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A method in analyzing extremes is to fit a generalized Pareto distribution to the exceedances
over a high threshold. By varying the threshold according to the sample size [Smith, R.L., 1987.
Estimating tails of probability distributions. Ann. Statist. 15, 1174–1207] and [Drees, H., Fer-
reira, A., de Haan, L., 2004. On maximum likelihood estimation of the extreme value index.
Ann. Appl. Probab. 14, 1179–1201] derived the asymptotic properties of the maximum likeli-
hood estimates (MLE) when the extreme value index is larger than − 1

2 . Recently Zhou [2009.
Existence and consistency of the maximum likelihood estimator for the extreme value index.
J. Multivariate Anal. 100, 794–815] showed that theMLE is consistent when the extreme value
index is larger than −1. In this paper, we study the asymptotic distributions of MLE when the
extreme value index is in between −1 and − 1

2 (including − 1
2 ). Particularly, we consider the

MLE for the endpoint of the generalized Pareto distribution and the extreme value index and
show that the asymptotic limit for the endpoint estimate is non-normal, which connects with
the results in Woodroofe [1974. Maximum likelihood estimation of translation parameter of
truncated distribution II. Ann. Statist. 2, 474–488]. Moreover, we show that same results hold
for estimating the endpoint of the underlying distribution, which generalize the results in Hall
[1982. On estimating the endpoint of a distribution. Ann. Statist. 10, 556–568] to irregular case,
and results in Woodroofe [1974. Maximum likelihood estimation of translation parameter of
truncated distribution II. Ann. Statist. 2, 474–488] to the case of unknown extreme value index.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let X,X1,X2, . . . be independent and identically distributed (i.i.d.) random variables with a distribution function (d.f.) F, which
lies in the domain of attraction of an extreme value distribution, i.e., there exist an >0 and bn ∈ R such that

lim
n→∞ P

(
max1� i�nXi − bn

an
�x

)
= G(x) (1.1)

for all continuous points of G, where G is a non-degenerate distribution. Based on (1.1), one can infer the tail properties of F, and
hence extrapolate data into a far tail region of F; see Chapter 4 of De Haan and Ferreira (2006). It is known that G in (1.1) can be
written as

G�(x) = exp{−(1 + �x)−1/�}
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for some � ∈ R and 1 + �x>0, and condition (1.1) implies that there exists a positive non-decreasing function � such that

lim
t→�

P
(
X − t
�(t)

>x|X> t
)

= (1 + �x)−1/�

for all x > 0 and 1 + �x>0, where � = sup{x : F(x)<1} is the right endpoint of F. Therefore, given a fixed high threshold u,
the conditional distribution of the exceedance above the threshold, i.e. P(X − u�x|X>u), can be approximated by the so-called
generalized Pareto distribution

H(x) = 1 − (1 + �x/�(u))−1/�, (1.2)

see Chapter 3.1 of De Haan and Ferreira (2006).
A parametric way in analyzing extremes is to fit the generalized Pareto distribution (1.2) to the exceedances over a fixed

high threshold. With this setup, it follows from Smith (1985) that the rate of convergence of the maximum likelihood estimates
(MLE) for parameters � and � := −�(u)/� depends on whether �> − 1

2 , � = − 1
2 or −1< �< − 1

2 . Note that the parameter �
corresponds to the endpoint ofHwhen �<0, and the setting in Smith (1985) is broader than the assumption of generalized Pareto
distribution.

A difficulty for this parametric approach is how to quantify the influence of the fixed high threshold. An alternative way in
analyzing extremes is to start from condition (1.1) directly, which is considered as a semiparametric model. Under this setup, one
may choose a sequence of thresholds u = un and estimate � and �(un) by maximum likelihood estimation. For example, Smith
(1987) derived the limit of MLE for (�,�) when �� − 1

2 , but did not obtain the limit for the case −1< �< − 1
2 . Instead, Smith

(1987) considered a different estimator fromMLE for the case −1< �<− 1
2 . Recently, Drees et al. (2004) revisited the maximum

likelihood estimate of (�,�) by taking the threshold as the (k+1)-th largest order statistic, and derived the limit when �>− 1
2 by

employing a weighted approximation of tail quantile processes. Under condition (2.1) given below, Zhou (2009) showed that the
MLE of (�,�) exists and is consistent when �>− 1. Therefore, a natural question is what the limit and the rate of convergence of
MLE are when � ∈ (−1,− 1

2 ]. Answering this question completes the results in Smith (1987) and Drees et al. (2004).
It is known that condition (1.1) with �<0 implies that the right endpoint of F is finite (i.e. �<∞) and

lim
t→∞

1 − F(� − (tx)−1)
1 − F(� − t−1)

= x1/� for x>0. (1.3)

Based on (1.3), the endpoint � can be estimated; see Hall (1982), Loh (1984), Falk (1995), Athreya and Fukuchi (1997) and Hall
andWang (1999) for the regular case � ∈ (− 1

2 , 0), andWoodroofe (1974) for the irregular case � ∈ (−1,− 1
2 ). Note thatWoodroofe

(1974) assumed that � is known. In this paper, we focus on the irregular case as Woodroofe (1974), but take the same setup
as Drees et al. (2004) without assuming that � is unknown. That is, we assume (1.1) holds for some � ∈ (−1,− 1

2 ]. Therefore,
we have one endpoint for the generalized Pareto distribution (1.2) and another endpoint for the underlying distribution F.
From Woodroofe (1974), one may conjecture that the maximum likelihood estimators for both endpoints have a faster rate of
convergence compared to the MLE for �, and the corresponding limit laws for both endpoints are non-normal.

In this paper, this conjecture is proved when the MLE of � is normalized by a sequence of random variables. It is also shown
that the MLE of �, normalized by a sequence of non-random constants, has a normal limit with a slower convergence rate. This
phenomenon can be explained by the fact thatwe employ a stochastic threshold in themaximum likelihood estimation procedure
and thus the true value of � is essentially related to the random threshold. When considering the maximum likelihood estimate
for (�,�), the rates of convergence for these two parameters turn out to be of the same order and the limits are both normal
distribution. This is different from the limit for (�, �). At first glance, the difference is mysterious: � is a function of � and � and
studying MLE for (�,�) is equivalent to that for (�, �). However, we should keep in mind that the case � ∈ (−1,− 1

2 ] is irregular and
so the invariant property of MLE does not hold. In fact, since �̂ = −�̂�̂, the convergence rate of �̂ to � is determined by that of �̂
to �.

Based on the above study on estimating �, we also derive the joint asymptotic limit of estimators for � and the endpoint �
in (1.3), which shows that the limit of the endpoint estimator for F is non-normal. Since Li and Peng (2008) pointed out that
maximum likelihood estimation for � and � based on the generalized Pareto distribution is the same as that based onmodel (1.3),
our results extend the results in Hall (1982) to irregular case and generalize the results inWoodroofe (1974) to the case of jointly
estimating the extreme value index and endpoint with an unknown extreme value index.

