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Summary

We suggest censored maximum likelihood estimators for the first and second order parameters

of a heavy tailed distribution by incorporating the second order regular variation into the

censored likelihood function. This approach is different from the bias-reduced MLE proposed

by Feuerverger & Hall (1999). In comparison with Feuerverger & Hall (1999), we derive the

joint asymptotic limit for the first and second order parameters under a weaker assumption. We

also demonstrate through a simulation study that our estimator for the first order parameter

is better than that proposed by Feuerverger & Hall (1999) although these two estimators have

the same asymptotic variances.

Key words: Bias, censored likelihood function, Hill estimator, second order regular variation,

tail index.

1. Introduction

In order to estimate high quantiles or extreme tail probabilities of an unknown distribution

function, we have to estimate beyond the observations, so extra assumptions on the underlying

distribution function are needed. One approach is to assume that the underlying distribution

has a heavy tail; see Hall & Weissman (1997), Danielsson, Hartman & de Vries (1998), Daniels-

son & de Vries (1997), and Embrechts, Resnick & Samorodnitsky (1998). Thus, estimating the
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tail index of a heavy tailed distribution is of both practical and methodological importance,

and many different estimators have been proposed. See, e.g., Hill (1975), Hall (1982b), Csörgő,

Deheuvels & Mason (1985), Csörgő & Viharos (1997), and de Haan & Peng (1998). Since we

make inference about the tail quantity, we can only employ upper k order statistics of a sample

size n, where k = k(n) →∞ and k/n → 0 as n →∞. When k is small, the variance of the tail

index estimator is large. However, the use of large k will introduce a big bias in the estimation,

so the choice of k plays an important role. Recently, several procedures have been proposed to

choose the optimal k in the sense of asymptotic minimal mean squared error; see Hall (1990),

Dekkers & de Haan (1993), Beirlant et al. (1996), Drees & Kaufmann (1998), and Danielsson

et al. (2001). Since the optimal choice of k depends on the second order regular variation

parameter, which is usually hard to estimate accurately, some new estimators are proposed to

reduce the bias term (see Beirlant et al. (1999) and Guillou & Hall (2001)).

Suppose X1, . . . , Xn are i.i.d. random variables with common distribution function F which

satisfies

lim
t→∞

1− F (tx)

1− F (t)
= x−α, x > 0, (1)

where α > 0 is termed as the tail index or first order regular variation parameter. One of the

well-known estimators for the index α is Hill estimator (Hill, 1975) defined as

α̂H(k) = (
1

k

k∑
i=1

log Xn,n−i+1 − log Xn,n−k)
−1,

where Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of the random variables X1, · · · , Xn. Let

Yi = i log(Xn,n−i+1/Xn,n−i) for i = 1, · · · , k. Then it can be shown that, for any fixed k ≥ 1,

as n →∞
(Yi, 1 ≤ i ≤ k)

d→ (α−1Wi, 1 ≤ i ≤ k),

where the (Wi, 1 ≤ i ≤ k) are independent exponential random variables with mean one (see,

e.g, Weissman (1978)). Therefore, the Hill estimator can be viewed as the asymptotic sample

mean of the random variables (α−1Wi, 1 ≤ i ≤ k). For the consistency of α̂H(k) we refer

to Mason (1982). In order to derive the asymptotic normality of α̂H(k), we need a stricter

condition than (1). Suppose that as x →∞,

1− F (x) = cx−α + dx−β + o(x−β), (2)

where c > 0, d 6= 0, and β > α > 0. Here β is called the second order regular variation

parameter. Note that (2) is a special case of the general second order regular variation (see de

Haan & Stadtmüller (1996)). Under condition (2) it can be shown that, if
√

k(n/k)1−β/α →
λ ∈ [0,∞), √

k(α̂H(k)− α)
d→ N

(
λαβ−1(β − α)dc−β/α, α2

)
, (3)
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(see Hall & Welsh (1985) or de Haan & Peng (1998)). Hence the optimal choice of sample

fraction is

k∗ =
(
2−1αβ2(β − α)−3d−2c2β/α

) α
2β−α n

2β−2α
2β−α (4)

in the sense of minimal asymptotic mean squared error of the Hill estimator. By noting that

