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Limit theorems for correlated Bernoulli random variables
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Abstract

In this paper we study limit theorems for a class of correlated Bernoulli processes. We obtain the strong law of large numbers,
central limit theorem and the law of the iterated logarithm for the partial sums of the Bernoulli random variables.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider a Bernoulli process {X j , j ≥ 1} in which the random variables X j are correlated in the sense that the
success probability of a trial conditional on the previous trials depends on the total number of successes achieved to
that point. More precisely, assume that for some 0 < p < 1,

P(X j+1 = 1|F j ) = (1 − θ j )p + θ j j−1S j ,

where 0 ≤ θ j ≤ 1 are dependence parameters, Sn =
∑n

j=1 X j for n ≥ 1, and Fn = σ(X1, . . . , Xn), the σ -
field generated by X1, . . . , Xn . If X1 has a Bernoulli distribution with parameter p, it follows that X1, X2, . . . are
identically distributed Bernoulli random variables. This process was introduced by Drezner and Farnum (1993), and
the distribution of Sn is called a generalized binomial distribution. When all θ j ’s are zero, this is the classic Bernoulli
process. When θ j > 0, an intuitive interpretation for the model is that the ( j + 1)th trial is expected to have a larger
success probability than p if in the first j trials the average number of successes is larger than p. Many examples are
given in Drezner and Farnum (1993).

For the special case when θn = θ ∈ [0, 1) for all n ≥ 1, Heyde (2004) proved that

n−1/2(Sn − np)
d
→ N

(
0,

p(1 − p)

1 − 2θ

)
if θ < 1/2,

(n log n)−1/2(Sn − np)
d
→ N (0, p(1 − p)) if θ = 1/2,

n−θ (Sn − np)
as
→ W if θ > 1/2,

where W is some non-degenerate mean-zero random variable with a non-normal distribution, and
d
→ and

as
→ denote

distributional convergence and almost sure convergence, respectively.
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The generalized Bernoulli process offers parameters for overdispersion and thus is more flexible than the classic
Binomial model. If θn = θ for all n, the parameter θ can be consistently estimated by maximum likelihood from the
data. See the comments in Heyde (2004).

In this paper we will consider the general case. We will investigate the conditions for the strong law of large
numbers, the central limit theorem and the law of the iterated logarithm for the partial sums of the dependent Bernoulli
random variables. The main results of the paper will be given in Section 2, and all the proofs are given in Section 3.

2. Main results

Define

a1 = 1, an =

n−1∏
j=1

(1 + j−1θ j ) for n ≥ 2,

and

A2
n =

n∑
j=1

a−2
j for n ≥ 1.

Theorem 2.1. If limn→∞ an/n = 0, then

Sn

n
as
→ p. (2.1)

Conversely, if (2.1) holds, then limn→∞ an/n = 0.

Theorem 2.2. If limn→∞ An = ∞, then

Sn − np

an An

d
→ N (0, p(1 − p)); (2.2)

and if limn→∞ An < ∞, then

Sn − np

an

as
→ V, (2.3)

where V is some non-degenerate mean-zero random variable.

Theorem 2.3. If limn→∞ An = ∞, then

lim sup
n→∞

±
Sn − np

an An
√

log log An

as
=
√

2p(1 − p).

A function φ(x) defined on (0, ∞) is said to be regularly varying at infinity with index α if

lim
x→∞

φ(t x)

φ(x)
= tα for all t > 0.

(Notation φ ∈ RV (α).)
For convenience set a0 = 1. Define the function a(x) = abxc for x > 0, where bxc denotes the integer part of x .

Corollary 2.1. Assume that a(x) ∈ RV (θ), where θ ∈ [0, 1/2). Then

Sn − np
√

n
d
→ N

(
0,

p(1 − p)

1 − 2θ

)
and

lim sup
n→∞

±
Sn − np√
n log log n

as
=

√
2p(1 − p)

1 − 2θ
.
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Corollary 2.2. If limn→∞ θn = θ ∈ [0, 1/2), then

lim sup
n→∞

±
Sn − np√
n log log n

as
=

√
2p(1 − p)

1 − 2θ
.

Corollary 2.3. Assume that θn = θ ∈ [0, 1/2] for all n ≥ 1.
(i) If θ ∈ [0, 1/2), then

lim sup
n→∞

±
Sn − np√
n log log n

as
=

√
2p(1 − p)

1 − 2θ
.

(ii) If θ = 1/2, then

lim sup
n→∞

±
Sn − np√

n log n log log log n

as
=
√

2p(1 − p).

We end this section with some remarks and an example. In Corollary 2.1, if we assume that a(x) ∈ RV (θ) for some
θ ∈ (1/2, 1], then we have limn→∞ An < ∞ from properties of regular variation. Hence we can apply Theorem 2.2
to get the limit from the almost sure convergence. When θ = 1/2, it is rather complicated. The normalizing constants
are not as simple as in Corollary 2.1. They are dependent on the asymptotic behavior of a(x). The following example
shows that the normalizing constants in this case may be quite different.