We organize this paper as follows. The main results are given in Section 2. We summarize our conclusions in Section 3. All
proofs are given in Appendix A.

2. Main results

Let Xn,1� · · · �Xn,n be the order statistics of the i.i.d. random variables X1, . . . ,Xn. Let k = kn be an intermediate sequence of
integers satisfying

k → ∞ and
k
n

→ 0 as n → ∞. (2.1)
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Given Xn,n−k, the conditional likelihood function of

(Xn,n−k+1 − Xn,n−k, . . . ,Xn,n − Xn,n−k)

can be approximated by

L(�,�) =
k∏

i=1

h(Xn,n−i+1 − Xn,n−k; �,�),

where h(x; �,�) = (�/�x)H(x) is the density function of the generalized Pareto distribution H(x) defined in (1.2). It follows from
Drees et al. (2004) that the score equations are

1
k

k∑
i=1

log{1 − (Xn,n−i+1 − Xn,n−k)/�} = �, (2.2)

1
k

k∑
i=1

1
1 − (Xn,n−i+1 − Xn,n−k)/�

= 1
1 + �

(2.3)

and

1 − (Xn,n−i+1 − Xn,n−k)/�>0 for all i = 1, . . . , k (2.4)

when ��0 and � = −�/�. Note that Eq. (2.4) is not used in Drees et al. (2004) because the solution of (2.2) and (2.3) automatically
fulfills this requirement when �> − 1

2 . But this constraint is necessary in determining the limit of MLE when −1< �� − 1
2 ; see

Theorem 1.
For deriving the asymptotic limit of the MLE, similar to Drees et al. (2004), we need a second order condition: suppose there

exist two real functions a(t) and A(t) → 0 (as t → ∞) such that

lim
t→∞

(U(tx) − U(t))/a(t) − (x� − 1)/�
A(t)

= �(x) :=
∫ x

1
s�−1

∫ s

1
u�−1 duds (2.5)

for some �>− 1 and some ��0, where U(t) denotes the left-continuous inverse of 1/(1 − F(t)). It follows from Theorem 3.3.5 of
De Haan and Ferreira (2006) that

�(t) = a(U−(t)), (2.6)

where U− denotes the left-continuous inverse function of U.
Throughout, we assume −1< �� − 1

2 and let (�̂, �̂) denote the solution of (�, �) to Eqs. (2.2)–(2.4). Denote the true value of �
by �0. In virtue of the random threshold Xn,n−k, we will normalize the MLE of � by a(U−(Xn,n−k)). It follows from (2.5) that a(t) has
a positive sign for large t, and hence (2.4) is equivalent to

�/a(U−(Xn,n−k))> {Xn,n − Xn,n−k}/a(U−(Xn,n−k)) : =Mn. (2.7)

Put

fn(t) = 1
k

k∑
i=1

log
{
1 − Xn,n−i+1 − Xn,n−k

ta(U−(Xn,n−k))

}
+ 1,

gn(t) = 1
k

k∑
i=1

{
1 − Xn,n−i+1 − Xn,n−k

ta(U−(Xn,n−k))

}−1

and

hn(t) = gn(t) − 1
fn(t)

.

Put �n = |A(n/k) log(k−�0 |A(n/k)|)|. First we show that there exits � such that �/a(U−(Xn,n−k)) lies between Mn(1 + �n) and
−1/�0 + 	 for some 	>0 as defined in the following proposition.

Proposition 1. Under conditions (2.1), (2.5), � ∈ (−1,− 1
2 ] and

k−�0A(n/k) → 0, k−1| log |A(n/k)‖ → 0 as n → ∞, (2.8)
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we have

lim
n→∞ P(hn(Mn(1 + �n))>0) = 1, (2.9)

lim
n→∞ P(hn(−1/�0 + 	)<0) = 1 (2.10)

and

lim
n→∞ P(h′

n(t)<0 for all t ∈ [Mn(1 + �n),−1/�0 + 	]) = 1, (2.11)

where 	>0 is small enough.

It follows from Proposition 1 that, with a probability tending to one, there exits a unique solution, say (�̂, �̂), which satisfies
that ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�̂> (Xn,n − Xn,n−k)(1 + �n),

hn(�̂/a(U−(Xn,n−k))) = 0,

�̂ = 1
k

k∑
i=1

log{1 − (Xn,n−i+1 − Xn,n−k)/�̂}.
(2.12)

Note that there may exist a � ∈ (Xn,n −Xn,n−k, (Xn,n −Xn,n−k)(1+�n)) such that hn(�/a(U−(Xn,n−k)))=0. In this case, it is obvious
that this solution has the same asymptotic limit as Mn. From now on, we focus on the study on (�̂, �̂) satisfying (2.12).

Theorem 1. Assume �0 ∈ (−1,− 1
2 ). Under conditions (2.1), (2.5) and (2.8) we have

(
√
k{�̂ − �0}, k−�0 {�̂/a(U−(Xn,n−k)) + 1/�0})

d→(W ,V),

where W and V are independent random variables, W ∼ N(0, �20), and the distribution of V is given by

V(y) := P(V�y) =
{
P(Wy�0) if y�0,
P(Wy�0) exp{−(�0y)

−1/�0 } if y<0,

where Wy is defined in Lemma 2.

Theorem 2. Assume �0 = − 1
2 . If conditions (2.1), (2.8) and (2.5) hold, then we have

(
√
k{�̂ − �0}, (k ln k)−�0 {�̂/a(U−(Xn,n−k)) + 1/�0})

d→(W ,V ′),

where W and V ′ are independent random variables, W ∼ N(0, �20), and V ′ ∼ N(0, �−2
0 ).

Remark 1. Note that the case �0 = − 1
2 is not studied in Woodroofe (1974).

Note that in Theorems 1 and 2, we can treat the MLE of � as an estimate of −a(U−(Xn,n−k))/�0, which is the random endpoint
of the generalized Pareto distribution H. When studying �̂, one may take a(n/k) as the true value as in Drees et al. (2004). In this
case, we compare �̂ with the non-random endpoint −a(n/k)/�0. By writing

�̂/a(n/k) + 1/�0 = {�̂/a(U−(Xn,n−k)) + 1/�0}
a(U−(Xn,n−k))

a(n/k)
+ �−1

0

{
a(U−(Xn,n−k))

a(n/k)
− 1

}
, (2.13)

the following theorem shows that the rate of convergence is k−1/2, which is slower than k�0 for �0 ∈ (−1,− 1
2 ) or (k ln k)�0 for

�0 = − 1
2 .

Theorem 3. Let −1< �0� − 1
2 . Assume conditions (2.1), (2.5) and (2.8) hold. Then we have as n → ∞

(
√
k{�̂ − �0},

√
k{�̂/a(n/k) + 1/�0})

d→(W ,W∗),

where W andW∗ are independent random variables, W ∼ N(0, �20) and W∗ ∼ N(0, 1).