Yi ∼ Wiα
−1 exp

(
D1(

i

n
)β1

)
,

where β1 = β/α − 1 and D1 = (1 − β/α)c−β/αd, Feuerverger & Hall (1999) regarded Yi as

exponential with mean α−1 exp
(
D1(i/n)β1

)
rather than α−1, and then estimated α, D1, β1 by

the maximum likelihood method. This results in the estimator

α̂FH(k) =
(
k−1

k∑
i=1

Yi exp
(−D1(

i

n
)β1

))−1

, (5)

where (D1, β1) was chosen to minimize

L1(D1, β1) = k−1D1

k∑
i=1

(
i

n
)β1 + log

(
k−1

k∑
i=1

Yi exp
(−D1(

i

n
)β1

))
. (6)

This approach reduces bias by an order of magnitude without inflating the order of variance.

The determination of the optimal sample fraction k∗ in (4) depends on both the first and

the second order parameters, α and β, of the underlying distribution (2). Thus the estimation

of the second order parameter is also desired in practice. In this paper we first derive the Hill

estimator as the maximum likelihood estimator for left censored data, rather than based on

an asymptotic exponential distribution, and then we can incorporate the second order regular

variation into the censored likelihood, which introduces new estimators for the first and second

order parameters. This new procedure allows a simultaneous estimation for both α and β, and

permits a larger range of sample fraction for the new estimator of the first order parameter α

without introducing any bias. The detailed methodology and main results are given in Section

2, which shows that our new estimator for α has the same asymptotic variance as α̂FH(k)

defined in (5). In comparison with Feuerverger & Hall (1999), we are able to derive the joint

asymptotic distribution for estimators of the first and second order parameters under a weaker

assumption. A simulation study and a real application are presented in Section 3, where our new

estimator for the first order parameter is shown to have a better performance than α̂FH(k) in

Feuerverger & Hall (1999), although these two estimators have the same asymptotic variances.

All proofs are deferred till Appendix.

2. Methodology

Let T = T (n) → ∞ as n → ∞, and define δi = I(Xi > T ) for i = 1, · · · , n. Since we

can only use a part of upper order statistics to make inference, we view our observations as
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(
(Xi ∨ T, δi), 1 ≤ i ≤ n

)
instead of (Xi, 1 ≤ i ≤ n). If we approximate 1 − F (x) by cx−α as

x > T , then the likelihood for
(
(Xi ∨ T, δi), 1 ≤ i ≤ n

)
is approximately

L(α, c) = Πn
i=1(cαX−α−1

i )δi(1− cT−α)1−δi .

Hence we have

(α̃, c̃) = argmaxα>0,c>0L(α, c) =
( ∑n

i=1 δi∑n
i=1 δi(log Xi − log T )

, n−1T α̃

n∑
i=1

δi

)
.

So if T is chosen as Xn,n−k, then α̃ becomes the Hill estimator α̂H(k). A somewhat similar

approach was used by Hall (1982a) to derive the MLE for the endpoint of a distribution.

Next let us approximate 1 − F (x) by cx−α + dx−β as x > T . Then the likelihood for(
(Xi ∨ T, δi), 1 ≤ i ≤ n

)
is approximately

L(α, c, β, d) = Πn
i=1(cαX−α−1

i + dβX−β−1
i )δi(1− cT−α − dT−β)1−δi .

Therefore our new estimators can be obtained as

(ᾱ, c̄, β̄, d̄) = argmax(α>0,c>0,β>α,d 6=0)L(α, c, β, d),

i.e., (ᾱ, c̄, β̄, d̄) is the solution of the following equations (7) – (10):

∂ log L(α, c, β, d)

∂α
=

n∑
i=1

δi(cX
−α−1
i − cαX−α−1

i log Xi)

cαX−α−1
i + dβX−β−1

i

+
cT−α log T

1− cT−α − dT−β

n∑
i=1

(1−δi) = 0, (7)

∂ log L(α, c, β, d)

∂c
=

n∑
i=1

δiαX−α−1
i

cαX−α−1
i + dβX−β−1

i

− T−α

1− cT−α − dT−β

n∑
i=1

(1− δi) = 0, (8)

∂ log L(α, c, β, d)

