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Abstract

Previous work on the joint asymptotic distribution of the sum and maxima of Gaussian
processes is extended here. In particular, it is shown that for a stationary sequence of
standard normal random variables with correlation function r, the condition r(n) log n =
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1 Introduction

The question of the joint asymptotic behavior of sums and maxima has interested researchers
both for its theoretical challenges and its value in applications. Such a study relates to
questions regarding the affect of extreme values on sums as well as quantifies the behavior
of a system through its average and extreme values. For i.i.d. observations, the influential
1978 paper of Chow and Teugels delineates the asymptotic behavior of (Sn,Mn) where Sn =
∑n

i=1 Xi and Mn = max1≤i≤n Xi. They found, for example, that asymptotic independence
of Sn and Mn occurs in only one instance, namely, that of the underlying distribution
having membership in the domain of attraction (for sums) of the normal distribution and
the domain of attraction (for maxima) of an extreme value distribution.

Recent work on this problem has focused on dependent sequences. We offer Hsing (1995)
and Ho and Hsing (1996) as two recent papers on the problem and further references may
be found by consulting these articles. The purpose of the present paper is to describe in
greater generality than hitherto the asymptotic behavior of (Sn,Mn) for Gaussian sequences
and processes.

1



Consider, for example, two recent papers on the topic, Ho and Hsing (1996) and Ho and
McCormick (1999). Both papers give satisfactory results for the case of strongly dependent
Gaussian sequence. However, a gap exists for the case of stationary Gaussian sequences
{Xk} with correlation function r(k) satisfying

r(k) log k = o(1) as k →∞. (1.1)

For a stationary Gaussian sequence with correlation function r, it is well known that con-
dition (1.1) is sufficient to guarantee an extremal index equal to 1. In the Ho and Hsing
(1996) paper, for the case of a stationary Gaussian sequence with EXk = 0, EX2

k = 1 and
r(k) = EX1Xk+1 satisfying (1.1), to conclude the asymptotic independence of (Sn,Mn), it
is additionally required that for n ≥ 1 there exists a subset In ⊂ {1, . . . , n} with

log(1− #(In)
n )√

log n
→ −∞ (1.2)

and

lim sup
n→∞

sup
s∈In

n
∑n

j=1 r(|s− j|)∑n
i=1

∑n
j=1 r(|i− j|) < ∞. (1.3)

The condition expressed in (1.2) and (1.3) is rather weak and Ho and Hsing (1996) asks
the question, does there exist a stationary Gaussian sequence satisfying (1.1) but for which
(1.2) and (1.3) fail to hold. The following example shows that there does indeed exist such
sequences. To that end let r(k)(n), n ≥ 0, k ≥ 1 be a sequence of correlation functions such
that for each fixed k ≥ 1

r(k)(n) = I{0}(n)− 1
2
I{k}(n), n ≥ 0.

Note that r(k) is the correlation function for the moving average sequence

X(k)
n =

1√
2
[Un − Un+k], n ≥ 1,

where {Un,n≥1} is an i.i.d. sequence of standard normal random variables. Let pk =
1
k − 1

k+1 , k = 1, 2, . . . and define a correlation function by

r(n) =
∞∑

k=1

pkr
(k)(n), n ≥ 0. (1.4)

We shall show that a stationary Gaussian sequence with correlation function given in
(1.4) provides the desired example.

First observe that
n∑

i=1

n∑

j=1

r(|i− j|) =
n∑

k=1

1
k
. (1.5)
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Now observe that, for fixed 1 ≤ s ≤ n,

n
n∑

j=1

r(|s− j|)

= n[1 +
n−1∑

k=1

pk

n∑

j=1

(−1
2
I{−k}(s− j)− 1

2
I{k}(s− j))]

= n[1− 1
2

n−s∑

k=1

pk − 1
2

s−1∑

k=1

pk]

=
n

2
[

1
n− s + 1

+
1
s
]. (1.6)

Next observe that for all n sufficiently large, if In ⊂ {1, . . . , n} is a sequence of subsets
satisfying (1.2), then

In ∩ {1, . . . , [εnn]} 6= φ, (1.7)

where εn = (log n)−2.
Therefore by (1.7) for all sufficiently large n, we have that there exists sn ∈ {1, . . . , [εnn]}∩

In.
For such sn, we have by (1.5) and (1.6)

lim
n→∞

n
∑n

j=1 r(|sn − j|)∑n
i=1

∑n
j=1 r(|i− j|) ≥ lim

n

[εnn]
(

n∑

k=1

1
k
)−1 = ∞.