An alternative interest is to estimate � instead of the endpoint �. In this case, the MLE for � is �̂ = −�̂�̂ and its asymptotic limit
is given as follows. Here we compare the limits of �̂ after normalized by both the non-random constant a(n/k) and the random
variable a(U−(Xn,n−k)), respectively.
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Theorem 4. Assume all conditions in Theorem 3 are satisfied. Then we have

(
√
k{�̂ − �0},

√
k{�̂/a(n/k) − 1},

√
k{�̂/a(U−(Xn,n−k)) − 1}) d→(W , �0W

∗ + W/�0,W/�0),

where W andW∗ are given in Theorem 3.

Next we estimate the endpoint � of F. Based on �̂ and �̂, one can estimate � by �̂ = Xn,n−k + �̂. As pointed out in Li and Peng

(2008), estimators �̂ and �̂ are the same as the maximum likelihood estimator in Hall (1982). Hence the following results extend
Hall (1982) to irregular case.

Theorem 5. Assume �0 ∈ (−1,− 1
2 ). Under conditions (2.1), (2.5) and (2.8), we have

(√
k{�̂ − �0}, k−�0

�̂ − �
a(n/k)

)
d→(W ,V),

where (W ,V) is defined in Theorem 1.

Theorem 6. Assume �0 = − 1
2 . If conditions (2.1), (2.8) and (2.5) hold, then we have

(√
k{�̂ − �0}, (k ln k)−�0 �̂ − �

a(n/k)

)
d→(W ,V ′),

where (W ,V ′) is defined in Theorem 2.

Remark 2. Write

k−�0

a(n/k)
a(n) − 1 = k−�0A(n/k)

a
(
n
k
k
)

a
(
n
k

) − k�0

A(n/k)
.

It follows from (2.8) and Theorem 2.3.6 of De Haan and Ferreira (2006) that k−�0a(n)/a(n/k) → 1, which implies that �̂ has the
same rate of convergence as Xn,n when � ∈ (−1,− 1

2 ). But it is true that � − �̂�� − ({Xn,n−k + (Xn,n − Xn,n−k)} = � − Xn,n, i.e., �̂ is

always closer to the true value than Xn,n. When �0 = − 1
2 , �̂ has a faster rate of convergence than Xn,n.

Remark 3. It is known that the endpoint estimators in Dekkers and de Haan (1989) and Dekkers et al. (1989) have the rate
of convergence k−1/2a(n/k) when limn→∞

√
kA(n/k) ∈ (−∞,∞). Hence, �̂ is better than the endpoint estimators in Dekkers and

de Haan (1989) and Dekkers et al. (1989) when � ∈ (−1,− 1
2 ). However, the estimators for � in Dekkers and de Haan (1989) and

Dekkers et al. (1989) have a faster rate of convergence than the maximum likelihood estimator when � ∈ (−1,− 1
2 ) since (2.8) is

required in our Theorem 5.

3. Conclusions

We generalize the study in Drees et al. (2004) to the irregular case � ∈ (−1,− 1
2 ], hence the maximum likelihood estimator

for a generalized Pareto distribution becomes known for �>− 1. As pointed out in Li and Peng (2008), when �<0, models (1.2)
and (1.3) are equivalent in the sense that the maximum likelihood estimators for the extreme value index and the endpoint of
underlying distribution are the same. Therefore, although we study model (1.2), our results generalize the study in Hall (1982)
from the regular case � ∈ (− 1

2 , 0) to the irregular case � ∈ (−1,− 1
2 ]. Also our results extend those in Woodroofe (1974) from

known � to unknown �.
It is known that maximum for the endpoint has a better rate than the endpoint estimators in Dekkers and de Haan (1989) and

Dekkers et al. (1989) when �<− 1
2 , but it has a worse rate when �� − 1

2 . Our results, combining with those in Drees et al. (2004)
show that the maximum likelihood estimator for the endpoint always achieves the best rate of convergence for �>− 1.

Appendix A. Proofs

LetY1, . . . ,Yn be i.i.d. randomvariableswithdistribution1−1/x andYn,1� · · · �Yn,n denote the order statistics ofY1, . . . ,Yn. Con-
sider another independent sequence of i.i.d. random variables Y∗

1, . . . ,Y
∗
k with distribution function 1−1/x. Denote Y∗

k,1� · · · �Y∗
k,k
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as their order statistics. It is well known that

{Yn,n−i+1/Yn,n−k}ki=1
d={Y∗

k,k−i+1}ki=1. (A.1)

The following lemma comes from Lemma 5.2 of Draisma et al. (1999).

Lemma 1. Let f be a measurable function. Suppose there exist a real parameter 
 and functions a1(t)>0 and A1(t) → 0 such that for
all x>0

lim
t→∞

f (tx) − f (t)
a1(t)

− x
 − 1



A1(t)
= H1(x) = 1

�

{
x
+� − 1

 + �

− x
 − 1



}
,

where ��0. Then for any 	>0 there exists t0>0 such that for all t� t0, tx� t0,

∣∣∣∣∣∣∣∣
f (tx) − f (t)

a1(t)
− x
 − 1



A1(t)

− H1(x)

∣∣∣∣∣∣∣∣
�	{1 + x
 + 2x
+�e	| log x|}.

Put

l1(x; t) = log
{
1 − x�0 − 1

t�0

}
− �0 and l2(x; t) =

{
1 − x�0 − 1

t�0

}−1

− 1
1 + �0

.

In Lemmas 2 and 3 and their proofs below, we use eix to denote complex number cos x + i sin x. In the two lemmas, we only
assume k → ∞. One can assume that k = kn depends on n like condition (2.1) but for all random quantities of interest in these
two lemmas, their distributions depend on n through kn only.

Lemma 2. Assume �0 ∈ (−1,− 1
2 ).

(i) For t�0, we have

⎛
⎝ 1√

k

k∑
j=1

l1(Y∗
j ;−1/�0 + tk�0 ), k�0

k∑
j=1

l2(Y∗
j ;−1/�0 + tk�0 )

⎞
⎠ d→(W ,Wt) (A.2)

as k → ∞, where W andWt are independent, W ∼ N(0, �20) and the characteristic function ofWt is

E{ei�Wt } = exp
{∫ ∞

0

{
exp

(
i�

1
x�0 − t�0

)
− 1 − i�

1
x�0 − t�0

}
x−2 dx +

∫ ∞

0
i�

t�0
x�0 (x�0 − t�0)

x−2 dx
}
.