∂β
=

n∑
i=1

δi(dX−β−1
i − dβX−β−1

i log Xi)

cαX−α−1
i + dβX−β−1

i

+
dT−β log T

1− cT−α − dT−β

n∑
i=1

(1−δi) = 0, (9)

∂ log L(α, c, β, d)

∂d
=

n∑
i=1

δiβX−β−1
i

cαX−α−1
i + dβX−β−1

i

− T−β

1− cT−α − dT−β

n∑
i=1

(1− δi) = 0 (10)

under the constraints

β > α > 0, c > 0, d 6= 0. (11)

It follows from (7) – (10) that

c̄ =
αβT α

α− β

(∑n
i=1 δi

nβ
−

∑n
i=1 δi(log Xi − log T )

n

)
(12)
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and

d̄ =
αβT β

β − α

(∑n
i=1 δi

nα
−

∑n
i=1 δi(log Xi − log T )

n

)
. (13)

See Appendix for detail. Write

{
H̄(α) =

Pn
i=1 δi

nα
−
Pn

i=1 δi log(Xi/T )

n

Q̄i(α, β) = α
(Pn

i=1 δi

n
+ αβ

α−β
H̄(α)

)
(Xi

T
)β−α − αβ2

α−β
H̄(α).

Substituting (12) and (13) into (10), we obtain

1

n

n∑
i=1

δiQ̄
−1
i (α, β) = β−1. (14)

Substituting (12) and (13) into (9) and using (14) we have

1

n

n∑
i=1

δiQ̄
−1
i (α, β) log

Xi

T
= β−2. (15)

For simplicity, take T = Xn,n−k and define

{
H(α) = 1

α
− 1

k

∑k
i=1 log

Xn,n−i+1

Xn,n−k

Qi(α, β) = α
β

(
1 + αβ

α−β
H(α)

)
(

Xn,n−i+1

Xn,n−k
)β−α − αβ

α−β
H(α).

Thus (14) and (15) become

1

k

k∑
i=1

Q−1
i (α, β) = 1 (16)

and
1

k

k∑
i=1

Q−1
i (α, β) log

Xn,n−i+1

Xn,n−k

= β−1. (17)

Put

β > α > 0 and β > α̂H(k). (18)

The reason why we confine β > α̂H(k) is that β = α̂H(k) is an obvious solution to (16) for any

fixed α < α̂H(k). Note that for any fixed β > α0, where α0 is the true parameter,

{
1
k

∑k
i=1 Q−1

i (α̂H(k), β)
p→ 1

1
k

∑k
i=1 Q−1

i (α̂H(k), β) log
Xn,n−i+1

Xn,n−k

p→ β−1

as k →∞, k/n → 0.

Let U(x) denote the inverse function of 1/
(
1− F (x)

)
. Then (2) implies that for any x > 0

lim
t→∞

U(tx)/U(t)− x1/α

A(t)
= x1/α x1−β/α − 1

1− β/α
,
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i.e.,

lim
t→∞

log U(tx)− log U(t)− α−1 log x

A(t)
=

x1−β/α − 1

1− β/α
,

where

A(t) = −α−2(β − α)dc−β/αt1−β/α. (19)

Suppose there exists a function B(t) → 0, with constant sign near infinity, such that

lim
t→∞

log U(tx)−log U(t)−α−1 log x
A(t)

− x1−β/α−1
1−β/α

B(t)
=

1

ρ
(
x1−β/α+ρ − 1

1− β/α + ρ
− x1−β/α − 1

1− β/α
) = h(x), (20)

where ρ ≤ 0 may be called the third order regular variation parameter.

Our main result is as follows.

Theorem 1. Suppose (20) holds with true parameters α0 > 0 and β0 > α0, and suppose

k = k(n) satisfies

k →∞,
√

k|A(
n

k
)| → ∞,

√
kA2(

n

k
) → 0,

√
k|A(

n

k
)B(

n

k
)| → 0, (21)

as n →∞. Assume there exists a solution to (16) - (18), say (α̂(k), β̂(k)). Then

(√
k
(
α̂(k)− α0

)
,
√

kA(
n

k
)
(
β̂(k)− β0

)) d→ (N1, N2),

where (N1, N2) is a bivariate normal random vector with E(N1) = E(N2) = 0, E(N2
1 ) =

α2
0β

4
0/(β0 − α0)

4, E(N2
2 ) = α0(β0 − α0)

2/
(
β2

0(2β0 − α0)
)
, and E(N1N2) = α2

0/(β0 − α0).