Thus, we see that one can find no sequence of intervals In satisfying (1.2) for which (1.3)
holds. One also readily computes that

r(0) = 1 and r(n) = −1
2
pn =

−1
2n(n + 1)

, n ≥ 1, (1.8)

so that (1.1) holds.

Remark. Although we obtained our correlation function as a mixture of correlation func-
tions making evident that the function defined in (1.4) is a correlation function, it is also
easily checked directly that r defined in (1.8) is nonnegative definite for any probability
mass function pn.

In section section2, we show the asymptotic independence of (Sn,Mn) provided Mn has
a nondegenerate limit and log n

n

∑n
i=1 |r(i)| = o(1) as n →∞, a condition weaker than (1.1)

so that, in particular, asymptotic independence holds in the case of a stationary Gaussian
sequence with correlation function given in (1.8). Thus, the Ho and Hsing (1996) paper has
a gap. A similar short coming exists in the Ho and McCormick (1999) paper.

As the example suggests the earlier work on this problem has difficulty with sequences
for which V ar(Sn) =

∑n
i=1

∑n
j=1 r(|i−j|) grows too slowly or, more precisely, with variables
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Xs such that the quantity, EXsX̄n/E(X̄n)2, is too large. We overcome this difficulty by
the devise of deleting problematical variables in a precise way and establishing that the
variables so culled form a negligible subset compared to the variables retained.

To conclude the introduction, we remark that while the present paper and Ho and
McCormick (1999) address similar questions, the techniques used in the two papers are quite
different. The latter paper’s main focus is an analysis of the distribution of the maximum
conditional on the value of the sum while in this paper an essential step is the construction
of an intermediary sequence sufficiently close to the original sequence but constructed in
such a way that the intermediary sequence belongs to the space of variables independent to
the sum.

2 Asymptotic Independence

In this section we shall establish the asymptotic independence of the partial sums and partial
maxima of Gaussian sequences. For future applications, it will be convenient to present
results for triangular arrays of Gaussian sequences. Therefore, for n ≥ 1, let {Xni, 1 ≤
i ≤ n} be a Gaussian sequence, i.e. all joint distributions are Gaussian. We assume the
variables are centered, i.e.,

EXni = 0, 1 ≤ i ≤ n, n ≥ 1. (2.1)

Further, setting σn(i, j) = EXniXnj , 1 ≤ i, j ≤ n, we shall assume that

max
1≤i≤n

|1− σn(i, i)| = 0(
1

log n
) as n →∞. (2.2)

The following mixing condition for the array will be suitable

lim
n→∞

log n

n2

n∑

i=1

n∑

j=1

|σn(i, j)| = 0. (2.3)

Furthermore, put

an =
√

2 log n and bn = an − (2an)−1 log(4π log n), (2.4)

For I ⊂ [1, n] set
Mn(I) = max

i∈I
Xni and Sn(I) =

∑

i∈I

Xni.

In the case I = [1, n], we also put

Mn = M([1, n]) = max
1≤i≤n

Xni and Sn = S([1, n]) =
n∑

i=1

Xni.
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Our first lemma establishes a suitable subset of the index set which asymptotically deter-
mines the distribution of the maximum. To that end, fix a sequence of integers m(n), n ≥ 1
satisfying

lim
n→∞m(n) = ∞ (2.5)

and

lim
n→∞

m(n) log n

n2

n∑

i=1

n∑

j=1

|σn(i, j)| = 0. (2.6)

Let

δn(i) = EXniSn =
n∑

j=1

σn(i, j), 1 ≤ i ≤ n,

and define sets
I+
n = {i : δn(i) ≥ 0, 1 ≤ i ≤ n}

and
I−n = {i : δn(i) < 0, 1 ≤ i ≤ n}.