(ii) For t <0, conditional on (max1� j� kY∗
j )

�0 /�0<tk�0 , (A.2) holds with

E{ei�Wt } = exp

{∫ a(t,�0)

0

{
exp

(
i�

1
x�0 − t�0

)
− 1 − i�

1
x�0 − t�0

}
x−2 dx +

∫ (t�0)
1/�0

a(t,�0)

{
exp

(
i�

1
x�0 − t�0

)
− 1

}
x−2 dx

}
,

where a(t, �0) ∈ (0, (t�0)
1/�0 ) is the unique solution of the following equation:


(x) :=
∫ x

0

t�0
y�0 (y�0 − t�0)

y−2 dy − x−�0−1

1 + �0
= 0. (A.3)

(iii) For t�0, we have

⎛
⎝ 1√

k

k∑
j=1

l1(Y∗
j ;−1/�0), k

�0
k∑

j=1

l2(Y∗
j ;−1/�0 + tk�0 )

⎞
⎠ d→(W ,Wt) (A.4)

as k → ∞, where W andWt are given in part (i).
(iv) For t <0, conditional on (max1� j� kY∗

j )
�0 /�0<tk�0 , (A.4) holds with Wt given in part (ii).
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Proof. (i) It is easy to check that

�1(t1) := E{exp(it1k−1/2l1(Y∗
j ;−1/�0 + tk�0 ))} − 1

=
∫ ∞

1
{exp(it1k−1/2l1(x;−1/�0 + tk�0 )) − 1}x−2 dx

=
∫ ∞

1
{it1k−1/2l1(x;−1/�0 + tk�0 ) − 1

2
t21k

−1l21(x;−1/�0 + tk�0 )}x−2 dx + o(k−1)

=
∫ ∞

1
{it1k−1/2(�0 log x − �0) − 1

2
t21k

−1(�0 log x − �0)
2}x−2 dx + o(k−1)

= − 1
2
t21�

2
0k

−1 + o(k−1), (A.5)

�2(t2) := E{exp(it2k�0 l2(Y∗
j ;−1/�0 + tk�0 )} − 1

=
∫ ∞

1
exp

{
it2

k�0

x�0 − tk�0�0

}
exp

{
−it2

tk2�0�0
x�0 − tk�0�0

}
exp

{
−it2

k�0

1 + �0

}
x−2 dx − 1

=
∫ ∞

1
exp

{
it2

k�0

x�0 − tk�0�0

}
exp

{
−it2

k�0

1 + �0

}
x−2 dx − 1 + o(k−1)

=
∫ ∞

1
exp

{
it2

k�0

x�0 − tk�0�0

}{
1 − it2

k�0

1 + �0

}
x−2 dx − 1 + o(k−1)

=
∫ ∞

1

{
exp

(
it2

k�0

x�0 − tk�0�0

)
− 1 − it2

k�0

x�0 − tk�0�0

}(
1 − it2

k�0

1 + �0

)
x−2 dx

+
∫ ∞

1

(
1 + it2

k�0

x�0 − tk�0�0

)(
1 − it2

k�0

1 + �0

)
x−2 dx − 1 + o(k−1)

= k−1
∫ ∞

1/k

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}(
1 − it2

k�0

1 + �0

)
x−2 dx

+
∫ ∞

1

(
it2

k�0

x�0 − tk�0�0
− it2

k�0

1 + �0

)
x−2 dx + o(k−1)

= k−1
∫ ∞

1/k

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx +

∫ ∞

1

(
it2

k�0

x�0 − tk�0�0
− it2

k�0

x�0

)
x−2 dx + o(k−1)

= k−1
∫ ∞

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx + k−1

∫ ∞

1/k
it2

t�0
x�0 (x�0 − t�0)

x−2 dx + o(k−1)

= k−1
∫ ∞

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx + k−1

∫ ∞

0
it2

t�0
x�0 (x�0 − t�0)

x−2 dx + o(k−1) (A.6)

and

�3(t1, t2) = E{exp(it1k−1/2l1(Y∗
j ;−1/�0 + tk�)) − 1}{exp(it2k�0 l2(Y∗

j ;−1/�0 + tk�)) − 1}

= o(k−1). (A.7)

By (A.5)–(A.7),

E exp

⎧⎨
⎩it1k−1/2

k∑
j=1

l1(Y∗
j ;−1/�0 + tk�0 ) + it2k�0

k∑
j=1

l2(Y∗
j ;−1/�0 + tk�0 )

⎫⎬
⎭

= {1 + �1(t1) + �2(t2) + �3(t1, t2)}k

→ exp
{
−1
2
t21�

2
0 +

∫ ∞

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx

+
∫ ∞

0
it2

t�0
x�0 (x�0 − t�0)

x−2 dx
}
. (A.8)

Hence part (i) follows from (A.8).
(ii) To prove the existence and uniqueness of a solution to (A.3), it suffices to show that 
(x) is strictly increasing,
(0+)=−∞

and 
((t�0)
1/�0−) = ∞. The proof is straightforward and the detail is omitted.
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Conditional on {(max1� j� kY∗
j )

�0 /�0<tk�0 }={max1� j� kY∗
j < (t�0)

1/�0k}, Y∗
1, . . . ,Y

∗
k are i.i.d with the truncated density function

gt(y) =
{
(1 − (t�0)

−1/�0k−1)−1y−2 if 1<y< (t�0)
1/�0k,

0 otherwise.

Let Z1, . . . , Zk be iid random variables with the density function gt(y). Similar to the proof of (A.5), we have

�̄1(t1) := E{exp(it1k−1/2l1(Zj;−1/�0 + tk�0 ))} − 1

= − 1
2 t

2
1�

2
0k

−1 + o(k−1). (A.9)

It is easy to check that

�̄2(t2) := E{exp(it2k�0 l2(Zj;−1/�0 + tk�0 ))} − 1

=
∫ (t�0)

1/�0 k

1

{
exp

(
it2k�0

1 − t�0k
�0

x�0 − t�0k�0

)
exp

(
−it2k�0

1
1 + �0

)
− 1

}
x−2

1 − (t�0)
−1/�0k−1

dx

=
∫ (t�0)

1/�0 k

a(t,�0)k

{
exp

(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)
exp

(
−it2k�0

1
1 + �0

)
− 1

}
x−2

1 − (t�0)
−1/�0k−1

dx

+
∫ a(t,�0)k

1

{
exp

(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)
exp

(
−it2k�0

1
1 + �0

)
− 1

}
x−2

1 − (t�0)
−1/�0k−1

dx

:= I1 + I2, (A.10)

where

I1 = k−1
∫ (t�0)

1/�0

a(t,�0)

{
exp

(
it2

1
x�0 − t�0

)
− 1

}
x−2 dx + o(k−1), (A.11)

and

I2 =
∫ a(t,�0)k

1

{
exp

(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)
− 1 − it2k�0 (1 + �0)

−1 exp
(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)}
x−2 dx + o(k−1)

=
∫ a(t,�0)k

1

{
exp

(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)
− 1 − it2k�0 (1 + �0)

−1
}
x−2 dx + o(k−1)

=
∫ a(t,�0)k

1

{
exp

(
it2k�0

1 − t�0k�0

x�0 − t�0k�0

)
− 1 − it2k�0

1 − t�0k�0

x�0 − t�0k�0

}
x−2 dx

+
∫ a(t,�0)k

1

{
it2k�0

1 − t�0k�0

x�0 − t�0k�0
− it2k�0 (1 + �0)

−1
}
x−2 dx + o(k−1)

= k−1
∫ a(t,�0)

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx +

∫ a(t,�0)k

1

{
it2k�0

1 − t�0k
�0

x�0 − t�0k�0
− it2k�0

1
x�0

}
x−2 dx

+
∫ a(t,�0)k

1

{
it2k�0

1
x�0

− it2k�0 (1 + �0)
−1
}
x−2 dx + o(k−1)

:= k−1
∫ a(t,�0)

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx + I3 + I4 + o(k−1).