Remark 1. The condition
√

k|A(n/k)| → ∞ ensures that there exists a consistent solution

to (16) - (18) ( See the proof of Theorem 1 in Appendix). We suspect that the theorem in

Feuerverger & Hall (1999) requires the consistency of the estimator of β0 since the expansion

D(i/n)β1 in Feuerverger & Hall (1999, p.776) requires that (β1 − β0
1) log(i/n) → 0 uniformly

for i = 1, · · · , k, where β1 = β/α− 1 and β0
1 = β0/α0 − 1.

Remark 2. By a tedious calculation we found that the complicated variance for α̂FH(k)

given by Feuerverger & Hall (1999) is exactly E(N2
1 ), i.e., our new estimator α̂(k) has the

same asymptotic variance as α̂FH(k). Note that condition (4.1) in Feuerverger & Hall (1999) is

slightly stronger than our condition (20). On the other hand, we expect that α̂(k) behaves better

than α̂FH(k) since α̂(k) is based on censored likelihood function rather than an approximate

exponential distribution like α̂FH(k). This is confirmed in Section 3.

Remark 3. Note that Feuerverger & Hall (1999) did not give the asymptotic variance for

estimating the second order parameter β. There are a few consistent estimators for β in the

literature, but as far as we know, no asymptotic properties for them are established. Remember
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that our estimator for β is a sort of maximum likelihood estimator, so it may be considered to

be efficient.

Remark 4. In the case
√

kA2(n/k) → λ1 ∈ [0,∞) and
√

kA(n/k)B(n/k) → λ2 ∈ (−∞,∞),

we could show, by a refinement of the proof of Theorem 1 in Appendix, that the limit in

Theorem 1 has a bias term.

Remark 5. In comparison with the Hill estimator, the same conclusions as in Feuerverger &

Hall (1999) can be drawn, i.e., our new estimator α̂(k) allows to use a larger number of sample

fraction k.

3. Simulation study and real application

3.1. Simulation study. In this subsection we report a simulation study which examined the

finite sample properties of our estimator α̂(k), and compare it with the α̂FH(k) proposed by

Feuerverger & Hall (1999).

We generated 200 pseudorandom samples of size n = 1000 from one of the following two

distributions (i) Burr(α, β) distribution, given by F (x) = 1 − (1 + xβ−α)−α/(β−α) (x > 0); (ii)

Fréchet(α) distribution, given by F (x) = exp(−x−α) (x > 0).

First we compare our estimator α̂(k) with α̂FH(k) by employing a practical choice of k =

min([k∗ log(k∗)/2], n/2) with the theoretical optimal value of k∗ given in (4) for distributions

Burr(0.5,0.7), Burr(0.5,1.0), Burr(2.0,3.0), Burr(2.0, 4.0), Fréchet(0.5) and Fréchet(2.0); see

Table 1. Here we use the theoretical value of k∗ rather than estimated value, since we will

investigate the effect of the choice of sample fraction in our next comparison. Second, we

compare α̂(k) with α̂FH(k) by employing different choice of sample fraction for distributions

Burr(0.5,0.7) and Burr(2.0,3.0); see Table 2. We can conclude from Tables 1 and 2 that our

new estimator α̂(k) is better than α̂FH(k), although both estimators have the same asymptotic

variance. The reason is that our new estimator is based on censored likelihood function rather

than an approximate exponential distribution like α̂FH(k).

Table 1: Comparison by employing a practical choice of sample fraction. Estimators α̂(k) and

α̂FH(k) are computed with k = min([k∗ log(k∗)/2], n/2), where k∗ is given in (4). The

corresponding standard errors are given between brackets.

k∗ k α̂(k) α̂FH(k)

Burr(0.5,0.7) 35 62 0.4099(0.0901) 0.3923(0.1189)

Burr(0.5,1.0) 125 301 0.4839(0.0616) 0.4809(0.0903)

Burr(2.0,3.0) 47 90 1.7268(0.3285) 1.6936(0.5064)

Burr(2.0,4.0) 125 301 1.9468(0.2505) 1.9240(0.3710)