Note that I+
n 6= φ. Let s+

n and s−n denote the sums, s+
n =

∑
j∈I+

n
δn(j) and s−n =

∑
j∈I−n δn(j)

if I−n 6= φ. Next define

K+
n = {i ∈ I+

n :
δn(i)
s+
n

≥ log m(n)
n

}

and if I−n 6= φ,

K−
n = {i ∈ I−n :

δn(i)
s−n

≥ log m(n)
n

}.

Finally, set
Kn = K+

n ∪K−
n and Jn = [1, n]\Kn. (2.7)

Lemma 2.1. Let {Xni, 1 ≤ i ≤ n}, n ≥ 1 be an array of Gaussian sequences such that
(2.1) and (2.2) hold. Then, for Jn defined in (2.7), we have

P{Mn(Jn) ≤ un(y)} − P{Mn ≤ un(y)} ≤ P{Mn(Kn) > un(y)} → 0, as n →∞,

where un(y) = bn + y
an

with an and bn given in (2.4).

Proof. Observe that

P{Mn(Jn) ≤ un(y)}
= P{Mn ≤ un(y)}+ P{Mn(Jn) ≤ un(y),Mn(Kn) > un(y)}. (2.8)
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Furthermore,

P{Mn(Kn) > un(y)}
≤ #(Kn) max

1≤i≤n
P{Xni > un(y)}

= #(Kn)(1− Φ(un(y)/σ∗n)) (2.9)

where [σ∗n]2 = max1≤i≤n σn(i, i) and Φ denotes the standard normal distribution function.
Now observe that

#(K+
n )

log m

n
≤

∑

i∈K+
n

δn(i)
s+
n

≤ 1

and similarly note that

#(K−
n )

log m

n
≤ 1,

where # denotes cardinality and we put m = m(n). Therefore,

#(Kn) ≤ 2n

log m
. (2.10)

Therefore by (2.2), (2.4), (2.9), and (2.10), we have

P{Mn(Kn) > un(y)} = o(1) as n →∞,

which proves the lemma in view of (2.8). 2

Our next step is to produce an intermediary array sufficiently close to the {Xni} array
but independent of Sn. For that purpose we define for a subset I ⊂ [1, n],

σ2
n(I) = V ar(Sn(I))

and in the case I = [1, n] we put
σ2

n = σ2
n([1, n]).

Then observe that

σ2
n(I+

n ) =
∑

i,j∈I+
n

EXniXnj

=
∑

i,j∈I+
n

σn(i, j)

≤
n∑

i=1

n∑

j=1

|σn(i, j)|. (2.11)

Similarly, if I−n 6= φ, we have

σ2
n(I−n ) =

∑

i,j∈I−n

EXniXnj

≤
n∑

i=1

n∑

j=1

|σn(i, j)|. (2.12)
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For i ∈ Jn, define constants cn(i) by

cn(i) =
δn(i)
s+
n

, i ∈ I+
n ∩ Jn

and if I−n 6= φ,

cn(i) =
δn(i)
s−n

, i ∈ I−n ∩ Jn.

We define our intermediary array {Yni, i ∈ Jn} by

Yni = Xni − cn(i)Sn(I+
n ) if i ∈ I+

n ∩ Jn

and
Yni = Xni − cn(i)Sn(I−n ) if i ∈ I−n ∩ Jn. (2.13)

Lemma 2.2. For a Gaussian array {Xni, 1 ≤ i ≤ n, n ≥ 1} such that (2.1), (2.2), and
(2.3) hold,

an[Mn(Jn)−max
i∈Jn

Yni]
L1−→ 0,

where Jn is defined in (2.7) and Yni in (2.13).