Notice that

I3 =
∫ a(t,�0)k

1

{
it2k�0

1 − t�0k
�0

x�0 − t�0k�0
− it2k�0

1
x�0

}
x−2 dx

= k−1
∫ a(t,�0)

1/k

{
it2

1 − t�0k�0

x�0 − t�0
− it2

1
x�0

}
x−2 dx

= k−1it2

∫ a(t,�0)

1/k

{
1

x�0 − t�0
− 1

x�0

}
x−2 dx + o(k−1)

= k−1it2

∫ a(t,�0)

0

t�0
(x�0 − t�0)x�0

x−2 dx + o(k−1)
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and

I4 =
∫ a(t,�0)k

1

{
it2k�0

1
x�0

− it2k�0 (1 + �0)
−1
}
x−2 dx

= k−1
∫ a(t,�0)

1/k
it2

1
x�0

x−2 dx + o(k−1)

= k−1 a(t, �0)
−�0+1

�0 + 1
+ o(k−1).

From the definition of a(t, �0), we get that I3 + I4 = o(k−1). Thus

I2 = k−1
∫ a(t,�0)

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx + o(k−1). (A.12)

Furthermore, similar to the proof of part (i), we have that

�̄3(t1, t2) = E{exp(it1k−1/2l1(Zj;−1/�0 + tk�)) − 1}{exp(it2k�0 l2(Zj;−1/�0 + tk�)) − 1}
= o(k−1). (A.13)

By (A.9)–(A.13),

E exp
{
it1k−1/2

∑k

j=1
l1(Zj;−1/�0 + tk�0 ) + it2k�0

∑k

j=1
l2(Zj;−1/�0 + tk�0 )

}

= {1 + �̄1(t1) + �̄2(t2) + �̄3(t1, t2)}k

→ exp

{
−1
2
t21�

2
0 +

∫ a(t,�0)

0

{
exp

(
it2

1
x�0 − t�0

)
− 1 − it2

1
x�0 − t�0

}
x−2 dx

+
∫ (t�0)

1/�0

a(t,�0)

{
exp

(
it2

1
x�0 − t�0

)
− 1

}
x−2 dx

}
. (A.14)

Hence part (ii) follows from (A.14).
Part (iii) and Part (iv) can be shown in a similar way to the proofs of (i) and (ii), respectively. Hence, we complete the proof

the lemma. �

Lemma 3. Assume �0 = − 1
2 .

(i) For any t�0 we have(
1√
k

∑k

j=1
l1(Y∗

j ;−1/�0 + t(k ln k)�0 ),
1√
k ln k

∑k

j=1
l2(Y∗

j ;−1/�0 + t(k ln k)�0 )
)

d→(N1,N2) (A.15)

as k → ∞, where N1 and N2 are independent normal random variables with N1 ∼ N(0, �20) and N2 ∼ N(�0t, 1).
(ii) For each t <0, P((max1� j� kY∗

j )
�0 /�0<t(k ln k)�0 ) → 1 as k → ∞, and conditional on {(max1� j� kY∗

j )
�0 /�0<t(k ln k)�0 }, (A.15)

holds with N1 and N2 given in part (i).
(iii) For any t�0 we have(

1√
k

∑k

j=1
l1(Y∗

j ;−1/�0),
1√
k ln k

∑k

j=1
l2(Y∗

j ;−1/�0 + t(k ln k)�0 )
)

d→(N1,N2) (A.16)

as k → ∞, where N1 and N2 are given in (i).
(iv) For each t <0, P((max1� j� kY∗

j )
�0 /�0<t(k ln k)�0 ) → 1 as k → ∞, and conditional on {(max1� j� kY∗

j )
�0 /�0<t(k ln k)�0 }, (A.16)

holds with N1 and N2 given in part (i).

Proof. Set

V1,j :=
l1

(
Y∗
j ;−1/�0 + t√

k ln k

)
I
(
Y∗
j �k(ln k)1/2

)
√
k

and

V2,j :=
l2

(
Y∗
1;−1/�0 + t√

k ln k

)
I
(
Y∗
j �k(ln k)1/2

)
√
k ln k

,
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which are uniformly bounded by a sequence of constants tending to zero. Moreover, by noting �0 = − 1
2 , one can verify that

E(V1,1) = o(1/k), E(V2,1) = �0t/k + o(1/k), E(V1,1V2,1) = o(1/k), EV2
1,1 = 1/4k + o(1/k), and EV2

2,1 = 1/k + o(1/k). By using Taylor's
expansion we can show that

E exp

⎛
⎝it1

k∑
j=1

V1,j + it2
k∑

j=1

V2,j

⎞
⎠ → exp

(
−1
8
t21 + it2�0t − 1

2
t22

)
.

Therefore, (
∑k

j=1V1,j,
∑k

j=1V2,j)
d→(N1,N2), and part (i) is proved since P(∪k

j=1{Y∗
j > k(ln k)1/2})�kP(Y∗

1 >k(ln k)1/2)= (ln k)−1/2 → 0
as k → ∞.

For each given t <0, we have

P
((

max1� j� kY
∗
j

)�0
/�0� t(k ln k)�0

)
= P

(
max1� j� kY

∗
j � (t�0)

1/�0k ln k
)

� kP(Y∗
1 � (t�0)

1/�0k ln k) = O((ln k)−1) → 0,

yielding P((max1� j� kY∗
j )

�0 /�0<t(k ln k)�0 ) → 1.
The rest of the proof for part (ii) is the same as that of part (i) by replacing expectations and probabilities by conditional

expectations and conditional probabilities given on the set {(max1� j� kY∗
j )

�0 /�0<t(k ln k)�0 }.

Parts (iii) and (iv) can be proved in a way similar to the proofs of (i) and (ii). Hence, we complete the proof of Lemma 3.