Fréchet(0.5) 199 500 0.4930(0.0552) 0.4949(0.0765)

Fréchet(2.0) 199 500 1.9821(0.2203) 1.9805(0.3069)
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Table 2: Comparison by employing different choice of sample fraction. Estimators α̂(k) and

α̂FH(k) are computed for k = k∗ + 10 ∗ i, i = 1, . . . , 10, where k∗ is given in (4). The

corresponding standard errors are given between brackets.

k α̂(k) for α̂FH(k) for α̂(k) for α̂FH(k) for

Burr(0.5,0.7) Burr(0.5,0.7) Burr(2.0,3.0) Burr(2.0,3.0)

k∗ + 10 0.4275(0.1210) 0.4017(0.1334) 1.7558(0.4741) 1.6695(0.5359)

k∗ + 20 0.4214(0.1015) 0.3990 (0.1206) 1.7469(0.4147) 1.6617(0.5359)

k∗ + 30 0.4101(0.0877) 0.3906(0.1154) 1.8000(0.3873) 1.7263(0.4859)

k∗ + 40 0.4125(.0784) 0.3959(0.1049) 1.7583(0.3366) 1.7350(0.4783)

k∗ + 50 0.4081(0.0751) 0.3872(0.1074) 1.7428(0.3165) 1.6654(0.4165)

k∗ + 60 0.4080(0.0688) 0.35956(0.0977) 1.7111(0.3038) 1.6514(0.4036)

k∗ + 70 0.4150(0.0800) 0.3925(0.0961) 1.7084(0.2768) 1.6722(0.3903)

k∗ + 80 0.4037(0.0560) 0.3902(0.0861) 1.7156(0.2866) 1.6637(0.3977)

k∗ + 90 0.4019(0.0609) 0.3903(0.0926) 1.7298(0.2633) 1.6583(0.3281)

k∗ + 100 0.3956(0.0570) 0.3856(0.0871) 1.7126(0.2518) 1.6682(0.3590)

3.2. Real application. The data set we shall analyze consists of 2156 Danish fire losses of over

one million Danish Krone (DKK) from the years 1980 to 1990 inclusive (see Figure 1). The

loss figure is a total loss figure for the event concerned, and includes damage to buildings and

damage to furnish and personal property, as well as loss of profits. This Danish fire data set

was analyzed by McNeil (1997). We compute α̂(k) and α̂FH(k) for k = 50+ i∗5, i = 1, . . . , 100;

see Figure 2. We observe from Figure 2 that our new estimator α̂(k) is much more robust than

α̂FH(k) as the sample fraction k becomes large.

Appendix

A. Derivation of (12) and (13). It follows from (7)+(9) that

c
∑n

i=1
δiX

−α−1
i

cαX−α−1
i +dβX−β−1

i

+ d
∑n

i=1
δiX

−β−1
i

cαX−α−1
i +dβX−β−1

i

−∑n
i=1 δi log Xi

+ cT−α+dT−β

1−cT−α−dT−β log T
∑n

i=1(1− δi) = 0.
(22)

By (8) ∗ c/α + (10) ∗ d/β, we have

c
∑n

i=1
δiX

−α−1
i

cαX−α−1
i +dβX−β−1

i

+ d
∑n

i=1
δiX

−β−1
i

cαX−α−1
i +dβX−β−1

i

−T−αc/α+T−βd/β
1−cT−α−dT−β

∑n
i=1(1− δi) = 0.

(23)

By (22)− (23) we have

−∑n
i=1 δi log Xi + cT−α+dT−β

1−cT−α−dT−β log T
∑n

i=1(1− δi)

+T−αc/α+T−βd/β
1−cT−α−dT−β

∑n
i=1(1− δi) = 0.

(24)
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By (8) ∗ c + (10) ∗ d we have

cT−α + dT−β =

∑n
i=1 δi

n
. (25)

Inserting (25) into (24), we obtain

T−αc

α
+

T−βd

β
=

∑n
i=1 δi(log Xi − log T )

n
. (26)

Hence, (12) and (13) follow from (25) and (26).