Proof. By virtue of the inequality
∣∣∣∣ max
1≤j≤n

xj − max
1≤j≤n

yj

∣∣∣∣ ≤ max
1≤j≤n

|xj − yj |,

one has that

|Mn(Jn)−max
i∈Jn

Yni| ≤ max
i∈Jn

|cn(i)|[|Sn(I+
n )|+ |Sn(I−n )|]

≤ log m

n
[|Sn(I+

n )|+ |Sn(I−n )|]. (2.14)

Therefore by (2.14) and Cauchy-Schwarz inequality

E|Mn(Jn)−max
i∈Jn

Yni|

≤ log m

n
[σn(I+

n ) + σn(I−n )]

≤ 2 log m

n
[

n∑

i=1

n∑

j=1

|σn(i, j)|]1/2

= o(a−1
n ),

where we used (2.11), (2.12), and properties (2.5) and (2.6) of the sequence m. 2
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Theorem 2.3. Under the hypothesis of Lemma 2.2 if for some distribution function G,

an(Mn − bn) d−→ G, (2.15)

then
lim

n→∞P{Sn

σn
≤ x, an(Mn − bn) ≤ y} = Φ(x)G(y)

for all −∞ < x < ∞ and continuity points y of G.

Proof. We first observe that for i ∈ Jn

EYniSn = 0. (2.16)

Therefore, since (Yni, Sn) have a joint normal distribution, the variables are independent.
Now observe that, for any real x and continuity point y of G,

|P{Sn

σn
≤ x, an(Mn − bn) ≤ y} − Φ(x)G(y)|

≤ |P{Sn

σn
≤ x,Mn ≤ un(y)} − P{Sn

σn
≤ x,Mn(Jn) ≤ un(y)}|

+ |P{Sn

σn
≤ x,Mn(Jn) ≤ un(y)} − P{Sn

σn
≤ x,max

i∈Jn

Yni ≤ un(u)}|

+ |P{Sn

σn
≤ x,max

i∈Jn

Yni ≤ un(y)} − Φ(x)G(y)|
= Tn,1 + Tn,2 + Tn,3. (2.17)

Now observe that by Lemma 2.1

Tn,1 ≤ E|I{Mn ≤ un(y)} − I{Mn(Jn) ≤ un(y)}|
≤ P{M(Kn) > un(y)} = o(1) as n →∞. (2.18)

Also,

Tn,2

≤ P{y − an|Mn(Jn)−max
i∈Jn

Yni| ≤ an(Mn(Jn)− bn) ≤ y + an|Mn(Jn)−max
i∈Jn

Yni|}
= o(1) as n →∞ (2.19)

where we used Lemma 2.2, (2.15) and (2.18).
Finally note that in view of (2.16) and the consequent independence

Tn,3 = Φ(x)|P{max
i∈Jn

Yni ≤ un(y)} −G(y)| = o(1) as n →∞ (2.20)

by Lemma 2.2 and (2.18). Thus the result follows from (2.17)-(2.20). 2
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Remark: Consider the case of a stationary Gaussian sequence, {Xk}. Putting Xnk = Xk

in the previous result, we see that condition (2.3) is equivalent to the condition

lim
n→∞

log n

n

n∑

i=1

|r(i)| = 0,

where r(i) = EX1Xi+1 = σn(j, i + j). It is not known if the above condition implies (2.15).
See Leadbetter et al. (1983) p 91. Thus, the condition (2.15) is not superfluous.

Corollary 2.4. Let {Xn, n ≥ 1} be a Gaussian sequence such that EXn = 0, EX2
n = 1,

n ≥ 1. Suppose there exists a sequence ρn, n ≥ 0 with ρn < 1, n ≥ 1 and

|EXiXj | ≤ ρ|i−j|,

such that ρn log n → 0 as n →∞. Then, for −∞ < x, y < ∞,

lim
n→∞P{ 1

σn
Sn ≤ x, an(Mn − bn) ≤ y} = Φ(x) exp(−e−y),

where Sn =
∑n

i=1 Xi and Mn = max1≤i≤n Xi.

Proof. By Theorem 6.3.4 in Leadbetter et al. (1983)

lim
n→∞P{an(Mn − bn) ≤ y} = exp(−e−y) =: Λ(y). (2.21)

Then as the hypothesis of Theorem 2.3 is readily verified for the array Xni = Xi, 1 ≤ i ≤
n, n ≥ 1, the result follows from Theorem 2.3 and (2.21). 2

The following elementary result on series will prove useful.