Proof of Proposition 1. Put

f̄n(t) = 1
k

k∑
i=1

log

{
1 − (Yn,n−i+1/Yn,n−k)

�0 − 1
t�0

}
+ 1,

ḡn(t) = 1
k

k∑
i=1

{
1 − (Yn,n−i+1/Yn,n−k)

�0 − 1
t�0

}−1

,

l̄n(t) = 1
k

k∑
i=1

{
1 − (Yn,n−i+1/Yn,n−k)

�0 − 1
t�0

}−2

,

M̄n = (Yn,n/Yn,n−k)
�0 − 1

�0

and

h̄n(t) = ḡn(t) − 1

f̄n(t)
.

By (2.1), (2.5) and Lemma 1, there exist d1 and d2 such that

(Yn,n−i+1/Yn,n−k)
�0 − 1

(Yn,n/Yn,n−k)
�0 − 1

(1 + d1A(n/k))�
Xn,n−i+1 − Xn,n−k

Xn,n − Xn,n−k
�

(Yn,n−i+1/Yn,n−k)
�0 − 1

(Yn,n/Yn,n−k)
�0 − 1

(1 + d2A(n/k)) (A.17)

with probability tending to one.
Note that (2.8) implies that �n/|A(n/k)| → ∞ and k−�0�n → 0 as n → ∞, and it is easy to verify that

k−�0 (M̄n + 1/�0)
d→ −Q , k−�0 (M̄n(1 + �n) + 1/�0)

d→ −Q , (A.18)

where Q is a positive random variable with distribution 1 − exp(−(−�0x)
−1/�0 ), x>0. Further, we can show that

(fn(tMn(1 + �n)), gn(tMn(1 + �n)), Mn) = (f̄n(tM̄n(1 + �n)), ḡn(tM̄n(1 + �n)), M̄n)(1 + Op(�n)) (A.19)

uniformly for t�1. Hence, by (A.19), (A.18) and the weak law of large numbers we have

hn(−1/�0 + 	) = ḡn(−1/�0 + 	) − f̄−1
n (−1/�0 + 	) + op(1)

p→ E

{
1 − 	�0

(Y∗
1)

�0 − 	�0

}
− 1

E log

{
(Y∗

1)
�0 − 	�0

1 − 	�0

}
+ 1

:= J1 − J2. (A.20)
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It is easy to check that

lim
	↓0

	−1
{
J1 − 1

1 + �0

}
= lim

	↓0
	−1

∞∫
1

{
1 − 	�0
y�0 − 	�0

− 1
y�0

}
y−2 dy

= lim
	↓0

∫ ∞

1

�0(1 − y�0 )
y�0 (y�0 − 	�0)

y−2 dy

= − ∞ (A.21)

and

lim
	↓0

	−1{J−1
2 − (1 + �0)} = lim

	↓0
	−1

{∫ ∞

1
log

(
y�0 − 	�0
1 − 	�0

)
d(−y−1) − �0

}

= lim
	↓0

	−1�0

{∫ ∞

1

1 − 	�0
y�0 − 	�0

y�0−2 dy − 1
}

= lim
	↓0

	−1�0

∫ ∞

1

{
1 − 	�0
y�0 − 	�0

− 1
y�0

}
y�0−2 dy

= lim
	↓0

∫ ∞

1

�20(1 − y�0 )
y�0 (y�0 − 	�0)

y�0−2 dy

= �20

∫ ∞

1
(1 − y�0 )y−2−�0 dy

= − �30
1 + �0

,

which implies

lim
	↓0

	−1
{
J2 − 1

1 + �0

}
= �30

(1 + �0)
3 . (A.22)

Thus, (2.10) follows from Eqs. (A.20) to (A.22).
Next we prove that uniformly in t ∈ [M̄n(1 + k−1),−1/�0],

h̄′
n(t)/dn

p→ −∞ (A.23)

for dn = k−3(1+2�0)/4(ln k)3/4. Note that dn → ∞ as n → ∞.
Note that

h̄′
n(t) = t−1{−l̄n(t) + ḡn(t) + f̄−2

n (t)ḡn(t) − f̄−2
n (t)}

� t−1{−l̄n(t) + ḡn(t) + f̄−2
n (t)ḡn(t)}

� t−1{−l̄n(t) + ḡn(t) + f̄−2
n (M̄n(1 + k−1))ḡn(t)}

� t−1{−l̄n(t) + (1 + c)ḡn(t)}

holds with a probability tending to one, where c = 1/(1 + �0 + 	)2>0 for some sufficiently small 	>0.
Denote Zn,i(t) = 1 − ((Yn,n−i+1/Yn,n−k)

�0 − 1)/t�0 for 1� i�k. For all t ∈ [M̄n(1 + k−1),−1/�0], we have uniformly

Zn,i(t)�Zn,i(−1/�0) = (Yn,n−i+1/Yn,n−k)
�0 .

Therefore, by choosing 0<b< (1 + c)1/�0 , for all i��bk
, where �bk
 denotes the integer part of bk, we have

Zn,i(t)� (Yn,n−�bk
+1/Yn,n−k)
�0 p→ b−�0 <

1
1 + c

.

Denote

I1(t) = 1
k

�bk
∑
i=1

1

(Zn,i(t))
2 , I2(t) = 1

k

k∑
i=�bk
+1

1
Zn,i(t)

.
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For all t ∈ [M̄n(1 + k−1),−1/�0], we have uniformly

I1(t)� I1(−1/�0)

= 1
k

�bk
∑
i=1

1

(Zn,i(−1/�0))
2

= 1
k

�bk
∑
i=1

(Yn,n−i+1/Yn,n−k)
−2�0 .

Note that (1/k)
∑k

i=�bk
+1(Yn,n−i+1/Yn,n−k)
−2�0 is bounded by a positive number. It follows from (A.1) that if �0 ∈ (−1,− 1

2 )

1
k−2�0

k∑
i=1

(Yn,n−i+1/Yn,n−k)
−2�0 d= 1

k−2�0

k∑
i=1

(Y∗
i )

−2�0 d→Q1,

where Q1>0 is a random variable with 1/(−2�0)-stable distribution. Similarly, for �0 = − 1
2 , (1/k)(

∑k
i=1(Yn,n−i+1/Yn,n−k) − k ln k)

converges in distribution. Therefore, for any �0 ∈ (−1,− 1
2 ], we have (1/kdn)s

∑k
i=1(Yn,n−i+1/Yn,n−k)

−2�0 converges to infinity in
probability, where dn is given in (A.23). Thus, we conclude that uniformly in t ∈ [M̄n(1 + k−1),−1/�0],

I1(t)/dn
p→ +∞. (A.24)

In a similar manner, we have uniformly in t ∈ [M̄n(1 + k−1),−1/�0]

I2(t)� I2(M̄n(1 + k−1))

= 1
k

k∑
i=�bk
+1

1

Zn,i(M̄n(1 + k−1))

�
k − �bk


k
1

Zn,�bk
+1(M̄n(1 + k−1))

p→ (1 − b)b−�0 .