B. Proof of Theorem 1. Before we prove Theorem 1, we need two lemmas.

Lemma 1. Suppose (20) holds. Then

lim
t→∞

A(t)/B(t) = l0 ∈ [−∞,∞]. (27)

Furthermore, (i) if l0 = ±∞, then

lim
t→∞

(tx)−1/αU(tx)

t−1/αU(t)
−1

A(t)
− x1−β/α−1

1−β/α

A(t)
=

1

2
(
x1−β/α − 1

1− β/α
)2; (28)

(ii) if l0 ∈ (−∞,∞), then

lim
t→∞

(tx)−1/αU(tx)

t−1/αU(t)
−1

A(t)
− x1−β/α−1

1−β/α

B(t)
= h(x) +

l0
2

(
x1−β/α − 1

1− β/α
)2. (29)

In addition, for any ε > 0 there exists t0 > 0 such that for all t ≥ t0, x ≥ 1,

|
log U(tx)−log U(t)−α−1 log x

A(t)
− x1−β/α−1

1−β/α

B(t)
− h(x)| ≤ ε(1 + x1−β/α + 2x1−β/α+ρ+ε), (30)

|
(tx)−1/αU(tx)

t−1/αU(t)
−1

A(t)
− x1−β/α−1

1−β/α

A(t)
− 1

2
(
x1−β/α − 1

1− β/α
)2| ≤ ε(1 + x1−β/α + 2x2−2β/α+ε) (31)

in case l0 = ±∞, and

|
(tx)−1/αU(tx)

t−1/αU(t)
−1

A(t)
− x1−β/α−1

1−β/α

B(t)
− h(x)− l0

2
(
x1−β/α − 1

1− β/α
)2| ≤ ε(1 + x1−β/α + 2x1−β/α+ρ+ε) (32)

in case l0 ∈ (−∞,∞).
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Proof. The relations (27) and (30) follow from Theorem A and Lemma 4.2 of Draisma et al.

(1999), respectively. We can show (28) and (29) by expanding log
(
(tx)−1/αU(tx)/

(
t−1/αU(t)

))
.

Using an argument similar to the proof of Lemma 4.2 of Draisma et al. (1999) we can show

(31) and (32).

Lemma 2. Let Yn,1 ≤ · · · ≤ Yn,n be the order statistics of a random sample of size n from the

distribution function 1 − x−1(x > 1). Assume k = k(n) → ∞ and k/n → 0 as n → ∞. For

any fixed γ < 0 we define





P1 = 1
k

∑k
i=1 log

Yn,n−i+1

Yn,n−k

P2(γ) = 1
k

∑k
i=1(

Yn,n−i+1

Yn,n−k
)γ

P3(γ) = 1
k

∑k
i=1(

Yn,n−i+1

Yn,n−k
)γ log

Yn,n−i+1

Yn,n−k
.

Then √
k{P1 − 1, P2(γ)− (1− γ)−1, P3(γ)− (1− γ)−2} d→ (N3, N4, N5), (33)

where (N3, N4, N5) is a trivariate normal distribution with E(N3) = E(N4) = E(N5) = 0 and

covariance matrix

V = Vγ =




1 1
(1−γ)2

− 1
1−γ

2
(1−γ)3

− 1
(1−γ)2

1
(1−γ)2

− 1
1−γ

1
1−2γ

− 1
(1−γ)2

1
(1−2γ)2

− 1
(1−γ)3

2
(1−γ)3

− 1
(1−γ)2

1
(1−2γ)2

− 1
(1−γ)3

1
(1−2γ)3

− 1
(1−γ)4


 .

Proof. Similar to the proof of Lemma 3.4 of Dekkers et al. (1989).

Proof of Theorem 1. Put

∆1(γ) =
1

k

k∑
i=1

(
Xn,n−i+1

Xn,n−k

)γ

and

∆2(γ) =
1

k

k∑
i=1

(
Xn,n−i+1

Xn,n−k

)γ log
Xn,n−i+1

Xn,n−k

.

Note that
Q−1

i (α, β) = β
α
(

Xn,n−i+1

Xn,n−k
)α−β − β2

α−β
H(α)(

Xn,n−i+1

Xn,n−k
)α−β

+ β3

α(α−β)
H(α)(

Xn,n−i+1

Xn,n−k
)2α−2β + Op

(
H2(α)

)
.