Lemma 2.5. Let {cnk} be a bounded array of nonnegative reals. Then the following two
statements are equivalent.

lim
n→∞

log n

n

n∑

k=1

cnk = 0 (2.22)

and

lim
n→∞

1
n

n∑

k=1

cnk log k = 0. (2.23)

Proof. Let c be an upper bound for the array. Let jn = [n/(log n)2]. Then note for all n

large
log n < 2 log k, jn < k ≤ n.
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Suppose (2.23) holds. Then

lim
n→∞

log n

n

n∑

k=1

cnk

= lim
n→∞(

log n

n

jn∑

k=1

cnk +
log n

n

n∑

k=jn+1

cnk)

≤ lim
n→∞

cjn log n

n
+ lim

n→∞
2
n

n∑

k=jn+1

cnk log k = 0. (2.24)

Since (2.23) follows a fortiori from (2.22), the lemma follows from (2.24). 2

The following corollary relates to stationary sequences. The mixing condition imposed
is a weak sufficient condition to imply extremal index 1 for Gaussian stationary sequences.

Corollary 2.6. Let {Xn, n ≥ 1} be a stationary Gaussian sequence with EXn = 0 and
EX2

n = 1. Let rn = EX1Xn+1. Suppose that

rn = o(1) as n →∞

and, for some γ > 2,

1
n

n∑

k=1

|rk| log k exp(γ|rk| log k) = o(1) as n →∞. (2.25)

Then, for −∞ < x, y < ∞

lim
n→∞P{ 1

σn
Sn ≤ x, an(Mn − bn) ≤ y} = Φ(x)Λ(y).

Proof. From (2.25), it follows trivially that

1
n

n∑

k=1

|rk| log k = o(1) as n →∞. (2.26)

Now with cnk = |rk|, it follows from (2.26) and Lemma 2.5 that

log n

n

n∑

k=1

|rk| = o(1) as n →∞. (2.27)

Thus by (2.27), Theorem 2.3, and Theorem 4.5.2 in Leadbetter et al. (1983), the corollary
follows. 2

The previous corollaries relate to Gaussian stationary sequence, which are weakly de-
pendent in the sense that they possess an extremal index equal to 1. The next result
pertains to the case of strongly dependent stationary Gaussian sequences for which an ex-
tremal index does not exist. See Leadbetter et al. (1983) p 133 for a presentation on limit
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laws for extremes for strongly dependent stationary Gaussian sequences. By considering
Mn−X̄n where X̄n = 1

nSn, one can derive the asymptotic behavior of (Sn,Mn) from that of
(Sn,Mn−X̄n). However, as will be shown, whereas {Xk, k ≥ 1} may be strongly dependent,
the array {Xk − X̄n, 1 ≤ k ≤ n, n ≥ 1} will fall within the scope of our Theorem 2.3. The
following result generalizes Theorem 2.1 in Ho and McCormick (1999).

Theorem 2.7. Let {Xk, k ≥ 1} be a stationary Gaussian sequence with EXk = 0, EX2
k =

1, and r(k) = EX1Xk+1 satisfying

r(k) < 1 for some k ≥ 1 (2.28)

and

lim
n→∞

log n

n

n−1∑

k=1

|r(k)− r(n)| = 0. (2.29)

Then, for −∞ < x, y < ∞,

lim
n→∞P{Sn

σn
≤ x, an(

Mn − X̄n√
1− r(n)

− bn) ≤ y} = Φ(x)Λ(y).

Proof. We first remark that as shown in (2.7) of McCormick (1980), (2.28) and (2.29)
imply

sup
n≥1

|r(n)| < 1. (2.30)

Now let σ2
n(k) = E(Xk − X̄n)2 and set

Ynk =
1

σn(k)
(Xk − X̄n).

Then by (2.8) and (2.9) in McCormick (1980)

max
1≤k≤n

|σ2
n(k)− (1− rn)| = o(

1
log n

) (2.31)

and
max

1≤i<j≤n
|EYniYnj − r(i− j)− r(n)

1− r(n)
| = o(

1
log n

). (2.32)

Now define

Xni =
Xi − (n−1

n )X̄n√
1− r(n)

.

Observe that by (2.31)

EX2
ni =

σ2
n(i)

1− r(n)
(1 +

1
2nσn(i)

E(Xi − X̄)X̄ +
1
n2

EX̄2)

= 1 + o(
1

log n
) (2.33)
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where the o( 1
log n) term does not depend on i.