Example. Let δ ∈ (0, 1) be fixed. Define b(x) = x1/2 exp{−(log x)δ} for x > 1. It is easily seen that
limx→∞ x(

b(x+1)
b(x)

− 1) =
1
2 . Let n0 be an integer such that x(

b(x+1)
b(x)

− 1) < 1 for all x ≥ n0, and define θ j = 0 for

1 ≤ j < n0, and θ j = j ( b( j+1)
b( j) − 1) for all j ≥ n0. Then we have

an =

n−1∏
j=1

(1 + j−1θ j ) =

1 if n < n0
b(n)

b(n0)
if n ≥ n0.

Calculations show that

A2
n =

n∑
j=1

a−2
j ∼

(b(n0))
2

2δ
(log n)1−δ exp{2(log n)δ} as n → ∞.

Therefore,

an An ∼
n1/2(log n)(1−δ)/2

(2δ)1/2

and

an An
√

log log An ∼
1

√
2

n1/2(log n)(1−δ)/2(log log n)1/2.

It follows from Theorem 2.3 that

lim sup
n→∞

±
Sn − np√

n(log n)1−δ log log n

as
=
√

p(1 − p).

3. Proofs

For θ > 0 let

a1(θ) = 1, an(θ) =

n−1∏
j=1

(1 + j−1θ) for n ≥ 2.
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Lemma 3.1. For any θ > 0, an(θ) ∼
nθ

θΓ (θ)
as n → ∞.

The conclusion in the lemma can be found in Heyde (2004).

Lemma 3.2. (i) n/an is non-decreasing in n.
(ii) If limn→∞ An = ∞, then limn→∞ an/n = 0.

Proof. (i) Note that an(1) = n for all n ≥ 1. We have that

n

an
=

an(1)

an
=

n−1∏
j=1

1 + j−1

1 + j−1θ j

is non-decreasing since all terms in the above product are at least 1.
(ii) Since an/n is monotone, its limit exists; denote this limit by ν. The limit ν must be zero. Otherwise we have
1

a2
n

≤
1

ν2n2 for all n ≥ 1, which implies limn→∞ An < ∞. �

Lemma 3.3. Let {Zn,Gn, n ≥ 1} be a sequence of martingale differences. If
∑

∞

n=1 E(Z2
n |Gn−1) < ∞ a.s., then∑n

j=1 Z j converges almost surely.

This lemma is a special case of Theorem 2.17 in Hall and Heyde (1980).

Lemma 3.4. Let {Zn,Gn, n ≥ 1} be a sequence of bounded martingale differences. Assume that there exists a

sequence of positive constants {Wn} such that Wn → ∞ as n → ∞ and 1
W 2

n

∑n
j=1 E(Z2

j |G j−1)
p

→ σ 2. Then∑n
j=1 Z j

Wn

d
→ N (0, σ 2).

Proof. Let Zni = Zi/Wn for 1 ≤ i ≤ n. By Corollary 3.1 in Hall and Heyde (1980), it suffices to prove the conditional
Lindeberg condition

n∑
j=1

E(Z2
nj I (|Znj | > ε)|G j−1)

p
→ 0 for all ε > 0,

which is trivial since, for any given ε > 0, all sets {|Znj > ε|} are empty for large n. �

Lemma 3.5. Let {Zn,Gn, n ≥ 1} be a sequence of bounded martingale differences. Assume that there exists a
sequence of positive constants {Wn} such that

W −1
n+1Wn → 1, Wn → ∞, (3.1)

and

1

W 2
n

n∑
j=1

E(Z2
j |G j−1)

as
→ 1. (3.2)

Then

lim sup
n→∞

±

n∑
j=1

Z j√
2W 2

n log log W 2
n

as
= 1.

Proof. In view of Theorems 4.7 and 4.8 in Hall and Heyde (1980), it suffices to prove
∞∑
j=1

W −4
j E(Z4

j |G j−1) < ∞ a.s.,

which, by (3.2), is equivalent to
∞∑
j=1

V −4
j E(Z4

j |G j−1) < ∞ a.s.,
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where V 2
n =

∑n
j=1 E(Z2

j |G j−1). For simplicity, assume that V 2
1 = E(Z2

1 |G0) = E Z2
1 > 0. Since the Zn’s are

bounded by some constant c, we have

∞∑
j=2

V −4
j E(Z4

j |G j−1) ≤ c2
∞∑
j=2

V −4
j E(Z2

j |G j−1)

≤ c2
∞∑
j=2

V −4
j (V 2

j − V 2
j−1) ≤ c2

∞∑
j=2

V 2
j − V 2

j−1

V 2
j V 2

j−1

= c2
∞∑
j=2

(V −2
j−1 − V −2

j ) = c2V −2
1 .

This proves the lemma. �

Proof of Theorem 2.1. Define

Tn =
Sn − np

an
for n ≥ 1, and Y1 = T1, Yn = Tn − Tn−1 for n ≥ 2.

