:ned the

stopping rule by

Nc = inf

{
n¿ 1:

n∑
i=1

Zi−1¿ c2
}
; (2.3)

where c¿ 0 is chosen appropriately. The sequential estimator of m is then given by
m̂Nc . The 

2 is involved in the de:nition of Nc in order to prove the uniformly asymp-
totic normality and to control the expected mean squared error of estimation. The Nc
is well de:ned if 2 is known.
For simplicity of proofs, in this paper we assume 2 is known in de:nition (2.3).

When 2 is unknown, one can absorb the 2 into the constant c and instead de:ne

N (c) = inf

{
n¿ 1:

n∑
i=1

Zi−1¿ c

}
(2.4)

and then use m̂N (c) as a sequential estimator of m.
Now let G=G(c; Nc)¿Nc be an integer-valued function of c and Nc satisfying that

as c → ∞,

G(c; Nc)− Nc
c�

→ 0 a:s: for some �∈ (0; 12 ) if m∈ (0; 1] (2.5)

or

G(c; Nc)− Nc → ∞ a:s: if m¿ 1: (2.6)

Our two-stage sequential estimator is de:ned by m̂G. The main result of the paper
is the following theorem.

Theorem 2.1. m̂G converges almost surely to m as c tends to in4nity. If G=G(c; Nc)
satis4es (2.5) and (2.6); then(

G∑
i=1

Zi−1

)1=2
m̂G − m


d→N(0; 1): (2.7)
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Note 1. It is easy to show that conditions (2.5) and (2.6) can be satis:ed for a wide
class of functions. To this end; let g(c) be any integer-valued function satisfying

lim
c→∞ g(c) =∞ and lim

c→∞
g(c)
c�

= 0 for some �∈ (0; 12 ): (2.8)

If we set G = G(c; Nc) = g(c) + Nc; then (2.5) and (2.6) hold automatically.
We may also de:ne G(c) = G(c; Nc) = max(g(c); Nc), i.e.

G(c) = inf

{
n¿ g(c):

n∑
i=1

Zi−1¿ c2
}
;

where g(c) satis:es

lim
c→∞

g(c)
log c

=∞

in addition to (2.8). To prove (2.5) and (2.6), we need the following lemma.

Lemma 2.2. Let Nc be de4ned as in (2.3).
(i) If m∈ (0; 1), then

lim
c→∞

Nc
c

=
(1− m)2

�
a:s:

(ii) if m= 1, then

lim inf
c→∞

Nc√
c=log c

=∞ and lim sup
c→∞

Nc
c
¡∞ a:s:

(iii) if m¿ 1, then

lim
c→∞

Nc
log c

=
1

logm
a:s:

It is obvious from Lemma 2.2 that if m6 1

lim
c→∞

Nc
g(c)

=∞ a:s:

and thus G = Nc a.s. eventually, and if m¿ 1 then

lim
c→∞

Nc
g(c)

= 0 a:s:

and G = g(c) a.s. eventually. Therefore, both (2.5) and (2.6) are trivial.

Note 2. Theorem 2.1 remains true if one replaces Nc by N (c). And if 2 is unknown;
one must proceed in this way. But to give an asymptotic con:dence interval for m we
still need an estimator for 2. Shete and Sriram (1998) de:ned the following estimator:

̂2n =
1
n

n∑
i=1

(Zi − m̂nZi−1 − Yi)2

Zi−1
: (2.9)
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They proved that ̂2n → 2 a.s. as n → ∞ provided that E	41;1¡∞. Since G → ∞
a.s.; it is trivial that ̂2G → 2 a.s. as c → ∞. An immediate consequence is obtained
as follows.