Moreover, by (2.31) and (2.32),

EXniXnj =
σn(i)σn(j)
1− r(n)

EYniYnj +
1

(1− r(n))n
EX̄n[Xi + Xj − 2X̄n]

+
1

(1− r(n))n2
EX̄2

n

=
r(i− j)− r(n)

1− r(n)
+ o(

1
log n

) (2.34)

where the o( 1
log n) term does not depend on i, j.

Then setting
σn(i, j) = EXniXnj

one readily checks by virtue of (2.33) that (2.2) holds. Of course, (2.1) holds. By (2.29),
(2.30) and (2.34) one obtains

n∑

i=1

n∑

j=1

|σn(i, j)|

=
n∑

i=1

n∑

j=1

|r(i− j)− r(n)
1− r(n)

|+ o(
n2

log n
)

≤ n

1− r(n)

n∑

k=1

|r(k)− r(n)|+ o(
n2

log n
)

= o(
n2

log n
).

Therefore condition (2.3) holds.
Next observe that

anE

∣∣∣∣
Mn − X̄n√

1− r(n)
− max

1≤i≤n
Xni

∣∣∣∣

≤ an

n(1− r(n))
E|X̄n|

≤ an

n(1− r(n))
= o(1) as n →∞. (2.35)

Therefore, since by Theorem 2.1 in McCormick (1980)

an(
Mn − X̄n√

1− r(n)
− bn) d−→ Λ, (2.36)

we have by (2.35) and (2.36) that

an( max
1≤i≤n

Xni − bn) d−→ Λ. (2.37)
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Now observe that

n∑

i=1

Xni/

√√√√V ar(
n∑

i=1

Xni) =
(1/n)X̄n√

V ar(1/nX̄n)
=

Sn

σn
. (2.38)

Thus by (2.37) and (2.38), the result follows from Theorem 2.3. 2

The following corollary generalizes Corollary 2.2 in Ho and McCormick (1999). Since
the method of proof is the same, we present just the result.

Corollary 2.8. Suppose {Xk, k ≥ 1} is a stationary Gaussian sequence with EXk = 0,
EX2

k = 1 and r(k) = EX1Xk+1 satisfying

r(k) log k → γ ∈ [0,∞), as k →∞. (2.39)

Then, for −∞ < x, y < ∞,

lim
n→∞P{Sn

σn
≤ x, an(Mn − bn) ≤ y} =

∫ x

−∞
exp{−e−y+γ−√2γz)}φ(z)dz

where φ(z) = 1√
2π

e−1/2z2
.

In the case of divergence in (2.39), convergence of the joint distribution of (Sn,Mn)
occurs but to a singular limit distribution.

Corollary 2.9. Let {Xk, k ≥ 1} be a stationary Gaussian sequence with EXk = 0, EX2
k =

1 and r(k) = EX1Xk+1 satisfying

r(k) log k →∞, as k →∞,

and either

(a) conditions (2.28) and (2.29) hold

or

(b) (i) r(n) → 0 and is monotonically nonincreasing for n ≥ n0 for some positive integer
n0 and (ii) r(n) log n is monotonically nondecreasing for n ≥ n0.

Then

lim
n→∞P{Sn

σn
≤ x, r(n)−1/2(

Mn√
1− r(n)

− bn) ≤ y} = Φ(x ∧ (y
√

1− δ))

where δ = limn→∞ r(n).
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Proof. Case (a) is done in Ho and McCormick (1999). For case (b), observe that

1
n

n∑

k=1

|r(k)− r(n)| log k

=
1
n

n0∑

k=1

|r(k)− r(n)| log k +
1
n

n∑

k=n0+1

|r(k)− r(n)| log k

= o(1) +
1
n

n∑

k=n0+1

(r(k)− r(n)) log k

≤ o(1) +
1
n

n∑

k=n0+1

(r(n) log n− r(n) log k)

≤ o(1) + r(n)
∫ 1

0
(− log x)dx

= o(1) + r(n). (2.40)

Thus by (2.40) and Lemma 2.5, we see that (2.29) holds.
Now under the hypotheses in case (b), we have by McCormick and Mittal (1976) that

r(n)−1/2(Mn −
√

1− r(n)bn) d−→ Φ.