Then (16) and (17) become

β
α
∆1(α− β)− β2

α−β
H(α)∆1(α− β) + β3

α(α−β)
H(α)∆1(2α− 2β)

= 1 + Op

(
H2(α)

) (34)

10



and
β
α
∆2(α− β)− β2

α−β
H(α)∆2(α− β) + β3

α(α−β)
H(α)∆2(2α− 2β)

= β−1 + Op

(
H2(α)

)
.

(35)

Hence by Lemma 1,

H(α) =
α0 − α

α0α
− 1

α0

(P1 − 1)− α0

β0

A(
n

k
) + Op

(|A(
n

k
)|/
√

k + |A(
n

k
)B(

n

k
)|),

∆1(γ) = P2(γ/α0) + γα0

α0−β0

(
P2(1− β0−γ

α0
)− P2(

γ
α0

)
)
A(n

k
)

+Op

(|A(n
k
)|/
√

k + A2(n
k
) + |A(n

k
)B(n

k
)|),

∆2(γ) = 1
α0

P3(
γ
α0

) + γ
α0−β0

(
P3(1− β0−γ

α0
)− P3(

γ
α0

)
)
A(n

k
)

+ α0

α0−β0

(
P2(1− β0−γ

α0
)− P2(

γ
α0

)
)
A(n

k
)

+Op

(|A(n
k
)|/
√

k + A2(n
k
) + |A(n

k
)B(n

k
)|),

H(α)∆1(γ) = α0−α
α0α

∆1(γ)− 1
α0

(P1 − 1)P2(
γ
α0

)− α0

β0
P2(

γ
α0

)A(n
k
)

+Op

(|A(n
k
)|/
√

k + A2(n
k
) + |A(n

k
)B(n

k
)|),

and
H(α)∆2(γ) = α0−α

α0α
∆2(γ)− 1

α2
0
(P1 − 1)P3(

γ
α0

)− 1
β0

P3(
γ
α0

)A(n
k
)

+Op

(|A(n
k
)|/
√

k + A2(n
k
) + |A(n

k
)B(n

k
)|).

So (34) and (35) become

α−1
(
∆1(α− β)− α0

α0−α+β

)

+
(

1
α0
− 1

α
+ H(α)

)(− βα0

(α−β)(α0−α+β)
+ β2α0

α(α−β)(α0−2α+2β)

)

+(α0 − α)
(− α−β

αβ(α0−α+β)
− β

α(α−β)(α0−α+β)
+ β2

α2(α−β)(α0−2α+2β)

)

= Op

(
H2(α) + |α0−α|√

k
+ |α0 − α||A(n

k
)|)

(36)

and
α−1

(
∆2(α− β)− α0

(α0−α+β)2

)

+
(

1
α0
− 1

α
+ H(α)

)(− α0β
(α−β)(α0−α+β)2

+ α0β2

α(α−β)(α0−2α+2β)2

)

+(α0 − α)
(

1
α(α0−α+β)2

− 2
β(α0−α+β)2

− β
α(α−β)(α0−α+β)2

+ β2

α2(α−β)(α0−2α+2β)2

)

= Op

(
H2(α) + |α0−α|√

k
+ |α0 − α||A(n

k
)|+ (α0 − α)2

)
.

(37)

Using those expansions, we can further reduce (36) and (37) to

α−1
0

(
P2(1− β/α0)− α0/β

)
+ β−α0

α0(2β−α0)
(P1 − 1)

+A(n
k
) α0(β−α0)2(β−β0)

β0β(2β−α0)(β0−α0+β)
− (α0−α)(β−α0)3

β2α2
0(2β−α0)

= Op

(
H2(α) + |α0−α|√

k
+ |α0 − α||A(n

k
)|+ |A(n

k
)B(n

k
)|)

(38)

and
α−2

0

(
P3(1− β/α0)− α2

0

β2

)− −β2+3α0β−α2
0

α0β(2β−α0)2
(P1 − 1)

+A(n
k
)

α0(α0−β)(β−β0)(2α0β0β−α2
0β0−4α2

0β+4α0β2+α3
0−β3+β0β2)

β0β2(β0−α0+β)2(2β−α0)2

+(α0 − α)
(β−α0)2(5α0β−2α2

0−β2)

α2
0β3(2β−α0)2

= Op

(
H2(α) + |α0−α|√

k
+ |α0 − α||A(n

k
)|+ |A(n

k
)B(n

k
)|+ (α0 − α)2

)
.