Corollary 2.3. Assume that G=G(c; N (c)); where N (c) is de4ned as in (2.4); satis4es
conditions (2.5) and (2.6) when Nc is replaced by N (c); and that E	41;1¡∞. Then(

G∑
i=1

Zi−1

)1=2
m̂G − m
̂G

d→N(0; 1):

3. Proofs

Let {	i} be i.i.d. random variables distributed the same as 	1;1 and independent of
Z0 and {Yn}.
For any nonnegative integer t de:ne

S1(t) = Z ′
0(t) = t and Z ′

1(t) =
Z′
0 (t)∑
i=1

	i + Y1:

Recursively, for n¿ 2 de:ne

Sn(t) =
n∑
i=1

Z ′
i−1(t) and Z ′

n(t) =
Sn(t)∑

i=Sn−1(t)+1

	i + Yn:

Then, it is easy to show that the sequences {Zn−1; Yn; n¿ 1} and {Z ′
n−1(Z0); Yn; n¿ 1}

have the same joint distribution. This can be done by showing that {Zn−1} and {Z ′
n−1},

given {Yn; n¿ 1}, have the same joint distribution. Thus, without loss of generality,
we can simply assume

m̂n =
n∑
i=1

(Z ′
i − Yi)

/
n∑
i=1

Z ′
i−1

and

Nc = inf{n¿ 1: Sn¿ c2};
where Z ′

i and Sn denote for Z ′
i (Z0) and Sn(Z0), respectively when the initial population

size is Z0.
Obviously,

m̂n − m=
1
Sn

Sn∑
i=1

(	i − m): (3.1)

Note that Nc is well de:ned. Since Sn¿
∑n−1

i=1 Yi, we have Sn → ∞ a.s. by the
strong law of large numbers. Thus, P(Nc ¡∞) = 1 and Nc → ∞ a.s. as c → ∞.

Lemma 3.1. Assume m∈ (0; 1] then Z ′
n = o(n log n) a.s.
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Proof. The proof follows from that of Lemma 2.1 in Wei (1991).

Lemma 3.2. For c¿ 0; {	Nc+j; j¿ 1} and (SNc ; Z
′
Nc ; Nc) are independent; and more-

over; {	Nc+j; j¿ 1} is a sequence of i.i.d. random variables distributed as 	1.

The proof of the lemma is simple and is omitted.
Since Lemma 2.2 will be used in the proof of Theorem 2.1, we will prove it :rst.

Proof of Lemma 2.2. (i) See Sriram et al. (1991) for m∈ (0; 1).
(ii) Let m= 1.
Note that Sn¿

∑n−1
i=1 Yi. By the strong law of large numbers, lim inf n→∞ Sn=n¿ �

a.s. and hence lim inf c→∞ SNc−1=(Nc − 1)¿ �. Therefore, lim supc→∞ Nc=c¡∞ a.s.
since SNc−1¡c2.
From Lemma 3.1 we have Sn =

∑n
i=1 Zi−1 = o(n2 log n) a.s., which yields

N 2
c logNc
c

→ ∞ a:s:

Hence

Nc(log c)1=2

c1=2
→ ∞ a:s:

(iii) For the supercritical case m¿ 1, let Wn = Z ′
n=m

n. Seneta (1970) showed that

Wn → W a:s:; where W is a positive random variable:

So we can conclude that
Sn
mn → W

m− 1
a:s: (3.2)

which simply implies part (iii) of the lemma.

The following lemma is a generalization of Theorem 17.1 of Billingsley (1968,
p. 146).

Lemma 3.3. Assume that {"j; j¿ 1} is a sequence of i.i.d. random variables with
E"1 =0 and E"21 =1 and {Hn} is a sequence of random vectors. For each n¿ 1; {"j}
and Hn are independent. If {vn} and {un} are two sequences of integer-valued random
variables such that vn is measurable with respect to (Hn) and un is the function of
{"j} and Hn; namely un = fn(Hn; "j; j¿ 1); with

un
vn

→ 1 in probability; (3.3)

then

P

(∑un
j=1 "j√
un

6 x|Hn

)
→ -(x) in probability (3.4)

for any x∈R; where -(x) is the standard normal distribution function.
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Proof. In a large probability space; we can always de:ne a sequence of independent
random variables; say; {H ′

n}; independent of {"j}; so that for each n¿ 1; H ′
n and Hn

have the same distribution. Then by de:ning u′n = fn(H ′
n; "j; j¿ 1) we have

P


∑u′n

j=1 "j√
u′n

6 x|H ′
n


 d= P

(∑un
j=1 "j√
un

6 x|Hn

)
:

Thus; without loss of generality; we can assume that Hn’s are independent. Set F =
(Hn; n¿ 1). Then {"j} is independent of F. So with probability 1

P

(∑n
j=1 "j√
n

6 x|F
)

→ -(x) for all x∈R:

To prove (3.4), we need only to show that for any given sequence of integers, say,
{n′}, there exists its subsequence along which (3.4) holds.
Now (3.3) implies that for some sequence {.n}

lim
n→∞P

(∣∣∣∣unvn − 1
∣∣∣∣¿.n

)
= 0 where lim

n→∞ .n = 0:

Therefore, we have

P
(∣∣∣∣unvn − 1

∣∣∣∣¿.n|F
)

→ 0 in probability:

Now we know that there exists a subsequence, {n′′}, of {n′} such that

P
(∣∣∣∣un′′vn′′

− 1
∣∣∣∣¿.n′′ |F

)
→ 0 a:s:

which implies that conditional on F,
un′′
vn′′

→ 1 in probability:

Since vn is F-measurable, by applying Theorem 17.1 of Billingsley we have with
probability 1,

P

(∑un′′
j=1 "j√
un′′

6 x|F
)

→ -(x)

for all x∈R. And the lemma follows immediately from the relation

P

(∑un
j=1 "j√
un

6 x|Hn

)
= P

(∑un
j=1 "j√
un

6 x|F
)

a:s:

That completes the proof.

Proof of Theorem 2.1. In view of (3.1); the almost sure convergence of m̂n follows
from the strong law of large numbers and that Sn → ∞ a.s. as n → ∞. And then the
strong convergence of m̂G follows from that of m̂n since G → ∞ a.s.



48 Y. Qi, J. Reeves / Stochastic Processes and their Applications 100 (2002) 41–51

We turn to the proof of the asymptotic normality of m̂G. Note that

m̂G − m=
1
SG

SG∑
i=1

(	i − m):

For the case m6 1, if we can prove that

SG
c2

→ 1 in probability (3.5)

then as in Sriram et al. (1991) we can apply Theorem 17.1 in Billingsley (1968,
p. 146) to get (2.7). From Sriram et al. (1991)

SNc
c2

→ 1 a:s: (3.6)

and from Eq. (2.5) and Lemma 2.2

G
Nc

→ 1 a:s:

If m¡ 1, then from the ergodic property (see e.g. Wei and Winnicki, 1989, 1990)
we have

1
n
Sn → �

1− m
a:s:

So

SG
c2

=
1
2

SG
G

G
Nc

Nc
c

→ 1 a:s:;

i.e. (3.5) holds.
In the case m = 1, Sriram et al. (1991) showed Nc=

√
c converges in distribution.

Therefore, by Lemma 3.1 and (2.5) we obtain

SG − SNc
c

=
o(G logG)(G(c; Nc)− Nc)

c
=

o(Nc logNc)c�

c
= op

(
log c
c1=2−�

)
= op(1)

which, together with (3.6), yields (3.5).
Now we focus on the case m¿ 1. By (3.6) it suKces to show

1

√
SG

SNc∑
i=1

(	i − m) → 0 in probability (3.7)

and

1

√
SG

SG∑
i=SNc+1

(	i − m) d→N(0; 1): (3.8)

Let Tn =
∑n

i=1 (	i − m). It is well known that

1√
n

max
16i6n

|Ti| converges in distribution: (3.9)
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Since SNc−1¡c26 SNc and SNc =SNc−1 → m a.s. as c → ∞ from (3.2), we have
that with probability 1

SNc ¡ [2mc2] ultimately;

where [x] denotes the largest integer less than x. Thus, to show (3.7) it suKces to
prove