Then it is easily checked that {Tn,Fn, n ≥ 1} is a martingale, and hence the Yn , n ≥ 1 are the martingale differences
from {Tn}. Some simple calculation shows that for j > 1

Y j =
1
a j

(
X j − p + θ j−1

(
p −

S j−1

j − 1

))
and

E(Y 2
j |F j−1) =

1

a2
j

(
p(1 − p) + θ j−1(1 − 2p)

(
S j−1

j − 1
− p

)
− θ2

j−1

(
S j−1

j − 1
− p

)2
)

. (3.3)

Since 0 ≤ S j−1 ≤ j − 1, we have for some constant C

E(Y 2
j |F j−1) ≤

C

a2
j

for j > 1. (3.4)

Let Zn = anYn/n for n ≥ 1. Then {Zn,Fn, n ≥ 1} is a sequence of bounded martingale differences. From (3.4)
we get

∑
∞

j=2 E(Z2
j |F j−1) ≤ C

∑
∞

j=2
1
j2 < ∞, which together with Lemma 3.3 yields

n∑
j=1

a j Y j

j
=

n∑
j=1

Z j converges almost surely.

Since n/an is non-decreasing and goes to infinity from Lemma 3.2, we have in view of Kronecker’s lemma that

lim
n→∞

∣∣∣∣ Sn

n
− p

∣∣∣∣ = lim
n→∞

∣∣∣∣ Sn − np

n

∣∣∣∣ = lim
n→∞

∣∣∣∣anTn

n

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣
n∑

j=1
Y j

n/an

∣∣∣∣∣∣∣∣∣
as
= 0,

proving (2.1).
Now assume that (2.1) holds. If limn→∞ an/n = 0 does not hold, then we have limn→∞ An < ∞ from Lemma 3.2,

and an/n → ν for some ν > 0 from the monotonicity. Then by Theorem 2.2 we have

Sn

n
− p converges almost surely to some non-degenerate random variable,

which yields a contradiction. It is worth mentioning that in the proof of Theorem 2.2 below, we have to use
Theorem 2.1, but we will only use the sufficiency of the theorem.

This finishes the proof of Theorem 2.1. �
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Proof of Theorem 2.2. Under the conditions limn→∞ an/n = 0 and limn→∞ An = ∞ we have

lim
n→∞

n∑
j=1

E(Y 2
j |F j−1)

A2
n

as
= p(1 − p). (3.5)

In fact, we have from (3.3) and Theorem 2.1 (sufficiency part) that

E(Y 2
j |F j−1) =

p(1 − p)

a2
j

(1 + o(1)) as j → ∞

with probability one. This together with the assumption limn→∞ An = ∞ yields (3.5). Hence, by Lemma 3.4 we have

Sn − np

an An
=

n∑
j=1

Y j

An

d
→ N (0, p(1 − p)),

proving (2.2).
If limn→∞ An < ∞, then from (3.4) we have

∑
∞

j=1 E(Y 2
j |F j−1) < ∞ a.s. From Lemma 3.3 we obtain

Sn − np

an
=

n∑
j=1

Y j converges almost surely to some random variable V,

where V is a well-defined random variable with zero mean and positive variance
∑

∞

j=1 E(Y 2
j ). This proves (2.3), and

hence the theorem. �

Proof of Theorem 2.3. Let Zn = Yn and W 2
n = A2

n p(1 − p). Under the given conditions, (3.2) follows from (3.5).
(3.1) holds as well since the Zn’s are bounded and Wn → ∞. Since log log(W 2

n ) ∼ log log An and

Sn − np

an An
√

log log An
=

n∑
j=1

Z j√
2W 2

n log log W 2
n

√
log log W 2

n

log log An

√
2p(1 − p),

the theorem follows from Lemma 3.5. �

Proof of Corollary 2.1. It is easily seen that a(x)−2
∈ RV (−2θ). Since −2θ > −1, from Karamata’s Theorem (see,

e.g., Theorem 1.5.11 in Bingham et al., 1987) we have

A2
n =

∫ n

0
a(x)−2dx ∼

na(n)−2

1 − 2θ
=

na−2
n

1 − 2θ
,

which yields an An ∼

√
n

1−2θ
. Since xa(x)−2

∈ RV (1 − 2θ) and a(x)/x ∈ RV (θ − 1) we have from the properties

of regular variation that log log An ∼ log log(na−2
n ) ∼ log log n. Therefore, Corollary 2.1 follows from Theorems 2.2

and 2.3. �

Proof of Corollary 2.2. By Corollary 2.1, it suffices to show that a(x) ∈ RV (θ); that is, for every t ∈ (0, 1),
limn→∞

a(nt)
a(n)

= tθ . The calculation is straightforward and the details are omitted here. �

Proof of Corollary 2.3. When θ < 1/2, the corollary follows from Corollary 2.2. When θ = 1/2, it follows from
Theorem 2.3 and the following estimates that

An =

√√√√ n∑
j=1

a−2
j ∼

1
2
Γ
(

1
2

)√√√√ n∑
j=1

j−1 ∼
1
2
Γ
(

1
2

)√
log n

and an An ∼
√

n log n from Lemma 3.1. �
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