(39)
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To solve these two equations, we need to estimate the order of magnitude for both α− α0 and

β − β0. First we can cancel the A(n/k) term by subtracting (39) from (38), after multipling

by an appropriate constant. Then we get that α − α0 = OP (1/
√

k) under (21), and thus, the

right-hand sides of both (38) and (39) are of order oP (1/
√

k). Since both
(
P2(1−β/α0)−α0/β

)

and P1 − 1 are of order OP (1/
√

k), we have from (37) that A(n/k)(β − β0) = OP (1/
√

k). In

view of (21), we get β − β0 = OP

(
1/

(√
kA(n/k)

))
= oP (1). Notice that A(n/k)(β − β0)

2 =

OP

(
1/

(
kA(n/k)

))
= oP (1/

√
k). We can expand P2(1− β/α0)− α0/β at β = β0 and obtain

(
P2(1− β/α0)− α0/β

)− (
P2(1− β0/α0)− α0/β0

)

=
(
P3(1− β0/α0)− α2

0/β
2
0

)
(β − β0)

(
1 + oP (1)

)

= oP ( 1√
k
).

(40)

A similar expansion is applied to P3(1− β/α0)− α2
0/β

2. Now we expand the left-hand sides of

both (38) and (39) at β = β0 and get

α−1
0

(
P2(1− β0/α0)− α0/β0

)
+ β0−α0

α0(2β0−α0)
(P1 − 1)

+A(n
k
)α0(β0−α0)2(β−β0)

β2
0(2β0−α0)2

− (α0−α)(β0−α0)3

β2
0α2

0(2β0−α0)
= oP ( 1√

k
)

(41)

and
α−2

0

(
P3(1− β0/α0)− α2

0

β2
0

)− −β2
0+3α0β0−α2

0

α0β0(2β0−α0)2
(P1 − 1)

+A(n
k
)

α0(α0−β0)(6α0β2
0−5α2

0β0−α3
0)(β−β0)

β3
0(2β0−α0)4

+(α0 − α)
(β0−α0)2(5α0β0−2α2

0−β2
0)

α2
0β3

0(2β0−α0)2
= oP ( 1√

k
).

(42)

Set λ = β0/α0 and solve the above two equations. Then α̂−α0 and β̂− β0 can be expressed as

α̂(k)− α0

= α0

(
λ4

(λ−1)4
(P1 − 1) + λ2(2λ−1)(3λ−1)

(λ−1)5

(
P2(1− λ)− λ−1

)
+ λ3(2λ−1)2

(λ−1)4

(
P3(1− λ)− λ−2

))

+oP ( 1√
k
)

(43)

and

A(n
k
)(β̂(k)− β0)

= 1
λ−1

(P1 − 1) + −λ2+5λ−2
(λ−1)2

(
P2(1− λ)− λ−1

)
+ λ(2λ−1)

λ−1

(
P3(1− λ)− λ−2

)
+ oP ( 1√

k
).

(44)

Define

Σ =




α0λ4

(λ−1)4
1

λ−1
α0λ2(2λ−1)(3λ−1)

(λ−1)5
−λ2+5λ−2

(λ−1)2

α0λ3(2λ−1)2

(λ−1)4
λ(2λ−1)

λ−1


 .

Then from Lemma 2 we have that
(√

k
(
α̂(k) − α0

)
,
√

kA(n/k)
(
β̂(k) − β0

))
converges in dis-

tribution to a bivariate normal distribution with mean zero and covariance matrix Σ′V1−λΣ.
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Tedious calculation shows that the variance matrix has a very simple form:

Σ′V1−λΣ =

(
α2

0λ4

(λ−1)4
α0

λ−1
α0

λ−1
(λ−1)2

λ2(2λ−1)

)
.

That finishes the proof of the theorem.
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Figure 1: Danish fire loss data. This consists of 2156 losses over one million Danish Krone

(DKK) from the years 1980 to 1990, inclusive.
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Figure 2: Tail index estimation of Danish fire loss data. Here ”new estimator” and ”FH

estimator” denote α̂(k) and α̂FH(k), respectively.
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