1√
SG

max
16i6[2mc2]

|Ti| → 0 in probability:

This is trivial by virtue of (3.8) from observing that
SG

mG−NcSNc
→ 1 a:s: (3.10)

from (2.6) and (3.2) and

lim inf
c→∞

SG
[2mc2]

= lim inf
c→∞

SG
SNc

SNc
[2mc2]

¿ lim inf
c→∞ mG−Nc c

[2mc2]
=∞ a:s:

from (2.6).
From (3.10),

SG − SNc
mG−Nc SNc

→ 1 a:s: (3.11)

and hence, proving (3.8) is equivalent to demonstrating

1


√
SG − SNc

SG∑
i=SNc+1

(	i − m) d→N(0; 1): (3.12)

In fact, we need only to prove (3.12) along any given subsequence. We will focus
on a given {cn} with cn → ∞.
Let Hn = (Rn; Nn; Qn) be distributed as (SNcn ; Ncn ; Z

′
Ncn

) and independent of {	j} and
{Yj}. Then from Lemma 3.2

1

√
SG(cn;Ncn ) − SNcn

SG∑
i=SNcn+1

(	i − m) d=
1


√
S2n(Qn)

S2n (Qn)∑
i=1

(	i − m); (3.13)

where 2n :=G(cn; Nn)− Nn depends only on cn and Nn.
Since S2n(Qn) and SG − SNc have the same distribution, we have from (3.11) that

S2n(Qn)
m2nRn

→ 1 in probability:

Thus, in view of Lemmas 3.2 and 3.3, (3.12) is proved.

4. Simulations

In this section we report some simulation results.
In our simulations we assume that the o6spring follows a geometric (p) distribution.

Note the mean m= (1− p)=p and the variance 2 = (1− p)=p2. Thus, m¡ 1, m= 1
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Table 1
Subcritical case (p = 0:8; m = 0:25; 2 = 0:3125)

c Ave of m̂ RMSE of m̂ Ave of G

100 0.248196 0.0867666 11.4637
200 0.249163 0.0654826 19.4177
300 0.250260 0.0543926 28.0401
400 0.249691 0.0472902 35.8652
500 0.250087 0.0427055 43.8015

Table 2
Critical case (p = 0:5; m = 1; 2 = 2)

c Ave of m̂ RMSE of m̂ Ave of G

100 0.991870 0.0809523 15.1897
200 0.995480 0.0602316 20.6430
300 0.995999 0.0501390 24.8959
400 0.996531 0.0439171 28.6094
500 0.997357 0.0392181 31.6325

Table 3
Supercritical case (p = 0:2; m = 4; 2 = 20)

c Ave of m̂ RMSE of m̂ Ave of G

100 4.000039 0.0360439 7.5178
200 4.000292 0.0249652 8.1392
300 4.000068 0.0186907 8.5771
400 4.000109 0.0158365 8.9125
500 3.999994 0.0135867 9.1645

or m¿ 1 according as p¿ 0:5, p = 0:5 or p¡ 0:5. The immigration is assumed to
have a uniform distribution over {1; 2; 3; 4; 5}. The initial population Z0 is set as 1.

We simulated the data by selecting p from 0:2 to 0:8 with increments of 0:1 and
c from 100 to 500 with increments of 100. Since these results are quite similar, we
report only three cases with p=0:2, 0:5 and 0:8, corresponding to the means m=4, 1
and 0:25, which cover the supercritical, critical and subcritical cases (Tables 1–3).
Here, we choose G(c; Nc) = g(Nc) + Nc, where g(x) = [log(x)], the integer part of

log(x). Then it is easily checked that both (2.5) and (2.6) hold.
The tables include the information:

Ave of m̂= average of m̂G from 10; 000 simulations;

RMSE of m̂= root of mean squared error of m̂G =

√
1

10; 000

∑
(m̂G − m)2

and

Ave of G = average of G from 10; 000 simulations:
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