It is easy to see that

−l̄n(t) + (1 + c)ḡn(t) = 1
k

k∑
i=1

1 + c
Zn,i(t)

− 1

Zn,i(t)
2

�
1
k

�bk
∑
i=1

(1 + c)(Zn,i(t)) − 1

Zn,i(t)
2 + 1

k

k∑
i=�bk
+1

1 + c
Zn,i(t)

= − 1
k

�bk
∑
i=1

(1 − (1 + c)(Zn,i(t))) · 1

Zn,i(t)
2 + (1 + c)I2(t).

Notice that for any t ∈ [M̄n(1 + k−1),−1/�0], the two series 1 − (1 + c)(Zn,i(t)) and 1/Zn,i(t)
2 are both positive and decreasing in i

when 1� i��bk
. By using the Chebyshev's inequality with ordering series (see Jeffrey, 1995, p. 28), we get that

1
k

�bk
∑
i=1

(1 − (1 + c)(Zn,i(t))) · 1

(Zn,i(t))
2 �

�bk

k

1
�bk


�bk
∑
i=1

(1 − (1 + c)(Zn,i(t))) · 1
�bk


�bk
∑
i=1

1

(Zn,i(t))
2

� (1 − (1 + c)(Zn,�bk
(−1/�0))) · I1(t).

Since (1 − (1 + c)(Zn,�bk
(−1/�0)))
p→(1 − (1 + c)b−�0 )>0, we conclude that uniformly in t ∈ [M̄n(1 + k−1),−1/�0]

1
kdn

�bk
∑
i=1

(1 − (1 + c)(Zn,i(t))) · 1

(Zn,i(t))
2

p→ +∞,

where dn is given in (A.23). Since I2(t) is bounded in probability by a finite number, we have proved that uniformly in t ∈
[M̄n(1 + k−1),−1/�0]

{−l̄n(t) + (1 + c)ḡn(t)}/dn p→ −∞. (A.25)

This proves (A.23).
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Since

l̄n(−1/�0 + 	)
p→ E

{
1 − 	�0

(Y∗
1)

�0 − 	�0

}2

,

lim
	↓0

E

{
1 − 	�0

(Y∗
1)

�0 − 	�0

}2

= ∞, ḡn(−1/�0)
p→(1 + �0)

−1,

we have, uniformly in t ∈ [−1/�0,−1/�0 + 	],

h̄′
n(t)� t−1{−l̄n(−1/�0 + 	) + ḡn(−1/�0) + f̄−2

n (−1/�0)ḡn(−1/�0) − f̄−2
n (−1/�0 + 	)}

< 0 (A.26)

with a probability tending to one when 	>0 is small enough. Therefore, (2.11) follows from (A.23), (A.26), (2.8) and (A.19).
Next we prove (2.9). By the mean-value theorem,

h̄n(M̄n(1 + �n)) − h̄n(−1/�0) = h̄′
n(�){M̄n(1 + �n) + 1/�0} (A.27)

for some � between M̄n(1 + �n) and −1/�0. It follows from Lemmas 2 and 3 that

h̄n(−1/�0) = Op(k−1/2) for �0 ∈ (−1,−1/2)

and

h̄n(−1/�0) = Op

((
k

ln k

)−1/2
)

for �0 = −1/2.

Since

k−1/2/(dnk�0 ) → 0 for �0 ∈ (−1,−1/2)

and

(k/ln k)−1/2/(dnk�0 ) → 0 for �0 = −1/2,

where dn is given in (A.23), we get

h̄n(−1/�0)
dnk�0

p→0. (A.28)

Moreover, we have from Eqs. (A.18) and (A.23) that

h̄′
n(�){M̄n(1 + �n) + 1/�0}

dnk�0
= h̄′

n(�)
dn

M̄n(1 + �n) + 1/�0
k�0

p→ ∞,

which together with (A.27) and (A.28) implies

h̄n(M̄n(1 + �n))/(dnk�0 ) → +∞ (A.29)

with probability tending to one.
It follows from (A.19) that

hn(Mn(1 + �n)) = h̄n(M̄n(1 + �n))(1 + Op(�n)) + Op(�n),

which coupled with (A.29) implies

hn(Mn(1 + �n))/(dnk�0 )
p→ +∞

and hence (2.9). Therefore we complete the proof of Proposition 1. �

For proving Theorems 1 and 2, we introduce some notations. For any two sets A and B denote the symmetric difference of A
and B by A�B, i.e. A�B = (A ∪ B)\(A ∩ B). The following facts about the symmetric differences will be used in the proofs:

D1. P(An�Bn) → 0 implies P(An) − P(Bn) → 0;
D2. If P(An�Bn) → 0 as n → ∞, then P(An ∩ Cn) − P(An)P(Cn) → 0 if and only if P(Bn ∩ Cn) − P(Bn)P(Cn) → 0.
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From Proposition 1 we conclude that

P({�̂/a(U−(Xn,n−k))>t}�{hn(t)>0}) = o(1), (A.30)

where o(1) is uniform for all −(1 + �n)/�0� t� − 1/�0 + 	, and

P({�̂/a(U−(Xn,n−k))� t}�{hn(t)�0,Mn(1 + �n)<t}) = o(1),

where o(1) is uniform for all t� − (1 + �n)/�0. Therefore, for −1< �0<− 1
2 we have

P({k−�0 (�̂/a(U−(Xn,n−k)) + 1/�0)>t}�{hn(−1/�0 + tk�0 )>0}) = P({�̂/a(U−(Xn,n−k))>− 1/�0 + tk�0 }�{hn(−1/�0 + tk�0 )>0})
= o(1) (A.31)

for t >0, and

P({k−�0 (�̂/a(U−(Xn,n−k)) + 1/�0)� t}�{hn(−1/�0 + tk�0 )�0,Mn(1 + �n)<− 1/�0 + tk�0 })
= P({�̂/a(U−(Xn,n−k))� − 1/�0 + tk�0 }�{hn(−1/�0 + tk�0 )�0,Mn(1 + �n)<− 1/�0 + tk�0 })
= o(1) (A.32)

for t <0. Similarly, for �0 = − 1
2 we have

P({(k ln k)−�0 (�̂/a(U−(Xn,n−k)) + 1/�0)>t}�{hn(−1/�0 + t(k ln k)�0 )>0}) = o(1) (A.33)

for t�0, and

P
({

(k ln k)−�0
(

�̂
a(U−(Xn,n−k))

+ 1/�0

)
� t

}
�{hn(−1/�0 + t(k ln k)�0 )�0,Mn(1 + �n)<− 1/�0 + t(ln k)�0 }

)
= o(1) (A.34)

for t <0.