Then the proof finishes as in Ho and McCormick (1999). 2

Remark: As observed in Corollories 2.8 and 2.9, in the strongly dependent case the limit
law or the normalization or both depend on the correlation sequence. For that reason, it
may be advantageous to model using the studentized maxima. In addition to the quantity
Mn−X̄n

sn
, where s2

n = 1
n

∑n
1 (Xk − X̄n)2, being invariant under a scale and location transfor-

mation of the underlying sequence, its asymptotic behavior remains the same whether or
not the dependence is strong or weak. More precisely, in view of Lemma 2.2 in McCormick
(1980),

log n[s2
n − (1− r(n))] L2−→ 0

under the hypothesis of Theorem 2.7, so that
√

1− r(n) may be replaced by sn in the
conclusion of that result.

3 Continuous Time Processes

In this section we present a sketch of the proof of Theorem 2.7 in the continuous time
setting. Let {Xt, t ≥ 0} be a continuous time stationary Gaussian process with EXt = 0,
EX2

t = 1, and r(t) = EX0Xt. Suppose for some c > 0 and 0 < α ≤ 2,

r(t) = 1− c|t|α + o(|t|α) as t → 0. (3.1)

14



Then {Xt, t ≥ 0} has a version with continuous sample paths. Define

MT = max
0≤t≤T

Xt, ST =
∫ T

0
Xtdt and X̄T =

1
T

ST .

Let {Y (t)} denote a nonstationary Gaussian process with

EY (t) = −|t|α and Cov(Y (s), Y (t)) = |s|α + |t|α − |s− t|α.

Define a positive finite constant (See Leadbetter et al. (1983) p 232) by

Hα = lim
T→∞

T−1
∫ 0

−∞
e−xP{ max

0≤t≤T
Y (t) > −x}dx.

Let
aT = (2 log T )1/2

and
bT = aT +

1
aT
{( 1

α
− 1

2
) log log T + log([2π]−1/2(

c

1− γ
)1/αHα2( 2−α

2α
))}

where γ = atom at zero of the spectral distribution associated with r in (3.1). Note under
(3.2) below, it can be shown that γ = limT→∞ r(T ). The following result generalizes
Theorem 3.1 in Ho and McCormick (1999).

Theorem 3.1 . Let {X(t)} be a stationary Gaussian process such that EX(t) = 0,
EX2(t) = 1 and r(t) = EX0Xt satisfies (3.1). Further assume

lim
T→∞

log T

T

∫ T

0
|r(t)− r(T )|dt = 0. (3.2)

Then

lim
T→∞

P{ST

σT
≤ x, aT (

MT − X̄T√
1− r(T )

− bT ) ≤ y} = Φ(x)Λ(y), (3.3)

−∞ < x, y < ∞ where σ2
T = V ar(ST ).

Proof. We obtain a discretization set as follows. For ε > 0 there exists a τ > 0 such that
for all large T

1− ε

1− γ
c|s− t|α < 1− ρT (s, t) <

1 + ε

1− γ
c|s− t|α for |s− t| ≤ τ, (3.4)

where ρT (s, t) = EYT (s)YT (t) with YT (t) = 1
σT (t)(Xt−X̄T ) and σ2

T (t) = E(Xt−X̄T )2. For a
τ for which (3.4) is valid and 0 < a < τ , let Ik = [kτ +a, (k +1)τ ] and I(T ) =

⋃
k Ik ∩ [0, T ].

Set for fixed y

uT (y) = bT + y/aT
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and define a discretization set by

G(T, a) = {s ∈ I(T ) : s = aku
−2/α
T , k = 0, 1, . . .}.

By the proof of Theorem 3.1 in McCormick (1980), one can check that to establish the
result it suffices to show

lim
a↓0

lim
T→∞

P{ST

σT
≤ x, max

s∈G(T,a)
YT (s) ≤ uT (y)} = Φ(x)Λ(y). (3.5)

Finally, (3.5) is established by following the method of proof of Theorem 2.7 and Theorem
3.1 in McCormick (1980). 2
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