Proof of Theorem 1. By Lemma 2, (A.1) and (A.19), we have for any t >0

lim
n→∞ P(hn(−1/�0 + tk�0 )>0) = lim

n→∞ P(k1+�0hn(−1/�0 + tk�0 )>0)

= lim
n→∞ P(k1+�0 (h̄n(−1/�0 + tk�0 )>0)

= lim
n→∞ P

(
k1+�0

(
ḡn(−1/�0 + tk�0 ) − 1

1 + �0

)
>0

)

= P(Wt >0). (A.35)

Since

lim
n→∞ P(k−�0 (M̄n + 1/�0)�x) = exp(−(�0x)

−1/�0 ) for x<0,

it follows from (A.19) that M̄n =Mn(1+ �n)+Op(�n), which implies E|I(k−�0 (M̄n + 1/�0)<t)− I(k−�0 (Mn(1+ �n)+ 1/�0)<t)| → 0
for any fixed t <0. Therefore, for any t <0, Lemma 2 implies that

lim
n→∞ P(hn(−1/�0 + tk�0 )�0, Mn(1 + �n)<− 1/�0 + tk�0 )

= lim
n→∞ P(k1+�0 h̄n(−1/�0 + tk�0 )�0, M̄n <− 1/�0 + tk�0 )

= lim
n→∞ P(k1+�0 h̄n(−1/�0 + tk�0 )�0|M̄n <− 1/�0 + tk�0 )P(M̄n <− 1/�0 + tk�0 )

= lim
n→∞ P

(
k1+�0

(
ḡn(−1/�0 + tk�0 ) − 1

1 + �0

)
�0|M̄n <− 1/�0 + tk�0

)
P(M̄n <− 1/�0 + tk�0 )

= P(Wt �0) exp{−(t�0)
−1/�0 }. (A.36)

Hence, it follows from (A.31), (A.32), (A.35) and (A.36) that

P(k−�0 {�̂/a(U−(Xn,n−k)) + �−1
0 }�x) → V(x), (A.37)

which implies that

�̂/a(U−(Xn,n−k)) + �−1
0 = op(k−1/2). (A.38)
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Note that gn(t) is monotone in t and f ′
n(t) = (gn(t) − 1)/t. By the mean-value theorem there exists a variable �n between

�̂/a(U−(Xn,n−k)) and −�−1
0 such that

|fn(�̂/a(U−(Xn,n−k)) − fn(−�−1
0 )| = |f ′

n(�n)||�̂/a(U−(Xn,n−k)) + �−1
0 )|

� (1 + max(gn(�̂/a(U−(Xn,n−k)), gn(−�−1
0 )))op(k−1/2)

=
(
1 + max

(
1

1 + �̂
, gn(−�−1

0 )
))

op(k−1/2).

Here we used (2.3) and (A.38). From Zhou (2009), �̂
p→ �0. By using (A.19) and Lemma 2(i) (with t = 0) we have gn(−�−1

0 ) =
ḡn(−�−1

0 ) + Op(�n)
p→1/(1 + �0). Therefore, from (2.2) and Lemma 2 we have

√
k{�̂ − �0} =

√
k{fn(−1/�0) − 1 − �0} + op(1)

=
√
k{f̄n(−1/�0) − 1 − �0} + op(1)

d→W . (A.39)

We still need to prove the asymptotic independence. It suffices to show that

P(
√
k{�̂ − �0}�x, k−�0 {�̂/a(U−(Xn,n−k)) + �−1

0 }� t) → P(W�x)P(V� t)

for x ∈ R and t ∈ R. Note that the above equation is equivalent to

P(
√
k{�̂ − �0}�x, k−�0 {�̂/a(U−(Xn,n−k)) + �−1

0 }>t) → P(W�x)P(V > t).

Herewe focus on the case t >0. By using (A.31) it suffices to show the asymptotic independence of
√
k{�̂−�0} and k1+�0hn(−1/�0+

tk�0 ). From Lemma 2(i) we know that f̄n(−1/�0 + tk�0 ) − 1 − �0 is negligible compared with ḡn(−1/�0 + tk�0 ) − 1/(1 + �0). Hence,
from (A.39) and (A.19) we have that

(
√
k{�̂ − �0}, k1+�0hn(−1/�0 + tk�0 )) = (

√
k(f̄n(−1/�0) − 1 − �0), k

1+�0 h̄n(−1/�0 + tk�0 )) + op(1)

= (
√
k(f̄n(−1/�0) − 1 − �0), k

1+�0 (ḡn(−1/�0 + tk�0 ) − 1/(1 + �0))) + op(1).

So the independence for the case t�0 follows from part (iii) of Lemma 2. Similarly, we can show the independence for the case
t <0 by using parts (ii) and (iv) of Lemma 2. We complete the proof of Theorem 1. �

Proof of Theorem 2. Following the same lines of the proof of Theorem 1, this theorem can be proved by using Lemma 3, Eqs.
(A.33) and (A.34). �

Proof of Theorem 3. From Lemma 4.1 of Ferreira et al. (2003), we have

lim
t→∞

U(∞) − U(t)
a(t)

+ �−1
0

A(t)
= −1

�0(�0 + �)
. (A.40)

Write

a(U−(Xn,n−k))
a(n/k)

− 1 =
{
a(U−(Xn,n−k))
U(∞) − Xn,n−k

+ �0

}
U(∞) − Xn,n−k

a(n/k)
− �0

{
U(∞) − U(n/k)

a(n/k)
+ 1

�0

}
+ �0

Xn,n−k − U(n/k)
a(n/k)

:= II1 − II2 + II3. (A.41)

By (2.8) and (A.40), we have that
√
kII1

p→0 and
√
kII2

p→0. (A.42)

It follows from Drees et al. (2004) that

√
kII3

d= �0
√
k
U(Yn,n−k) − U(n/k)

a(n/k)
d→N(0, �20) := �0W

∗. (A.43)

Since Yn,n−k is independent of {Yn,n−i+1/Yn,n−k}ki=1, the theorem is proved by combining (2.13), (A.38), Theorems 1 and 2 and
(A.41)–(A.43). �
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Proof of Theorem 4. By writing

�̂
a(n/k)

− 1 = �̂
{

�̂
a(n/k)

+ 1
�0

}
+ (�̂ − �0)/�0

and

�̂
a(U−(Xn,n−k))

− 1 = �̂
{

�̂
a(U−(Xn,n−k))

+ 1
�0

}
+ (�̂ − �0)/�0,

the theorem follows from Theorem 3 and (A.38). �

Proofs of Theorems 5 and 6. Write

�̂ − �
a(U−(Xn,n−k))

= U(U−(Xn,n−k)) − U(∞)
a(U−(Xn,n−k))

− 1
�

+ �̂
a(U−(Xn,n−k))

+ 1
�
.

Then Theorems 5 and 6 follow from Theorems 1 and 2, (A.40), (2.8) and the fact that

a(U−(Xn,n−k))/a(n/k)
p→1. �
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